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Abstract. This paper considers the relationship between Tolerance sensitivity analysis 
in optimization and metric sensitivity analysis in Data Envelopment Analysis (DEA). 
Herein, we extend the results on the generalized Tolerance framework proposed by 
Wendell and Chen and show how this framework includes DEA metric sensitivity as a 
special case. Further, we note how recent results in Tolerance sensitivity suggest some 
possible extensions of the results in DEA metric sensitivity.  
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1. Introduction 
 
Tolerance sensitivity analysis in linear programming was proposed by Wendell 
[19, 20, 21]. This work was originally focused on the Chebyshev norm and 
showed how to find a maximum tolerance, typically interpreted as the 
maximum percentage within which selected coefficients or terms (e.g., objective 
function coefficients) could vary while maintaining the same optimal basis. As 
noted by Ward and Wendell [18], Wendell [22], and Wendell and Chen [24], a 
number of subsequent papers proposed various theoretical extensions as well as 
applications including sensitivity of matrix coefficients, facility location 
problems, and multiple objective problems. 

Shortly before Tolerance sensitivity was proposed, Charnes  et al. [2] wrote 
the seminal paper on Data Envelopment Analysis (DEA), proposing a  
methodology for performing a relative efficiency evaluation  of entities  called 
Decicsion Making Units (DMUs) which use the  same inputs  and  produce  the 
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same outputs. Since then, DEA has become a fast growing area with, according 
to the bibliography of Emrouznejad [9], more than four thousand references of 
works on DEA. For  an  excellent introduction  to the  theory  and use of DEA 
see, for example, [7] and [6]. The importance of variations in the data, or what 
we will call sensitivity analysis, was apparent in the early days beginning with 
Charnes et al [1] considering sensitivity with respect to a single output.  This 
was followed by Charnes and Neralić [4], Neralić [13], Neralić and Wendell [14]  
and others. One of the approaches to DEA sensitivity, proposed by Charnes et 
al [3, 5], was to apply metric concepts in a way to make it possible to determine 
allowable variations in all inputs and outputs for one DMU in a DEA model. In 
particular, using an lp norm to characterize distance, these papers propose 
optimization models to determine a maximum radius, called a “radius of 
stability”, within which variations of the inputs and outputs in a selected DMU 
would remain efficient, if the selected DMU was originally efficient, and would 
remain inefficient, if it was originally inefficient. Since then, research on DEA 
metric sensitivity has primarily focused on the Chebyshev norm. For a further 
discussion see, for example, [8] as well as [7] and [6]. 

Both Tolerance sensitivity and DEA metric sensitivity have remarkable 
similarities, but interesting differences. Herein, we extend the results on a 
generalized Tolerance framework proposed in [24] and we show how the 
generalized framework includes DEA metric sensitivity as a special case. Further 
we note how recent results in Tolerance sensitivity suggest extensions of the 
results for DEA metric sensitivity.  

The paper proceeds as follows. Section 2 gives a statement of the general 
Tolerance framework from Wendell and Chen together with some theoretical 
extensions. Section 3 applies this general framework to DEA, yielding the results 
of Charnes et al [3], Cooper et al [8], and Cooper et al [7] on metric-based DEA 
sensitivity analysis. Section 4 gives some concluding observations and discusses 
potential future research, including how recent results in Tolerance sensitivity 
can be applied to yield extensions of the results in DEA metric sensitivity. 

 

2. A generalized tolerance sensitivity analysis framework1 
 
Let c denote a vector of parameters in Rt, and let f(x,c) and g(x,c) denote 
vectors of functions on X with parameters c where 𝑋𝑋 ⊆  𝑅𝑅𝑛𝑛 is a given constraint 
set.  Consider the optimization problem: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑀𝑀, 𝑐𝑐):𝑔𝑔(𝑀𝑀, 𝑐𝑐) ≤ 0,𝑀𝑀 ∈ 𝑋𝑋 }                           (1) 
 

1 In this paper we follow and extend the notation given in Wendell and Chen [24]. Any overlap between 
this notation and notation used in DEA will be clear from the context. 
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Observe that when the vector f has multiple components, (1) denotes a multiple 
objective problem. Let x* denote a feasible solution to (1) when c = 𝑐𝑐̂.  

