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In this paper an Extended Kalman Filter (EKF) is used in order to estimate the real state of a humanoid robot
(HRP-2 robot in our case study) using the combination of the information coming from the encoders (kinematics)
and from the Inertial Measurement Unit (IMU). The integration of the kinematic information into the Kalman
filtering process allows a good estimation of the attitude and reduces the complexity of the problem to the use of
simple kinematic transformations, even considering the existence of accelerations and mechanical flexibilities in
the robot. The EKF estimator presented here is an open solution directly applicable to any humanoid robot, which
is the main contribution of our approach. Experimental results are given showing the good performance of the
method.
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Otvoreno rješenje za estimaciju položaja humanoidnog robota integracijom senzora i proširenim
Kalmanovim filtrom. U ovome članku koristi se prošireni Kalmanov filtar (EKF) za estimaciju stanja hu-
manoidnog robota (HRP-2 robot) kombiniranjem informacija iz enkodera (kinematika) i inercijalne mjerne jedinice
(IMU). Integracijom kinematičkih informacija u proces Kalmanovog filtra ostvaruje se dobra estimacija položaja
i smanjenje složenosti problema jednostavnim kinematičkim transformacijama, čak i u slučaju postojanja akcel-
eracija te mehaničkih savijanja robota. EKF predstavljen u ovome članku otvoreno je rješenje primjenjivo na bilo
kojem humanoidnom robotu, što je i glavni doprinos predloženog pristupa. Ekperimentalni rezultati pokazuju dobro
ponašanje predložene metode.

Ključne riječi: humanoidni robot, estimacija položaja, Kalmanov filtar, integracija senzora, kinematička jednos-
tavnost

1 INTRODUCTION

One fundamental requisite for the control of a hu-
manoid is having a good state estimation of the robot. Typ-
ically the states comprise positions, velocities and orienta-
tions. Unlike classical robotics, where position and orien-
tation can be calculated using kinematic algorithms from a
fixed base, in mobile robotics such a task is more complex.
In particular, for the case of humanoid robots, the state es-
timation is important in order to detect the balance of the
robot.

The robot’s orientation with respect to the gravity vec-
tor or with respect to the world frame is referred to as atti-
tude. For the balance control the attitude can be described
by the roll and pitch angles [1]. Normally, the attitude es-
timation is achieved by the integration of several sensors,
such as gyroscopes, inclinometers and accelerometers on-
board the robot. This allows self-contained methods to es-
timate the attitude [2], [3]. Other measurements from ex-

ternal references, such as fixed cameras or updates from
Global Position System (GPS) satellites, may not be re-
lied on due to the potential for occlusion, sensor eccen-
tricities, and the extended ranges of operation needed for
some types of faster locomotion robots, such a galloping
ones [4].

The attitude may be calculated using only the gyro out-
put and integrating it. The problem is that the gyros mea-
surements have usually significant noise, which may entail
a great drift. Consequently, an absolute reference of the
attitude can be obtained through the use of accelerometers,
which provide the orientation with respect to the gravity
vector. However, these are also quite sensitive to noise and,
in addition, to the translational acceleration, which is usu-
ally considered as an additional noise component.

Even if the attitude estimation is a classical problem in
mobile wheeled robotics [5], [6] and unmanned aerial vehi-
cles (UAV) [7], [8], [9], several researchers have extended
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such techniques to legged locomotion [10], [11], [12], [13],
[14].

On the other hand, it is a fact that the body motion
for walking robots is inherently three-dimensional, mak-
ing most kinematic representations nonlinear. Many re-
searchers face this problem using Extended Kalman Filters
[15], [16], [17]. For instance, Rehbinder and Hu have pre-
viously designed an algorithm [18] for fusing inclinome-
ter and gyro data assuming low translational accelerations,
which may not be very realistic for a walking robot. Suc-
cessively, they have provided an algorithm consisting of
two modes: one when accelerations are low and the other
when these are high [13]. More recent works are [19], [20],
where the approach is the use of extended Kalman filters
for three-dimensional pose estimation.

