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Summary 

Isogeometric analysis, as a special field of the finite element method (FEM) which 
integrates geometric and finite element mesh modelling, is one of the promising directions of 
FEM development. The paper presents a concept of isogeometric FEM analysis of thin-walled 
structures based on the Kirchhoff-Love shell formulation and NURBS as basis functions. The 
basic properties of isogeometric shell model are briefly given by means of NURBS 
interpolation functions. The problem of setting up larger models that involve multiple patches 
and their interconnection is addressed. Academic models as well as practical models from the 
field of heavy construction equipment demonstrate the applicability of developed tools for 
static FEM analysis.  
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1. Introduction 

Isogeometric analysis, first introduced by Hughes et al. [1], represents a special 
approach adopted in the finite element method (FEM) which aims at closing the gap between 
the actual geometry of modelled structures and the geometry generated by means of the finite 
element discretization. In the classical FE formulations for structural analysis, the 
isoparametric approach is favoured. It implies the use of mainly linear and quadratic Lagrange 
polynomials as element shape functions that describe both the displacement field and 
geometry. As a consequence, the geometry of the FEM model is only an approximation of the 
actual geometry and the quality of approximation depends on the mesh density. On the other 
hand, in the framework of isogeometric FE analysis, NURBS (non-uniform rational basis 
spline) functions form the basis for the definition of both the geometric models and 
interpolation functions of FE models. Regardless of the mesh density, the geometry is exactly 
described in the FEM model, hence the characterization ‘isogeometric’. 

Roughly speaking, up to 80% of the structures the engineers deal with in practice 
belong to the group of thin-walled structures with the slenderness ratio (in-plane dimensions-
to-thickness ratio) higher than 10. The typical approach to their FEM modelling implies 
condensation of the 3D-field to a 2D one. A distinction is made between two basic first-order 
2D theories. The Kirchhoff-Love theory [2] neglects the transverse shear effects, which 
makes the theory suitable for the natural structural response of rather thin structures 
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(slenderness ratio higher than 20 with isotropic materials and even higher than 100 with 
composite laminates). The Mindlin-Reissner theory, on the other hand, accounts for the 
transverse shear effects in a simplified manner, which makes it suitable for thicker shell 
structures [3]. Despite those basic differences, both theories are supposed to yield the same 
response for thin structures. However, meeting this condition in the framework of classical 
FEM turns out not to be such a trivial task. Namely, in the classical FEM, the Mindlin-
Reissner shell formulation yielded a number of workhorse elements for thin-walled structures 
(e.g. [4, 5, 6, 7]) due to the fact that it requires only the C0-continuity from the shape functions 
(e.g. Lagrange polynomials), whereas the Kirchhoff-Love formulation demands the C1-
continuity over the element boundaries. But it is the combination of Lagrange polynomials as 
shape functions, the isoparametric approach and the definition of the constrained strain field 
(for thin structures, no transverse shear effects and no membrane effects at pure bending) that 
gives rise to the well-known problems of shear and membrane locking with Mindlin-Reissner 
shell elements. A number of remedies have been used so far [8, 9], which are however not 
derivatives of the variational approach. This puts a question mark over the reliability of 
obtained results.  

NURBS as a type of spline is not only suitable for the description of complex geometric 
forms, but its level of continuity can also be easily set to meet specific application demands. 
Hence, after the development of a NURBS-based FEM for solids [10], the authors put focus 
in this paper on the formulation of a NURBS-based Kirchhoff-Love shell element for 
modelling thin-walled structures together with a technique for generating complex models as 
an assembly of coupled patches. 

2. B-spline and NURBS basic functions 

Geometric and FEM models based on NURBS surfaces are in the focus of this paper. As 
these functions have a significant influence on the considered model properties, a brief 
overview of the basis spline (B-spline) and NURBS functions, curves, and surfaces is given 
below. 

The advantage of NURBS in relation to a B-spline is reflected in the possibility of 
accurate descriptions of complex geometric shapes. Although NURBS differs from B-spline, 
it actually uses B-splines as basic functions, as the name reveals. 

A B-spline of the order p given for the knot vector =[0, 1,..., n+p+1] is determined by 
the Cox-De Boor recursive formula [11]. For the degree p = 0, the basic functions are 
determined as: 
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Basic functions of the order greater than zero are given as: 
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The knot vector is a set of parametric coordinates i in a non-decreasing order. The 
continuity of basis functions depends on the function order, p, and knot multiplicity. At the 
knot multiplicity k the continuity is Cp-k. Some important characteristics of these basic 
functions are: Ni,0() is a stepped function equal to zero for all  except for half open interval 
[i, i+1); Ni,p() is a linear combination of two functions of the degree (p-1); a basic 

16 TRANSACTIONS OF FAMENA XXXIX-1 (2015)



Isogeometric FE Analysis of Complex P. Milić, D. Marinković 
Thin-Walled Structures  

function of the order p has a value different from zero only in the semi-interval [i, i+p+1); 
sum of all basic functions of the order p at a point  equals one (partition of unity); they are 
non-negative and linearly independent. 