Consider a perturbation structure of c in which c = 𝑐𝑐̂ + γC ' where C ' is a 
given s x t matrix and where the parameters γ can take on values in a given set 
Γ, called an a priori parametric region, denoting a region within which γ may 
vary. The a priori set Г, which always includes 0 and which we assume is closed, 
enables us to exploit known a priori limits on variations of the parameters γ to 
obtain stronger results. Herein we consider the case when s = t and C ' is a 
nonnegative, diagonal matrix. The diagonal elements C 'ii are sometimes called 
perturbation rates and denoted as a vector c '. Observe that when γ = 0 we have

cc ˆ= .   
Suppose that when γ = 0 the solution x* satisfies some specified optimality 

condition, often characterized as a set of equations and/or inequalities in γ. For 
example, in a linear programming problem the optimality condition could be 
that the same basis is optimal, that the same solution is optimal, that the same 
variables are basic, etc. Let P(x*), called a critical region, denote the set of γ for 
which the specified optimality condition holds. For problems with a linear 
structure, P(x*) is typically a convex polyhedron. A basic question in sensitivity 
analysis is: How much can γ deviate from 0 within Γ and still remain in the 
critical region P(x*)? To eliminate the trivial case, we assume that P(x*) is a 
proper subset of Rs. Tolerance sensitivity analysis is an approach to answer this 
question in the case when "how much" is determined by the size of a hyperbox 
within which the parameters γ can vary simultaneously and independently over 
Γ. For a further discussion see, for example, [18, 22, 24, 11].  

The Tolerance sensitivity problem can be characterized as:  

sup ρ(𝑢𝑢) 
s.t.   𝛾𝛾 ∈ Γ ∩ { 𝛾𝛾: 𝛾𝛾 ∈ 𝐵𝐵(𝑢𝑢)} ⟹𝛾𝛾 ∈ 𝑃𝑃(𝑀𝑀∗)                    (2) 

 
where 𝑢𝑢 is a nonnegative vector in R2t,  
𝐵𝐵(𝑢𝑢) is a hyperbox, also called a tolerance box, characterized as 

( ) { : , 1, 2, , }i i t iB u u u for i tγ γ += − ≤ ≤ =  , 
𝜌𝜌(𝑢𝑢) denotes a function that characterizes the size of the hyperbox  
"⟹" denotes an “if-then” implication.  
If 𝑢𝑢 denotes a feasible solution to (2), observe that the parameters γ may vary 
simultaneously and independently over the region B(𝑢𝑢) ∩ Γ while preserving the 
specified optimality condition for 𝑀𝑀*.   

 
Traditional Tolerance sensitivity can be viewed as setting all components of 

u equal to one number, which we call a tolerance and denote as τ. In this case, 
the hyperbox is a hypercube corresponding to the set { τγγ ≤

∞
: }, where 

∞
⋅ is 
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the Chebyshev norm and the tolerance τ denotes the size 𝜌𝜌(𝑢𝑢) of the hypercube. 
Problem (2) corresponds to finding the maximum tolerance τ, denoted as τ*, 
where the optimality condition γ ∈ P(x*) holds for all γ ∈ Γ when τγ ≤

∞
. 