In this paper an open solution based on the Extended
Kalman Filter (EKF) is used in order to estimate the
real state of the humanoid robot HRP-2 (Fig. 1) using
the combination of the information coming from the en-
coders (kinematics) and from the Inertial Measurement
Unit (IMU). The integration of the kinematic information
into the Kalman filtering process is one of our main ap-
proaches, allowing a good estimation of the attitude and
reducing the complexity of the problem to the use of sim-
ple kinematic transformations. The scheme for the robot’s
state estimation is presented in Fig. 2, where:

ω is the gyroscope measurement.

a is the accelerometer measurement.

qa is the angles position vector read by encoders.

qp is the estimation of passive degrees of freedom (DOF),

representing the mechanical flexibility.

Rc is the orientation estimation provided by the kinemat-
ics.

ωc is the angular velocity estimation provided by the kine-
matics.

ac is the linear acceleration estimation provided by the
kinematics.

x is the vector containing information about the robot’s at-
titude and state estimations.

In order to validate our solution, the proposed scheme
has been experimentally tested on the humanoid robot
HRP-2 and a comparison of the results with those obtained
using OpenHRP estimator and a motion capture system is
presented.

Regarding OpenHRP [21], it is a virtual humanoid
robot platform (simulator) with a compatible humanoid

Fig. 1. HRP-2 robot

Fig. 2. Attitude estimation scheme

robot, in this case HRP-2. The software and hardware of
this humanoid robot have been developed by Honda R&D
and are provided to the OpenHRP architecture as a black
box. The robot’s controllers can be developed on the sim-
ulator and migrated into the hardware without any modifi-
cation.

It is not clearly known how OpenHRP estimates the
robot’s attitude, since it is a closed system and not accessi-
ble for research, as can be seen from the short bibliography
available on this specific topic. On the contrary, the EKF
estimator presented in this work is a solution directly ap-
plicable to any humanoid robot. It is in that sense that we
consider our proposal as ’open’.

The rest of the paper is organized as follows. Section
2 introduces the attitude representation and the derivative
of the rotation matrix. Section 3 presents a solution for
the fusion of sensors estimations. Section 4 details the
EKF approach for the attitude estimation. Estimations ob-
tained without and with consideration of accelerations are
presented in Sections 5 and 6, respectively. Finally, some
concluding remarks are given in Section 7.
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2 ROBOT’S MODEL
2.1 Attitude representation

For the attitude representation in our system, the refer-
ence frames shown in Fig. 3 are used, where:

• W is an inertial world-fixed frame, with axis yw point-
ing East and axis zw pointing upward;

• B is a body-fixed frame attached to the sensor system
(IMU) in the chest of the robot, with axis xb pointing
at the forward direction of the robot and zb pointing
upward. See Fig. 4 and Fig. 5 to identify the IMU
location in the chest, at a distance of 0.469m from
the robot’s waist, and note that the reference system
B in Fig. 3 is coincident with the reference system
attached to the IMU in Fig. 4.

xw

yw

zw

xb

zb

yb

Body frame

world frame

bRw

φ

θ

ψ

Fig. 3. Reference frames

We can define the rotation R as an orthogonal rotation
matrix, element of the Spacial Orthogonal group SO(3)⊂
R3×3

SO(3) = {R ∈ R3×3 : RT R = I,det(R) = 1} (1)

Therefore, aRb denotes the rotation matrix of frame b
with respect to frame a, that is, pb = aRbpa.

A minimal representation of the orientation of a frame
with respect to another can be obtained by using a set of
three angles (Euler angles). In this work we will use the
Roll-Pitch-Yaw standard. In this case, the roll (φ ), pitch
(θ ) and yaw (ψ) angles, expressed in frame W , represent
rotations defined with respect to a fixed frame.

If RZ(ψ) is the rotation along axis zw, RY (θ) is the
rotation along axis yw, and RX (φ) is the rotation along axis
xw, such orientation can be defined as [22]:

RRPY = RZ(ψ)RY (θ)RX (φ) =

=




cθ cψ cψ sθ sφ − cφ sψ sφ sψ + cφ cψ sθ
cθ sψ cφ cψ + sθ sφ sψ cφ sθ sψ − cψ sφ
−sθ cθ sφ cθ cφ


 (2)

If we use such a matrix to describe the orientation of
frame B with respect to the reference frame W , this ma-
trix will also be the transformation matrix of the vector
coordinates from frame B into the coordinates of the same
vector in frame W , that is, wRb = RRPY .