A p-order NURBS curve can be represented as a rational function using B-spline basic 
functions by means of the following expression [1, 12, 13]:  
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where Pi are the control points that form a control polygon, wi are the weights, {Ni,p()} are the B-
spline basic functions of the order p defined on the non-uniform knot vector ={a,...,a,p+1,...,  
m-p-1, b,...,b}, while Ri,p are the p-order basic rational functions of the NURBS. 

Usually, the knot vector is normalized, i.e. a = 0 and b = 1. Repetition of the elements a 
and b in the knot vector depends on the order of spline and it is p+1. In this way, the 
discontinuity is realized at the ends of the spline. A NURBS surface of the order p in the -
direction and the order q in the -direction can be expressed as: 
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By substituting the basic rational function: 
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the equation for the surface takes the form: 
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Fig. 1  An example of NURBS surfaces with quadratic basic functions 
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3. Kirchhoff-Love shell kinematics and finite element formulation 

In 1850, Kirchhoff [14] introduced a hypothesis on the behaviour of elastic plate 
deformation that represents an extension of the Euler-Bernoulli beam theory. The hypothesis 
assumes that a straight line normal to the mid-surface of the undeformed structure remains 
straight, perpendicular to the mid-surface, and unstrained after deformation. This theory has 
been extended to curved thin-walled structures by Love [15]. 

As already mentioned, this theory is suitable for rather thin shells, i.e. structures with 
high slenderness ratio. Because of the presence of the second order derivative of the 
approximation function in the expression for the virtual work, Kirchhoff's elements require 
the C1-continuity across the element boundaries, which is physically interpreted as the 
continuity of rotations. The NURBS surface resolves this problem as it provides the 
continuity of basic functions throughout multiple elements, thus offering at least the C1-
continuity. However, complex surfaces need to be modelled as an assemblage of patches, 
where each single patch is defined as a NURBS surface. The C1-continuity between patches is 
not given per se, thus requiring an adequate solution, as it will be elaborated later.  

The shell element kinematics and the formulation that is only briefly presented below 
follow the development presented by Nguyen et al. [16], which is a total Lagrangian based 
geometrically nonlinear formulation of the Kirchhoff-Love shell element. The element 
formulation for linear analysis is deduced from the nonlinear one by introducing the 
assumption of small displacements and deformation, thus neglecting the change in structural 
configuration. Since a review of this shell element derivation is rather space-demanding, only 
the most important element formulae are given below. An interested reader is referred to [16] 
where the topic is covered extensively.  

The shell mid-surface in the initial configuration is given by a parametric function: 
x=x(1, 2), where 1, 2 are the parametric coordinates (Fig. 2).  

 

Fig. 2  Initial and deformed shell mid-surface  

The position vector of an arbitrary point of the shell is given by the following equation:  

       1 2 3 1 2 3 3 3, , , with / 2 / 2t t          x g , (7) 

where t denotes the shell thickness and 3 is the parametric coordinate corresponding to the 
thickness direction. The covariant base vectors in the reference configuration are obtained from 
the derivatives of the position vector with respect to the curvilinear coordinates, as follows: 

2,1for,   xg . (8) 
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The cross product of basic vectors g1 and g2 yields the director (vector of surface normal): 

1 2
3

1 2


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
g g

g
g g

. (9) 

After discretization of the displacement field and computation of the displacement first 
order derivatives, one can define the typical Kirchhoff-Love shell strain field consisting of the 
membrane and flexural parts. The corresponding membrane and flexural strain-displacement 
matrices are given in the following form, respectively: 
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where e1, e2, e3 are the basis vectors of the global coordinate system, RI
,1 and RI

,2 are the 
NURBS first order derivatives with respect to the curvilinear coordinates, while the 
components of flexural strain-displacements matrix are computed as follows: 
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where j  is the intensity of the cross product g1g2, R
I
,11, R

I
,22 and RI

,12 are the NURBS second 
order derivatives with respect to the curvilinear coordinates and gi,j represents the first order 
derivative of the basic vector gi with respect to the curvilinear coordinate j. 

