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 This paper addresses the robust model predictive 

control (MPC) for a class of time delay descriptor 

systems with linear fractional uncertainty and 

input constrains. The systems are transferred to the 

piecewise continuous descriptor systems and a 

piecewise constant control sequence is calculated 

by minimizing the worst-case quadratic objective 

function. At each sampling internal, by means of 

Lyapunov theory and optimization theory, the 

optimal problem with infinite horizon objective 

function is reduced to a convex optimization 

problem involving linear matrix inequalities. The 

sufficient conditions for the existence of the state 

feedback control are derived and expressed as 

linear matrix inequalities. Further, an iterative 

model predictive control algorithm is proposed for 

the on-line synthesis of state feedback controllers 

with the conditions guaranteeing that the closed-

loop descriptor systems are regular, impulse-free 

and robust stable. Finally, a numerical example is 

presented to show the efficiency of the proposed 

approach.   
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1 Introduction 
 

Model predictive control (MPC) [1-4] is a popular 

strategy in dealing with multivariable constrained 

control problems encountered in process industries 

which has attracted notable attentions in the control 

of dynamic systems and which plays an important 

role in control practices. MPC uses a system model 

to predict input future evolution along a given 

prediction horizon. The future predictions of the 

state, output, and input variables are used to 

minimize a given performance index, which is a cost 

function defining the optimization criteria used to 

determine the best possible control action sequence.  

In practice, real plants inherently include uncertainties 

that are to be considered in control design. The 

control design procedure has to guarantee stability, 

performance and robustness properties of closed-

loop systems in the whole uncertainty domain, so it 

is extremely important for MPC to be robust when 

modeling uncertainty. Robust constrained MPC 

using linear matrix inequality (LMI) has been 

proposed by Ref [5], where the polytopic model and 

structured feedback uncertainty model were 

addressed. Their main idea is to use infinite horizon 

control laws to guarantee robust stability for state 
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feedback control. Another paper by Ref. [6] 

presented the problem of designing a robust 

output/state model predictive control for linear 

polytopic systems with input constraints when all 

time demanding computations of output feedback 

gain matrices were realized off-line and when the 

actual value of the control variable was obtained 

through simple on-line computation of scalar 

parameters and respective convex combination of 

the computed matrix gains. Another work 

considered output feedback robust model predictive 

control for the quasi-linear parameter varying (quasi-

LPV) system with bounded disturbance so that an 

iterative algorithm is proposed for the on-line 

synthesis of the control law via convex optimization 

[7]. References [8-10] addressed the robust model 

predictive control problems, giving sufficient 

conditions and expressions of robust model-based 

predictive control law, and analyzing the issues of 

feasibility and stability of the closed-loop systems 

with delay.  

The descriptor system (also called a singular system) 

model is a natural representation of a dynamic 

system. It describes a larger class of systems than 

the normal system model does and has wide 

applications in process modeling. The research into 

descriptor systems has been a field of active 

researching [11-13]. In Ref.[11] a piecewise 

constant control sequence was calculated by 

minimizing the worst-case linear quadratic  

objective function for a class of uncertain  

descriptor systems. For uncertain descriptor systems 

with both state and input delays, the approximate 

solutions of optimal problems for infinite time 

interval and with quadratic performance index were 

calculated by means of Lyapunov theory and linear 

matrix inequalities (LMIs) technique, and the 

sufficient conditions for the existence of the robust 

model-based predictive control were given in Ref. 

[12]. Ref. [13] considered the stabilization of 

continuous time descriptor systems with respect to 

input constraints and presented a sampled-data 

model predictive control scheme. The stability of 

the closed-loop was achieved in a similar manner as 

for non-descriptor systems, utilizing a suitable 

terminal penalty term and a terminal region 

constraint. 