Besides, for a rotation matrix R, it is possible to define
the matrix S as

S(ω(t)) = Ṙ(t)R(t) (3)

where the vector ω(t) denotes the angular velocity of
frame R(t) with respect to the reference frame at time t.

It is possible to easily show that the following relations
hold [22]:

S(ω)+ST (ω) = O
S(R0ω) = R0S(ω)RT

0
(4)

2.2 Kinematic model of the robot

The kinematic model of the humanoid robot HRP-2 is
presented here, detailing the coordinates systems and joint
variables for the robot’s torso and legs, and including the
kinematics for the flexible ankle, whose effects will be con-
sidered later.

In Fig. 4, Fig. 5 and Fig. 6 the kinematics of the robot’s
torso, its dimensions and its Denavit-Hartenberg (DH) pa-
rameters are shown, respectively (note that the IMU refer-
ence system is coincident with the body-fixed frame B).
As can be seen from Fig. 5, where the dimensions of the
torso are given, the IMU system is placed at a distance of
Waist_Link2+Torso_Link2 = 0.469m from the waist.

Kinematics and DH parameters for the floating and
standing leg and for the flexible ankle are also presented
from Fig. 7 to Fig. 12. The dimensions of legs are pre-
sented in Fig. 13.

Knowing these kinematic models and their DH param-
eters and taking the angular position measurements from
the encoders as an input, and through the direct applica-
tion of the direct kinematics theory, we can easily reach an
estimation of the orientation of frame B with respect to
the reference frame W (Rc in Fig. 2), an estimation of the
angular velocities of the body frame relative to the inertial
frame (ωc in Fig. 2) and an estimation of the linear accel-
eration of the body frame relative to the inertial frame (ac
in Fig. 2).

2.3 Fusion of sensors estimations

In this study we provide a solution to fusing data from
a 3-axis rate gyro and a 3-axis accelerometer that will pro-
vide stable estimates of the robot’s attitude.

The 3-axis gyroscope provides the angular velocities of
the body frame relative to the inertial frame, expressed in
the body-fixed frame. If the measured angular rates were

AUTOMATIKA 56(2015) 1, 9–20 11
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Fig. 4. Kinematic model for the robot’s torso

Fig. 5. Dimensions of the robot’s torso

Fig. 6. DH parameters for the robot’s torso

perfect, it would be sufficient to integrate these measure-
ments using equation (3) to provide the orientation matrix
R. However, due to openloop integrations, any bias on gy-
roscopic measurements lead to an error on the attitude pre-
diction, which grows to infinity. This phenomena is known
as gyroscopic drift.

To take into account on-line estimation of gyroscope
bias, we consider the model of gyroscopic measurements
given by

ωm = ω +ω0 +ωn (5)

Fig. 7. Kinematic model for the robot’s floating leg

Fig. 8. DH parameters for the robot’s floating leg

where ω is the real angular velocity and ω0 is the gyro-
scope bias, which depends on the temperature. Many low
cost IMU are now internally compensated in temperature,
and as a result, ω0 oscillates slowly around a constant av-
erage value [9], reason why we consider it to be constant
with the time. The term ωn is a Gaussian white noise.

The 3-axis accelerometer measures the difference be-
tween the inertial forces and gravity forces, expressed in
frame B. The model of the accelerometer is given by

am = bRw (a−g)+a0 +an (6)

12 AUTOMATIKA 56(2015) 1, 9–20
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Fig. 9. Kinematic model for the robot’s standing leg

Fig. 10. DH parameters for the robot’s standing leg

where a is the acceleration in the frame W , g is the gravity
vector, a0 is a bias and an is a Gaussian white noise.