Introducing the above given matrices into the principle of virtual work, one obtains the 
variation of strain energy as: 
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and, hence, the element stiffness matrix in the following form: 
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where D is the constitutive tensor of the isotropic material transformed to the covariant basis: 
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where E is Young’s modulus, ν Poisson’s ratio and ij
0a  are the components of the 

contravariant basis [16]. 

4. Single patch problem 

The academic example of the cylinder quarter depicted in Fig. 3, left, is considered first 
to demonstrate the isogeometric FEM analysis by means of the presented shell formulation 
using a single patch. The geometry of the cylinder is defined by the radius of 1 m, length of 1 
m and thickness of 0.02 m. It is made of steel (Young’s modulus 2e11 N/m2 and the Poisson 
coefficient 0.3). As shown in Fig. 3 left, one straight edge of the structure is clamped, while 
the other straight edge is exposed to the uniform transverse edge load of 1N/m. Since 
rotations are not directly available as the degrees of freedom, the realization of the clamped 
boundary condition is required to fix translations in three rows (Fig. 3, middle), whereby the 
distance between the rows corresponds to the shell thickness. Fig. 3, right, gives the contour 
plot for the displacement in the z-direction.  

 
Fig. 3  Model of the cylinder quarter, realization of clamped boundary conditions and contour plot for the 

displacement in z-direction 

The convergence analysis performed for different degrees of the NURBS and the FE 
mesh is summarized in Fig. 4 which gives the displacement of the loaded edge in the z-
direction. The FE mesh refinement has been carried out by increasing the number of elements 
along the cylinder arc. Obviously, the results with different degrees of NURBS converge to 
the same solution and, as expected, the models with higher degree NURBS converge faster. 
The converged result obtained by means of classical FEM involved 100 quadratic CQUAD8 
shell elements from the NXNastran element library along the cylinder arc. It should be 
emphasized that the CQUAD elements implement the Mindlin-Reissner kinematics. The 
converged results obtained by both approaches show very good agreement. 
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Fig. 4  Result convergence analysis of NURBS-based FEM models with different order of basic functions 

5. Multi patch problem with bending strips 

Complex structures often cannot be modelled by a single patch. While a simple 
interconnection of two patches (just a merging line, or a curve) provides the continuity of 
translations, it does not provide the continuity of rotations and therewith the continuity of 
bending moments between the patches. A simple idea on how to cope with the problem 
implies the introduction of an additional small patch into a narrow interconnection zone 
(Fig. 5) with the aim of adequate transfer of bending moments between the two patches. 

 

Fig. 5  The bending strip (BS) approach for the interconnection of two patches – strip geometry and the 
minimum requirement from the basic functions 

As can be seen in Fig. 5, left and middle, the two patches (Patch 1 and Patch 2) merge 
along the line defined by the control polygon points P1

n,i (belonging to Patch 1) and P2
n,j 

(belonging to Patch 2). To provide an adequate geometric merging of the patches, it is necessary 
that the polygon control points defining the merging line (or curve, in general) are identical.  

The additional patch, denoted as ‘bending strip’ (BS), needs to be defined by NURBS, 
whose degree is at least two because of the second order derivative required by the strain-
displacement matrix. The simplest suitable form for the bending strip is a cylinder-like 
section, and three points suffice to determine the curvature (Fig. 5, middle). This further 
requires knot insertion on both patches to be connected, whereby the knots are inserted at a 
rather small distance from the merging line. Hence, the polygon control points P1

n-1,i and 
P2

n+1,j are additionally defined on the patches 1 and 2, respectively (Fig. 5, left and middle). 
Weight coefficients equal to one are assigned to the edge points of the elements. The weight 
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coefficients of points P1
n-1,i and P2

n+1,j, are determined based on the angle formed between 
these points, which is given by the scalar product: 

   1 1 1 2
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1 1
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. (16) 

The basic problem in defining the bending strip is how to determine its bending 
stiffness in order to assure adequate bending moment transfer between the patches. Because 
the bending strip width is small (approximately the thickness of structural elements), the 
stiffness of the strip needs to be greater compared to the stiffness of the modelled structures. 
In contrast to the definition of Kirchhoff's shell, only the part of the stiffness matrix related to 
bending is computed for the bending strips: 

 
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e s ee
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Also, the description of the bending strip material is adequately modified so that Hooke’s 
matrix reads: 

0 0

0 0 0

0 0 0

s

s

E 
   
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D , (18) 

with modified Young's modulus Es that is at least 2 orders of magnitude greater than the one 
of the actual structural material, whereby too high values of ES which would make the global 
stiffness matrix ill-conditioned are avoided. Such a design of the material constitutive matrix 
ensures that the bending strips only penalize the change in the angle during the deformation 
between the triples of control points at the patch interface [17].  