Thus, the traditional Tolerance problem for computing τ* can be stated as: 

             sup τ 
s.t.   𝛾𝛾 ϵ 𝛤𝛤 ∩ � 𝛾𝛾: τγ ≤

∞
 � ⟹ 𝛾𝛾 ϵ 𝑃𝑃(𝑀𝑀∗)                     (3) 

Observe that the maximum tolerance τ* is itself a tolerance iff the sup in (3) is 
achieved. Also note that the maximum tolerance corresponds to a hypercube  
B( u ) where *τ=iu for all i. When c' = 𝑐𝑐̂ then τ*x100%, called the maximum 
Tolerance percentage, denotes the maximum percentage within which the 
parameters c may vary simultaneously and independently from their original 
values ĉ  while maintaining the optimality property.  In addition, observe that 
setting a component ci' = 0 is a convenient way to specify that no perturbations 
on ĉ i will be considered, which would be the case if we knew that ĉ i was the 
known value of ci. A key advantage of using traditional Tolerance sensitivity is 
the ease with which a manager can intuitively interpret and readily use the 
maximum tolerance percentage in sensitivity analysis. For example, in 
considering sensitivity analysis of the objective function coefficients in linear 
programming, the maximum tolerance percentage can denote the maximum 
percentage by which the objective function coefficients may vary from their 
original values while maintaining the same optimal basic feasible solution.   

From (3) we can give a simple characterization of the case when τ* = ∞. 
 
Theorem 1. The maximum tolerance τ* = ∞ iff  
 

(4) 
 

Observe that, for the special case when there is no a priori information on the 
allowable range of perturbations (namely, when Г = Rt), τ* is finite iff P(x*) is 
a proper subset of Rt. Letting P(x*)c denote the relative complement of P(x*), 
we now give an equivalent characterization of (3). 
 
Theorem 2. An equivalent representation of (3) is 

  inf γ
∞
 

s.t.  ( ){ * }cP xγ ∈ Γ                                    (5) 
 

Proof. The equivalence when τ* = ∞ follows from Theorem 1. Thus, consider 
the case when τ* is finite, letting inf denote the infimum in (5).  We first show 
that τ* ≤ inf. If τ* > inf, then by (5) there exists a ( )' { * }cP xγ ∈ Γ   with 

  𝛾𝛾 ∈ 𝛤𝛤 ⟹  𝛾𝛾 ∈ P(x*) 
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'γ
∞

 < τ*. But letting τ = 'γ
∞

in (3) gives a contradiction. We now show 
that inf ≤ τ*. Consider a positive sequence {εk} converging to 0. For each k, let 
τk = τ* + εk.  For each k there is by (3) some γk ∈Г with k kγ τ

∞
≤  and 

( )* ck P xγ ∈ . Since for each k, inf  ≤ k kγ τ
∞
≤ , it follows that inf  ≤  τ*. QED 

The set ( )* cP x in (5) is often not closed. In the following important special 
case, when there is no a priori information on the variations of the parameters, 
this presents no problem.  
 

Theorem 3. If Г = Rt then τ* equals the infimum  

  inf γ
∞

 

 s.t.  ( *)cP xγ ∈                                             (6) 
 
The proof is immediate. Note that, since problems (3) and (6) are equivalent 
when Г = Rt, one can choose whichever problem is easier to solve for a 
particular situation. Often (e.g., for Tolerance sensitivity in linear programming) 
problem (6) is used. However in DEA, as we will see, problem (3) is easiest 
when evaluating the Tolerance sensitivity of an inefficient DMU.  

When Г does not equal Rt dealing with the closure of P(x*)c is more 
delicate. This is illustrated in the example below where the infimum in (5) is 
infinite but where substituting the closure of P(x*)c for P(x*)c in (5) gives a 
finite infimum.  
 