The existing results are mainly concerned with the 

robust MPC of descriptor systems with norm-bound 

or ploytopic uncertainties. The research in this 

paper is focused on the extensions of the existing 

results to the more generalization uncertainty-linear 

fractional uncertainty, of which norm-bound 

uncertainty and positive-real uncertainty are its 

special cases that can be recast to linear fractional 

uncertainty. The main contribution of this paper is 

to present the robust model predictive control law 

for time delay descriptor systems with linear 

fractional uncertainty and input constraints, to analyze 

feasibility of the problem and provide all time 

demanding computations of state feedback gain 

matrices, guaranteeing the performance robustness and 

performance (guaranteed cost) over the whole 

uncertainty domain. 

The paper is organized as follows. A problem 

formulation and preliminaries on a predictive state 

model as a descriptor system with linear fractional 

uncertainty is given in the next section. In section 3, 

the approach of robust state feedback predictive 

controller design using linear matrix inequality is 

presented. There is an example that illustrates the 

effectiveness of the proposed method which is 

discussed in section 4. Finally, some conclusions 

are given in the section 5. 

Hereafter, the following notational conventions will be 

adopted: R denotes the set of real number; n
R  

denotes the n  dimensional Euclidean space and 
n n

R  is the set of all n n  real matrices.
2
( )nx xR  

and ( , )n n n

Q
x x Q  R R  denote T 1 2( )x x x  and T

Q
x x Qx  

respectively. Given a symmetric matrix P , the 

inequality 0P   ( 0)P   denotes matrix positive 

definiteness (semi-definiteness) and I  denotes the 

identity matrix of corresponding dimensions. The 

symbol * induces a symmetric structure in a matrix. 

 

2 Problem statement and preliminaries 

 
Consider a continuous-time descriptor system with 

delay and uncertainty 

 

 

1

1 1

( ) = ( ) ( ) ( ) ( ) ( ) ( )

         =( ) ( ) ( ) ( ) ( ) ( )

( ) ( )                                                         

( ) ( ), [ ,0].

Ex t A t x t A t x t h B t u t

A A x t A A x t h B B u t

y t Cx t

x t t t h

  

        



  

(1) 

 

under the input constraints with Euclidean norm 

bounds: 
max2

( ) , 0u t u t  , 

where ( ) nx t R is the state vector, ( ) mu t R is the 

control input vector, ( )t is the continuous state 

initial function, 
maxu  is a known real that denotes 
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the allowable max value of the input vector ( ) 'u t s  

Euclidean norm , the matrix n nE R may be 

singular, and it is assumed that rank ( )E r n  , h  is 

positive time-delay constants. The uncertainty set  : 

   1 1 0 1

1

{ ( ) ( ) ( ) | ( ) ,

       ( ) ( )[ ( )] , ( ) ( ) , }

b

T T

A t A t B t A A B D t E E E

t t I J t t t I J J I

        

        

 
1, ,A A

0 1, , , , , ,bB C D E E E J  are real constant matrices 

with appropriate dimensions, ( )t is called linear 

fractional uncertainty and ( ) p qt  R is a time-

varying matrix. 

 

Remark 1: Input constraints are typically hard 

constraints since they represent limitation on 

process equipment (such as value saturation) and as 

such cannot be relaxed or softened. 

MPC is an open-loop control design procedure. At 

each sampling time kT , plant measurements are 

obtained and a model is used to predict future inputs 

of a system. Using these predictions, m control 

moves (( ) , ), 0,1, 1u k i T kT i m   , are computed 

by minimizing a given cost function ( )pJ k  over a 

prediction horizon p  as follows: 

(( ) , ), 0,1, 1
min       ( )p

u k i T kT i m
J k

      
where 

1 2
0

   ( )= (( ) , ) + (( ) , )  
p

p Q Q
i

J k x k i T kT u k i T kT


    

p  is output or prediction horizon, m  is input or 

control horizon. The case p    is referred to as 

infinite horizon MPC. 