6. Isogeometric analysis of the excavator boom  

The application of the developed numerical tools is also to be demonstrated on actual 
structures encountered in engineering practice. In this specific case, it is the excavator boom, 
whose CAD model is shown in Fig. 6.  

          

Fig. 6  CAD model of the excavator and its boom 
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The kinematical boundary conditions and loads shown in Fig. 7 are primarily chosen for 
the purpose of demonstration of the developed numerical tools, although the force values and 
directions are realistic for the considered machinery. Three FEM models have been 
developed. The first two FEM models are the NURBS-based multi-patch models, while the 
third one is the classical FEM model (Lagrangian shape functions) using CQUAD elements 
from NXNastran. 

 

Fig. 7  Big arm of the excavator with boundary conditions and loads 

Each of the NURBS-based multi-patch FEM models consists of 87 patches with 8 
different shell sections (different thickness). They both use NURBS of the same order with 
the degree of basic functions in both directions equal to 3. Actually, the only difference 
between the NURBS-based FEM models is in the number of elements, Fig. 8. The number of 
elements differs in only one direction. Such mesh refinement has been carried out in order to 
better capture the bending in vertical plane. The NURBS-based FEM model with a coarser 
mesh has 4 elements in most patches in both directions, i.e. 16 elements per patch, 12 of 
which are used for the bending strips. Hence, most of the patches are essentially discretized 
by 4 (22) elements and the mesh can be described as coarse. But since the basic functions of 
the third order have been used, the obtained results are of good quality. The finer NURBS-
based FEM model is obtained by inserting 2 elements into the height direction of the boom 
(i.e. only over the side walls). The number of degrees of freedom in the model with the coarse 
NURBS-based FEM mesh is 9363 and with the finer mesh, it is 10323. 

 

 

 

Fig. 8 Multi patch NURBS-based FEM models with a coarse mesh and a finer mesh 
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A comparison of the maximal displacement magnitude predicted by the three models is 
given in Table 1. A direct solver has been used with both models. Regarding accuracy, the 
results by the NURBS-based FEM and classical FEM models are in good agreement. It can be 
noted that the NURBS-based results converge to a slightly less stiff solution (approximately 
by 2%), which is to be attributed to different formulations of the applied elements (Mindlin-
Reissner with classical FEM and Kirchhoff-Love with NURBS-based elements) in 
combination with a relatively high ratio of the structure length (more than 5 m) to thickness 
(between 1 and 1.5 cm). 

Table 1  NURBS-based and classical FEM results 

FEM model Number of 
DOF 

Maximal displacement
magnitude [m] 

Relative difference to 
classical FEM [%] 

NURBS I 9363 3.1287  10-3 5.00 

NURBS II 10323 3.3599  10-3 2.02 

Classical FEM 65478 3.2934  10-3 - 

The contour plot in Fig. 9 gives the displacements magnitude for the finer NURBS-
based FEM model.  

 

Fig. 9  Contour plot for displacement magnitude obtained by the finer NURBS-based FEM model 

7. Conclusions 

The isogeometric FEM analysis is a relatively new direction of the FEM development in 
the field of structural analysis. It has drawn significant attention in the recent years and the 
theoretical background is already well established. Practical advantages of the NURBS-based 
approach are still to be demonstrated and well documented through its application to 
engineering structures. This paper offers a contribution in this direction by considering the  
boom structure of an excavator.  
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The obvious advantage offered by the NURBS-based FEM is in the fact that the CAD 
models already use NURBS to describe complex geometries. Hence, the presented approach 
enables seamless integration between CAD and FEM. An advantage offered by the Kirchhoff-
Love shell formulation is related to the size of the system of equations to be solved. This is a 
consequence of the fact that there are only translations as the degrees of freedom (no 
rotations). The dynamic analysis would particularly benefit from this advantage. However, it 
comes together with the limitation that only rather thin structures can be adequately modelled. 
The influence of transverse shear effects is expected to be especially noticeable when the 
dynamic behaviour with higher vibrational mode shapes is involved. Furthermore, more 
complex geometries require the multi-patch approach together with bending strips for their 
adequate coupling. Although this approach yields good results, it is accompanied by a 
numerical effect one needs to be aware of. Namely, the method requires the insertion of 
additional control polygon points, which increases the size of the model. Additionally, the 
bandwidth of the stiffness matrix may get noticeably larger, which further deteriorates the 
numerical efficiency if a direct solver is used for the computation. Node re-numbering may be 
required in such a case. Alternatively, an iterative solver may be used.  
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