Example. Consider the simple linear programming problem: Max {(2x1 + 1x2): 
x1 + x2 = 1, x1, x2 ≥ 0} for which x* = (1, 0). Letting c' = (1, 1), the perturbed 
problem is  
Max {(2+γ1)x1 + (1 + γ2)x2: x1 + x2 = 1, x1, x2 ≥ 0}. Thus, we have P(x*) = 
{(γ1, γ2): γ2 - γ1 ≤ 1}. If we have the a priori information that Г = {(γ1, γ2): 
γ1 ≥ -.5, γ2 ≤ .5}, then the infimum in (5) is infinity but the infimum in (5) 
with the closure of P(x*)c substituted for P(x*)c is .5.  □ 

 
Building on the work of Wendell [20] and others, the solution of (5) when Г 

does not equal Rt is explored in a subsequent paper. 
Typically, the critical region P(x*) in applications of Tolerance sensitivity 

corresponds to a convex polyhedron. In this case, as noted by Hladik [11], the 
basic idea of Tolerance sensitivity in linear systems as given by (2) is to find “a 
maximal box lying inside a convex polyhedron”. Here a box 𝐵𝐵(𝑢𝑢)  being called 
“maximal” means that there is no other box lying in P(x*) and being a strict 
superset of 𝐵𝐵(𝑢𝑢). Note that the box given by traditional Tolerance sensitivity is 
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maximal among the set of boxes that are hypercubes. Further, the work on 
Tolerance sensitivity has focused on the case when P(x*) has an external 
representation2 such as P(x*) = {γ: Dγ ≤ d}. As we will see, DEA metric 
sensitivity is one application for which the tolerance framework using an 
internal representation of a polyhedron is used. 
 

3. DEA metric sensitivity as Tolerance sensitivity 
 
We now consider an application to DEA. As usual in DEA, we assume that 
there are n DMUs to be evaluated with n > 1, where each consumes given 
amounts of m different inputs to produce given amounts of s different outputs. 
Specifically, let Xj ∈ Rm denote the vector of inputs used by DMUj and let Yj ∈ 
Rs denote the vector of corresponding outputs. We assume that Xj ≥ 0 and Yj ≥ 
0. Let Xij and Yrj denote components i and r of the respective vectors and, as 
common in DEA, assume that each DMU has at least one positive input and 
one positive output component. Following [3] and [7, 8], we focus for simplicity 
on the Additive Model which has the production possibility set S = {(x,y): x ≥

1

n

j j
j

Xλ
=
∑ , y ≤ 

1

n

j j
j

Yλ
=
∑ , 

1

n

j
j
λ

=
∑ =1, λ ≥ 0}. For any two given points (x',y') and 

(x'',y'') in S we say that (x',y') dominates (x'',y'') if x’ ≤ x'' and y' ≥  y'' with 
at least one inequality being strict. A given point (x*,y*) ∈ S is said to be 
efficient if there is no point (x, y)  ∈ S that dominates it. Otherwise it is said to 
be inefficient. As shown by Charnes et al [3], testing whether or not a point (x, 
y) is efficient can be easily determined by solving an auxiliary linear program. 

Let DMU0 denote a selected DMU with corresponding inputs and outputs 
X0 and Y0. As in [3] we consider a radius of stability with respect to a given 
norm within which the inputs and outputs of DMU0 may vary while preserving 
a DMU’s current classification – efficient or inefficient. Following [3] and [7, 8], 
we assume that the input and output values of all other DMUs remain 
unchanged, and we focus on the Chebyshev (l∞) norm. In particular, for the 
Chebyshev norm observe that the radius of stability is a number τ* ≥ 0 
satisfying the following property where rd + and id −  are positive numbers: 

0 ≤ τ < τ*, xi ∈ [Xi0 – τ id −  , Xi0 + τ id − ], yr ∈ [Yr0 - τ rd +  , Yr0 + τ rd + ], (7) 
 

and DMU0 is efficient (inefficient) implies that (x,y) is also efficient (inefficient); 
and τ* is the largest number for which this property holds. 
  

2 For a discussion of an external and internal representations of a polyhedron see, for example, page 107 
of Schrijver [15]. 
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Charnes et al [3] and Cooper et al [7, 8] give the following results. 
 