Finite horizon control laws are known to have poor 

nominal stability properties [14]. Nominal stability 

of finite horizon control MPC requires imposition 

of a terminal state constraint 

( (( ) , ) 0,x k i T kT i m   ) and / or the use of the 

contraction mapping principle to tune 
1 2, , ,Q Q m p for 

stability. But the terminal state constraint is 

somewhat artificial since only the first control move 

is implemented. Thus, in the close loop, the states 

actually approach zero only asymptotically. Also, 

the computation of the contraction condition at all 

possible combinations of the constraints at the 

optimum of the on-line optimization can be 

extremely time consuming. On the other hand, 

infinite horizon laws have been shown to guarantee 

nominal stability [14], it is preferable to adopt the 

infinite horizon method that guarantees at least 

nominal stability.  

We shall consider the case which is referred to as 

infinite horizon MPC for (1), i.e., control horizon 

and predictive horizon are all infinite. Let T  be the 

fixed sampling interval. At sampling time kT for 

0,1,2k  , plant measurements are obtained, then a 

predictive model is used to predict future behaviors 

of the system. Let ( , )x kT kT  denote the predicted 

state at time kT  , based on the measurements at 

sampling time kT , ( , )x kT kT  refers to the state 

measured at sampling time kT , ( , )u kT kT  is the 

control move for time kT   obtained by an 

optimization problem at time kT  over the infinite 

prediction horizon. We assume that exact 

measurement of the states of the system (1) is 

available at each sampling time kT , i.e., ( , )=x kT kT  

( )x kT . 

The future behavior of the system is represented by 

future predictions of the state, output and input 

variables over the prediction horizon. For an infinite 

prediction, namely, the future predictions of the state, 

output and input variables are used to minimize a given 

performance 

( , ), 0
min       ( )

u kT kT
J k

 


 
 

1 20
( ) ( ( , ) ( , ) )

R R
J k x kT kT u kT kT d  



     . 

For the uncertain descriptor system with time-delay 

(1), at each sampling time kT , we discuss the 

minimization of a robust performance objective 

function as follows: 

1( , ), 0 () () ()
min max ( )

. .   (1)  

u kT kT A A B
J k

s t

 


          ,        (2) 

 

where 

 

 
1 20

( ) ( ( , ) ( , ) )
R R

J k x kT kT u kT kT d  


     . (3) 

 

1 0R   ,
2 0R   are symmetric weighting matrices.  

This is a ‘min-max’ problem. The maximization is 

over the set   and corresponds to choosing that 

time-varying plants 
1( ) ( ) ( ) ,  A kT A kT B kT        , 

0   , which, if used as a ‘model’ for predictions, 

would lead to the largest or ‘worst-case’ value of 

( )J k
 among all the plants in set . This ‘worst-

case’ value is minimized over present or future 

control moves ( , ),  0u kT kT   . 

We address the problems (2), and (3) first by 

deriving an upper bound on the robust performance 
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objective. Then we minimize this upper bound with 

a constant state-feedback control law  

 

 ( , ) ( ) ( , ), 0.u kT kT K kT x kT kT       (4) 

 

Next, we obtain a state feedback controller ( )K kT , 

which makes the closed-loop system (1) be regular, 

impulse-free and asymptotically robust stable with 

input constraints 
max2

( , ) , 0u kT kT u    . 

In the receding horizon framework, only our very 

first computed control move ( , )u kT kT  is 

implemented. At the next sampling time, the 

optimization (2), (3) is resolved with new 

measurements from the plant. Now we will review 

some lemmas for MPC. 

 

Definition 1:  Descriptor system ( ) ( ) ( )Ex t Ax t Bu t   

is stabilizable if there exists control law 

( ) ( ) ( )u t K t x t  such that the closed-loop system is 

regular, impulse-free, and asymptotically stable. 

 

Lemma 1[11]: Let orthogonal matrices  1 2U U U , 

 1 2V V V  be such that
0

0 0

r TE U V
 

  
 

, from 

which it can be seen that 
2 0EV  , 2 0TU E  ;the 

following items are true: 

 

(1) Z  satisfying 0T TZE EZ   can be parameterized 

as 1 1 2

T T TZ EVW V SV   where 0 r rW  R , ( )n n rS  R  . 