Theorem 4. If DMU0 is inefficient then 

       τ* = Max θ 

 s.t.  
0

1

n

rj j r r
j

Y d Yλ θ +

=

− ≥∑  for r = 1, …,s              (8) 

                                
0

1

n

ij j i i
j

X d Xλ θ −

=

+ ≤∑  for i = 1, …,m 

             
1

n

j
j
λ

=
∑ =1 

       λ, θ ≥ 0 
 
Theorem 5. If DMU0 is efficient then  

        τ* = Min θ 

      s.t. 
0

1, 0

n

rj j r r
j j

Y d Yλ θ +

= ≠

+ ≥∑  for r = 1, …,s            (9) 

                            
0

1, 0

n

ij j i i
j j

X d Xλ θ −

= ≠

− ≤∑  for i = 1, …,m 

                 
1, 0

n

j
j j

λ
= ≠
∑ =1 

           λ, θ ≥ 0 
 
where 0j ≠  refers to the efficient DMU0 that is being analyzed. In particular, 
note that if all components of d 

– and d+ equal 1, then Theorems 4 and 5 above 
respectively correspond to Theorems 3.4 and 3.2 in [3]. 

 
The following multiple optimization problem for the Additive DEA model 

corresponds to problem (1) in Tolerance sensitivity:  

       Min x 
       Max y    
s.t.  (x, y) ∈ S                                        (10) 

 
Let the coordinates X0 and Y0 of DMU0 correspond to the feasible solution 

x* in (1). With (X0, Y0) denoting an efficient (inefficient) DMU, we now show 
how Theorems 4 and 5 above can be viewed as an application of Tolerance 
sensitivity to problem (10).  
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Letting C ' = (C 'X, C 'Y) whose nonnegative diagonal elements are id − and 

rd + , we can represent points x and y resulting from perturbations from X0 and 
Y0 as (X0 + γX C 'X) and (Y0 + γY C 'Y) respectively. Observe that if d −= X0 
and d + = Y0 then γX  and γY represent % variations of x and y from X0 and Y0 
respectively as in (7). This corresponds to an observation in [8] that τ* in 
Theorems 4 and 5 can be interpreted as a ratio relative to the positive weights 
used for each constraint. Also, in a similar analysis for the Ratio (CCR) model, 
Charnes et al [5] observe that τ* denotes “the minimum percentage change 
necessary in every input and output to bring the test unit to its nearest 
unstable point”. Note that the interpretations of the perturbations are identical 
to those in Tolerance sensitivity.   

Below we individually consider the cases when DMU0 is inefficient and 
efficient. 
 
3.1 . When DMU0 is inefficient 
 
First we assume that DMU0 is inefficient.  In this case the critical region P(x*) 
is the set for which a perturbation gives an inefficient DMU. Thus, when DMU0 
is inefficient, note that P(x*) equals the set of perturbations (γX, γY) where (X0 
+ γX C 'X,Y0 + γY C 'Y) is in the convex hull of {(Xj,Yj): j = 1, …, n} plus the 
polyhedral cone, excluding the point 0, generated by {(ei,0): i = 1,…, m} and  
{(0,-er): r = 1,…, s}. 

Consider the traditional Tolerance problem (3). Observe that problem (3) 
is equivalent to problem (8) when Γ has no limits. Since the supremum in (3) is 
identical whether or not we exclude 0 from the polyhedral cone, we can include 
the 0 point in the cone, so that P(x*) corresponds to an interior representation 
of a polyhedron. Interestingly, in contrast to Wendell [21] and Hladik [11] who 
give a closed form solution for an external representation of a polyhedron P(x*) 
when Γ = Rt (based on computing the minimum distances to each face of the 
polyhedron), Charnes et al [3] and Cooper et al [7, 8] deal directly with an 
internal representation that exploits the structure of P(x*) by showing that an 
optimal solution to (3) can be found by moving from (X0, Y0) in the direction 
θ(- id − , rd + ). In doing this, they obtain (8) in Theorem 4 as an equivalent 
optimization model to the traditional Tolerance problem (3). Thus, for an 
inefficient DMU we conclude that DEA metric sensitivity is a special case of the 
generalized tolerance framework. 
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3.2. When DMU0 is efficient 