 

(2) When 1 1 2

T T TZ EVW V SV   is nonsingular and 0W   , 

then there exists Ŵ  such that  

1 1 2 1 1 2
ˆ( )T T T T TEVW V SV U WU E U S    with 1 1ˆ

r rW W     

and
2 1 1 2

ˆ ( )T T T T TS U EVW V SV   . 

 

Lemma 2[15]:  A known descriptor delay system 

1( ) ( ) ( )Ex t Ax t A x t h    is regular, impulse-free and 

stable if there exist a matrix 0Q   and a 

nonsingular matrix P  such that  

1

1 1

0

0

T T

T T T

E P P E

AP P A P AQ A P Q

 

   
. 

 

Lemma 3[16]:  (Schur complement) For given the 

symmetric matrices 11 12

21 22

S S
S

S S

 
  
 

 and 11

r rS R , the 

following three conditions are equivalent： 

(1) 0,S   

 

(2)
11 0,S  and 1

22 21 11 12 0,TS S S S   

  

(3)
22 0,S  and 1

11 12 22 21 0.TS S S S   

 

Lemma 4[17]: Assume the matrices TU U , 
1( )( ( ))t I J t      , TJ J I , T( ) ( ) ,t t I   , , ,U J H E are 

known real matrices with appropriate dimensions, 

for all admissible ( )t when satisfying ( ) ( )Tt t I   , 

an inequality  
( ) 0TU H E H E      

holds if and only if  there exist some scalars 0   

such that 

 

          * 0

* *

T

T

U H E

I J

I

  
 

  
  

                (5) 

 

3 Main results 

 
In this section, we discuss the infinite horizon MPC 

(IH-MPC) problem formulation for a class of 

descriptor systems. We begin with the robust IH-

MPC problem without an input constraint, reduce it 

to a minimization of the worst-case objective 

function and then incorporate the input constraint.  

Finally, we show that the feasible receding horizon 

state-feedback control law robustly stabilizes the 

descriptor system over the uncertainty set  . 

Consider a quadratic function: 

( ( )) ( ) ( ) ( ) ( ) 0
t

T T T

t h
V x t x t E Px t x s Qx s ds


   , 

with 0, 0T TQ E P P E    and P is a nonsingular  

matrix. 

At sampling time kT , suppose that ( ( ))V x t  satisfies 

the following inequality for all ( , ),x kT kT  ( , ),u kT kT  

and any uncertain plants 1[ ( )  ( )A kT A kT    

( )] ,B kT   , 0  : 

 

 

1 2

( ( ( , )))

( ( , ) ( , ) )
R R

d
V x kT kT

d

x kT kT u kT kT




 

 

   

, (6) 

 

where 
1 20, 0R R   are known weighting matrices.  

For the robust performance objective function 

( )J k
 to be finite, we must have ( , ) 0x kT  , and 
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hence ( , ) 0V kT  . Integrating both sides of the 

aforementioned inequality (6) from 0  to    , the 

following inequality (7) is obtained: 

 

 ( ) ( ( ))J k V x kT  . (7) 

 

Thus, the robust MPC problem at time kT  can be 

solved by minimizing the upper bound ( ( ))V x kT , 

subjected to the imposed constraint (6): 

 

 
1() () ()

max ( ) ( ( ))
A A B

J k V x kT 
  

  , (8) 

 

where 

 

 
0

( ( )) ( ) ( )

                 ( , ) ( , )

T T

T

h

V x kT x kT E Px kT

x kT kT Qx kT kT d  




  
 (9) 

 

This gives an upper bound on the robust 

performance objective. Thus, the goal of robust 

MPC algorithm has been redefined in order to 

synthesize, at each time step k , a constant state-

feedback control law  

( , ) ( ) ( , )u kT kT K kT x kT kT    , 0   

to minimize this upper bound  ( ( ))V x kT : 

 

 
1( , ), 0 () () ()

min max ( ) ( ( ))
u kT kT A A B

J k V x kT
 


    

  (10) 

  

where 

0

( ( )) ( ) ( )

                 ( , ) ( , )

T T

T

h

V x kT x kT E Px kT

x kT kT Qx kT kT d  




  
. 

As it is standard in MPC, only the first computed 

input ( , ) ( ) ( )u kT kT K kT x kT  is implemented. At the 

next sampling time, the state x(( 1) )k T is measured, 

and the optimization problem is repeated so as to 

recompute K . 

The following theorem gives LMI conditions for 

maintaining feasibility of the optimization problem 

(2) and for expressing the state feedback 

matrix ( )K kT  . 

 

Theorem 1: For the known descriptor system(1) 

with linear fractional uncertainty ( )t , let      

( )=x kT ( , )x kT kT  be the state of the descriptor 

system (1) measured at sampling time kT . At each 

sampling period [ ,( 1) )kT k T , the state feedback 

matrix ( )K kT in the controller (4) that minimizes the 

upper bound ( ))V x kT（ on the robust objective 

function is given by 

 

 

 
1 1 2( )T T T TK Y EVWV SV   , (11) 

 

where
1 0, 0, ,X W Y S   and scalars , 0    are 

obtained from the solution of the following 

objective minimization problem: 

 

 
1 1

1
, , , , ,

min  ( )
W X M S Y

tr M


  , (12) 

 

  
1

1( )
0

( )

T

T

I x kT V

V x kT W

 
 

  

, (13) 

 

 1 1

1 1

0

TM N

N X

 
 

 
, (14) 

 

 

1 0

1 1

1

1

1

1

2

* 0 0 0 0

* * 0 0 0
0

* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

T T
T

bT T

T

T

ZA YB
A D E YE Z Z Y

AZ BY

X XE

I J

I

X

R

R



 







 
  

 
 

 
   

 
 

 
 
 

  

(15) 

 

 
2

max 1 0
*

Tu I Y V

W

 
 

 

, (16) 

 

where
1 1 2

T T TZ EVW V SV  , 
1 2,V V  can be obtained by 

Lemma 1. 
1N can be calculated from 1 1

TN N   
0

( , ) ( , )T

h
x kT kT x kT kT d  


  , 1 20, 0R R   are known 

weighting matrices. 

 

Remark 2: Notice that K  in (11) and the solutions 

1 1, , , , , ,W X M S Y   to LMIs (12)–(16) depend only on 

the current state ( )x kT  at sampling time kT . Strictly 

speaking, these variables should be denoted by 

1 1, , , , , ,k k k k k k kW X M S Y   to emphasize that they are 

computed at time kT . For notation convenience, we 

omit the subscript here. 

  

Proof: At sampling period, [ ,( 1) )kT k T , define a 

Lyapunov-Krasovskii functional at [ ,( 1) )t kT k T   as 

(9): 
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0

( ( )) ( ) ( )

                 ( , ) ( , )

T T

T

h

V x kT x kT E Px kT

x kT kT Qx kT kT d  




  
, 

where 0, 0T TQ E P P E    and P  is a nonsingular 

matrix.  

If there exist scalars   satisfying ( ) ( )T Tx kT E Px kT  , 

then  

 

 
1

max     ( ) ( )T T

A A B
x kT E Px kT 

  

  (17) 

 

Using Lemma 1 and Ref. [11], ( ) ( )T Tx kT E Px kT   is 

equivalent to 1

1 1( ) ( ) 1T Tx kT VW V x kT  . Furthermore, 
1

1 1( ) ( ) 1T Tx kT VW V x kT   is equivalent to (13) by the Schur 

complement. Thus an invariant ellipsoid 
1

1 1={ | 1}T Tz z VW V z    is obtained for the predicted 

states of the uncertain system (1). 