 
Now suppose that DMU0 is efficient.  In this case, the critical region P(x*) is 
the set for which a perturbation corresponds to an efficient DMU; and therefore 
P(x*)c corresponds to inefficient DMUs. Thus, P(x*)c equals the set of 
perturbations (γX, γY) where (X0 + γX C 'X,Y0 + γY C 'Y) is in the convex hull of 
{(Xj,Yj): j= 1, …, n} plus the polyhedral cone, excluding the point 0, generated 
by {(ei,0): i = 1,…, m} and {(0,-er): r = 1,…, s}. In particular, observe that 
P(x*) is a proper subset of Rm+s. 

Since the case above corresponds to having Γ = Rt, it follows from 
Theorem 3 that (6) is an equivalent characterization of (3). Charnes et al [3] 
and Cooper et al [7, 8] essentially observe that problem (6) is the linear 
programming problem (9) given in Theorem 5. Thus, for an efficient DMU we 
conclude again that DEA metric sensitivity is a special case of the generalized 
tolerance framework. 
 

4. Conclusions and observations 
 
This paper considers the relationship between Tolerance sensitivity analysis in 
optimization and metric sensitivity analysis in DEA. Specifically, it extends the 
results on the generalized Tolerance framework proposed by Wendell and Chen 
and shows how this framework includes DEA metric sensitivity as a special case. 
Further, as noted below, the paper shows how recent results in Tolerance 
sensitivity suggest some possible extensions of the results in DEA metric 
sensitivity.  

In a related paper Singh [16] recently proposed a volume-maximizing 
tolerance approach for DEA metric sensitivity. This approach, while not directly 
related to the results of Charnes et al [3] and Cooper et al [7, 8], offers an 
alternative method of constructing a stability region by maximizing the volume 
of the region (building on the work of Wang and Huang [17]). Critiques of the 
volume-maximizing approach include: a lack of an intuitive rationale for the 
maximizing volume objective (see [22]); and the need to solve a nonlinear 
optimization problem to perform sensitivity analysis on an optimal basis of a 
linear program (see [10]). Also, while not directly relevant herein, we observe 
that Jahanshahloo et al [12] has recently shown how models proposed by 
Charnes et al [3] and Cooper et al [7, 8] can be combined into one model with 
the same results, thereby saving some computational work.  

One conclusion from the results herein is that DEA metric sensitivity uses 
a similar framework to traditional Tolerance sensitivity. However, the 
relationship between them is only clear when considering the general framework 
given herein. Furthermore, there are significant differences in DEA metric 
sensitivity from previous work in Tolerance sensitivity. One is that in contrast 
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to considering sensitivity with respect to just optimal solutions, DEA metric 
sensitivity considers variations of an inefficient (i.e., a “nonoptimal”) solution. 
Another is that DEA considers both internal and external representations of a 
polyhedron, whereas traditional Tolerance sensitivity considers just external 
representations.  

Given the relationship between DEA metric sensitivity and Tolerance 
sensitivity, it is interesting to consider how recent work in Tolerance sensitivity 
can yield extensions of DEA metric sensitivity results. In particular, building on 
the results of Filippi [10], Hladik [11], and Wendell [20], a follow-up paper by 
the authors herein show how to obtain larger maximum tolerances by exploiting 
a priori parametric information and how to expand the maximum tolerance 
region. Interestingly, the DEA – Tolerance relationship also suggests other 
possible research topics such as building on the work of Wendell [23] to consider 
trade-offs between “the degree of efficiency” of a DMU and its sensitivity to 
perturbations. We hope that this paper motivates research on such trade-offs. 
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