 

Remark 3: The maximization in (17) is over the 

uncertainty set   that can be used for predicting the 

future states of the system (1), this maximization 

leads to the ‘worst-case’ value of ( ) ( )T Tx kT E Px kT  

at every instant of time ,  0kT    . 

The second item in (9) may be reduced to  
0

0
1

1

1 1

1 1 1 1 1 1

( , ) ( , )

( ( , ) ( , ))

( ) ( )

T

h

T

h

T T

x kT kT Qx kT kT d

tr x kT kT X x kT kT d

tr N N X tr N X N

  

  







 

 

  

 



 , 

where 1

1X Q  , assuming there exists a matrix 
1M  

such that 1

1 1 1 1( ) ( )Ttr N N X tr M  , then (14) holds by the 

Schur complement. We then minimize the ‘worst-

case’ value of ( ( ))V x kT with a constant state-

feedback control law (4) at every instant of 

time, ,  0kT    . So, 
1( ( )) min  + ( )V x kT tr M  is true 

and the problem (8) is implied to be
1min  + ( )tr M . 

From (1) and (4), the derivative of ( ( , )V x kT kT  

along (7) can be derived as follows:  

1 1

( ( , ))

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

(( ) ( , ) ( ) ( , )

( ) ( , )) ( , )

( , )

T T T T

T T

T

T

T

V x kT kT

x kT kT E Px kT kT x kT kT P Ex kT kT

x kT kT Qx kT kT x kT h kT Qx kT h kT

A A x kT kT A A x kT h kT

B B Kx kT kT Px kT kT

x kT kT P



   

   

 

 





     

       

        

     

 1 1

1 2

(( ) ( , ) ( ) ( , )

( ) ( , )) ( , ) ( , )

( , ) ( , )

( , )( ) ( , )

T T

T

T

T T

A A x kT kT A A x kT h kT

B B x kT kT x kT kT Qx kT kT

x kT h kT Qx kT h kT

x kT kT R K R K x kT kT

 

  

 

 

       

      

    

    

                           (18) 

(18) is also equivalent to 

1 1
( , ) ( , )( )

0
( , ) ( , )*

T Tx kT kT x kT kTP A A

x kT h kT x kT h kTQ

 

 

       
           

. 

Furthermore,  

             1 1( ( ) )
0

*

TP A D t E

Q

   
 

 

 

where 

1 0 0( ) ( ) ( )( )T T T T

b bE E K t D P P D t E E K       

1 1 2( ) ( )T T TA BK P P A BK Q R K R K        . 

Let 1 1

*

TP A

Q

 
   

 

, (18) is implied to be 

 

 

 

 

0 1

0 1

( )
0

  ( ) 0
0

T

b

T
T

T T

b

P D
t E E K E

P D
E E K E t

 
   

 

 
    

 

. (19) 

 

By Lemma 4 and (18), there exist some scalars 0   

such that 

 

 

1 1 0

1

( )

* 0
0

* *

* * *

T T T

b

T

T

P A P D E E K

Q E

I J

I





 



  
 

  
 
 

 

 (20) 

 

The following inequality is derived by the Schur 

complement lemma: 
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1 1 0

1

1

1

1

1

2

( )

* 0 0 0 0

* * 0 0 0

0* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

T T T T

b

T

T

P A P D E E K I I K

Q E

I J

I

Q

R

R





 








  
 

 
 
 

 
 
 

 
  

                  (21) 

Multiplying by 1 1 1 1{ , , , , , , }diag P Q I I I I I      on the 

left of (21), multiplying by 1 1 1 1{ , , , , , , }diag P Q I I I I I      

on the right of (21), and defining 1

1, = ,TZ P X Q   1 ,    

,TY ZK  by Lemma 1, Z  can be reconstructed by 

1 1 2= T TZ EVWV SV   so that (15) holds. 

Physical limitation inherent in process equipment 

invariably imposes hard constraint on the 

manipulated variables ( )u kT . We show how limits 

on the control signal can be incorporated into our 

robust MPC algorithm as sufficient LMI constraint. 

The basic idea of the discussion that follows can be 

found in Boyd et al. [16]. We present it here to 

clarify its application to our robust MPC setting and 

also to complete our exposition of the descriptor 

system (1).  

At sampling time kT , consider the Euclidean norm 

constraint   

max2
( , ) , 0u kT kT u    . 

The constraint is imposed on the present and the 

entire horizon of future control variables, although 

only the first control move ( , ) ( )u kT kT u kT  is 

implemented. Following Ref.[16], we have  
2

20

2

20

2
1

1 1 2

1/2 1/2

max 1 1

max ( , )

max ( , )

max

( )

T T

T T

z

T T

u kT kT

Y Z x kT kT

Y VW V z

W V YY VW























 



 





 

Furthermore, 1/2 1/2 2

1 1 max

T TW V YY VW u I   , the input constraint 

holds. Pre-multiplying and post- multiplying 1/2W  

on 1/2 1/2 2

1 1 max

T TW V YY VW u I   , by the Schur complement 

lemma, we see that 
2 2

max2
( , ) ,u kT kT u  0  , if 

2

max 1 0
*

Tu I Y V

W

 
 

 

. 

So, the input constraint is translated to a sufficient 

LMI constraint.  

The robust state feedback predictive controller 

1 1 2( )T T T TK Y EVWV SV    at sample period [ ,( 1) )kT k T , 

(15) is LMI with respect to ,Y Z  
1 0, 0X   . The 

proof is completed. 

In order to prove the closed loop system to be 

regular, impulse-free and asymptotically robust 

stable, we need to introduce the following lemma. 

  

Lemma 5[5]: (Feasibility) Any feasible solution of 

the optimization (12)…(16) at time kT  is also 

feasible for all times k  , thus, if the optimization 

problem (12) is feasible at time k  then it is feasible 

for all times k  . 

 

Theorem 2: If the optimization problems 

(12)…(16) and feasible solutions in the moment 

kT  exist, thus: (a) there also exist feasible 

solutions in the NT   moment ( ).NT N k  (b) We get 

a piecewise state feedback control 

sequence 0{ }k kK 

 when k  changes from 0  to  . 

Therefore, the closed-loop system which is 

composed of piecewise state feedback control 

sequence
0{ }k kK 


is regular, impulse-free and 

asymptotically robust stable. 

 

Proof: First, we show that the closed-loop system is 

regular and impulse-free, at sampling period 

[ ,( 1) )t kT k T  , from (18), the following inequality 

holds  

1 2( ( ( ))) ( ( ) ( ) ( ))T Td
V x t x t R K R K x t

d
    

where 
1 20, 0R R  , so ( ( ( ))) 0

d
V x t

d
 is true and 

( ( )V x t is a strictly decreasing Lyapunov-Krasovskii 

functional for the closed-loop system, which is 

bound blow by a position-definite function of ( )x t , 

and the closed-loop system is asymptotically robust 

stable. (18) is implied to be  

1 1

1 1

( ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

(( ) ( ) ( ) ( ) ( ) ( )) ( )

( ) (( ) ( ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

0

T T T T T

T

T T

T T T

T T

V x t

x t E Px t x t P Ex t x t Qx t

x t h Qx t h

A A x t A A x t h B B Kx t Px t

x t P A A x t A A x t h B B x t

x t Qx t x t h Qx t h

  

  

         

         

   



 
Then, the inequality  

2 1 1
( )( )

( ) ( ) 0
( )*

T

T T
x tP A A

x t x t h
x t hQ


 



     
             

is guaranteed or equivalently,  
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1

1 1 1 1

(( ) ( ) ) (( )

( ) ) ( ) ( ) 0

T T

T T

A A B B K P P A A

B B K Q P A A Q A A P

       

         
 , 

where 

   2 (( ) ( ) )

       (( ) ( ) )

T

T

A A B B K P

P A A B B K Q

     

      
 . 

By Lemma 2, the closed-loop system is regular, 

impulse-free and asymptotically robust stable. 

In fact, the inequalities (13)…(16) are sufficient 

conditions for robust MPC synthesis problem of the 

system (1). 

If =0k , the optimization problem (12)…(16) is 

feasible, i.e.,  

1 1
1

, , , , ,
min  ( )

W X M S Y
tr M


   

s.t. 
1

1(0)
0

(0)

T

T

I x V

V x W

 
 

  

, 

and (14)…(16) hold true. By Theorem 2, the 

optimization problem (12)…(16) is feasible at 

1,2,3,k  . The state feedback control sequence 

0{ }k kK 

 can be derived. If =0k , the optimization 

problem (12)…(16) is unfeasible for some 

descriptor systems with some initial state 

conditions, the obtained method in this paper cannot 

be used to synthesize these descriptor systems with 

some initial state conditions. So, it is not possible to 

extend the obtained results for all the state space. 

The MPC scheme stated previously is summarized 

as follows. MPC Algorithm is described as follows: 

Step 1. Set 0k   

Step 2. Solve the convex programming problem 

(12) subject to (13)-(16) and compute by (11) to 

obtain a controller K . 

Step3. Implement the control action ( ) ( )u t Kx t  for 

[ ,( 1) )t kT k T  , computed control vector ( )u t  is 

applied to the controlled plant, then measure the 

state ( )x kT T .  

Step 4. Set  1k k  and go back to step 2. 

 

4 Experimental  example 

 
In this subsection, we present a numerical example 

that illustrates the implementation of the proposed 

robust MPC algorithm. This example also serves to 

highlight some of the theoretical results in the paper. 

For this example, LMI control toolbox software in 

the Matlab environment is used to compute the 

solution of the objective minimization problem.  

Consider a descriptor system with the form of (1)  

1

1 0 4 1 0.3 0.1
, , ,

0 0 2 3 0.1 0.3
E A A

     
       

     
 

1 0 1 0 0.5 0
, , ,

0 2 0 1 0 0.5
B G I D

     
        
     

 

0 1

1 0 0.5 0 0 0
, ,

0 1 0 0.5 0 1
bE E E

     
       
     

， 

sin 0
( )

0 t

t
t

e
 

   
 

, 
2

( , ) 2u kT kT    

 (0) 0.5 0.8
T

x   ,
1 2,  R I R I  . 

where ( ) ( )T t t I   , 0.5h  , the sampling  interval 

0.3T s . By solving the optimization problem given 

in Theorem 1 via Matlab software, the states 

trajectories and control inputs trajectories of the 

descriptor system are shown in Fig.1 and Fig.2 

when the time varying uncertainty is given by ( )t . 

From Fig. 1 and Fig. 2, we can observe that the 

proposed MPC algorithm for the descriptor system 

works well to asymptotically stabilize the descriptor 

system. 

  

 
 

Fig. 1. Status of the closed-loop system 

 

 
 

Fig. 2. Inputs of the closed-loop system 

 

5 Conclusion  
 

This paper has discussed the robust model-based 

predictive controller design methods for a class of 
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uncertain descriptor systems with time delay 

subjected to an input constraint. The sufficient 

conditions in which robust model predictive 

controllers exist have been presented by Lyapunov 

stability theory, optimization theory and linear 

matrix inequality (LMI) method, a parameter 

notation of state feedback controllers have been 

obtained whenever these conditions have feasible 

solutions. Finally, a numerical example has been 

provided to demonstrate the applicability of the 

proposed approach. Linear fractional uncertainty is 

a more widely uncertainty than norm-bound 

uncertainty and positive-real uncertainty so that the 

research result in this paper has great significance 

for practical applications. 
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