If measurements were absolutely reliable, pitch and
roll of the vehicle could be directly deduced from the ac-
celerometers, working as inclinometers in that case. How-
ever, readings from accelerometers are very noisy and
very sensitive to the vibratory environment surrounding the
IMU. Furthermore, if for any reason the robot acquires a
non negligible absolute acceleration in the inertial frame,
the attitude provided by accelerometers will no more be re-

Fig. 11. Kinematic model for the flexible ankle

Fig. 12. DH parameters for the flexible ankle

Fig. 13. Dimensions of the robot’s legs

liable. Therefore, it is important in practice to correlate the
attitude measured by the accelerometers and the attitude
predicted by integrating the gyroscopic measurements to
provide a correct attitude estimation.

If p = (x,y,z) is an arbitrary point, we will denote pw

when expressed in frame W and pb when expressed in
frame B, i.e.:

pw = wob +
wRbpb (7)

where wob is the vector describing the origin of frame B
with respect to frame W .

This equation can be rewritten as

pb = wRT
b (p

w−wob) (8)

Using equation (3), it is possible to write

wṘb = S(ωw)wRb (9)

which can be rewritten using equation (4) as

wṘT
b =−wRT

b S(ωw) = wRT
b S(wRbωb) =−S(ωb)wRT

b
(10)

The kinematics of a rigid body is given by
{ wöb = a

wṘT
b (t) =−S

(
ωb(t)

)
wRT

b (t)
(11)
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where S(ωb) is a skew-symmetric matrix defined as

S(ωb) =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 (12)

where ωi is the components of the angular velocity ex-
pressed in frame B.

So, we can write the equation for the rotation as

bṘw =−S(ωb)bRw (13)

Taking the time-derivative of (2) and comparing with
(13), for the roll and pitch angles we get

ẋ=
[

φ̇
θ̇

]
=

[
1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) sin(φ)

]


ωx
ωy
ωz




(14)
where x is the state vector. If we consider the real acceler-
ation as a disturbance and the gravity vector g as an entity
to measure, we can use the accelerometer as an attitude
sensor [6]. So, we have

am '−bRwg (15)

3 EXTENDED KALMAN FILTERING APPROACH

The EKF evaluates the partial derivatives at the esti-
mated state vector value and uses the full nonlinear func-
tions on the estimate itself. The EKF assumes a model in
the discrete form [14]:

x(k+1) = f (x(k),u(k))+νk
y(k) = h(x(k))+wk

(16)

The prediction phase will be

xk+1|k = f (xk,uk) (17)

The predicted covariance is

Pk+1|k = FkPk|kFT
k +Fν QFT

ν (18)

where F is the Jacobian matrix such that:

F =
∂ f
∂x

(19)

The measurement update:

xk+1|k+1 = xk+1|k +Kk+1|k (h(xk)−yk) (20)

Pk+1|k+1 = Pk+1|k +Kk+1|k (h(xk)−yk)FkPk|kFT
k +Q

(21)

Fig. 14. Estimation of roll angle with σ(an) = 0.1I[m/s2]

Fig. 15. Estimation of pitch angle with σ(an) = 0.1I[m/s2]

4 ESTIMATION WITHOUT CONSIDERING
REAL ACCELERATION
In the ideal case, when the accelerations are low

enough to be considered zero, the results are presented
in the following figures. The real pitch/roll angles (esti-
mated by a motion capture system) are compared with the
OpenHRP estimation and the EKF estimation.

The following video shows the real experiment with
HRP-2 robot, carried out at the facilities of the LASS Lab-
oratory in Toulouse, France:
youtube.com/watch?v=x8_G2YIapLI&feature=youtu.be

In Fig. 14 and Fig. 15 the accelerometer noise standard
deviation has been fixed to 0.1I[m/s2], to I[m/s2] in Fig. 16
and Fig. 17, and to 10I[m/s2] in Fig. 18 and Fig. 19.

Figure 20 and Fig. 21 show the results of the estima-
tions of the roll and pitch angles while the robot is on the
crane and subjected to external pushing forces.
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Fig. 16. Estimation of roll angle with σ(an) = I[m/s2]

Fig. 17. Estimation of pitch angle with σ(an) = I[m/s2]

5 ESTIMATION USING REAL ACCELERATION
AND MECHANICAL FLEXIBILITY

The flexibility in the ankle can be treated as a pair of
passive joints: qp is the position vector of the robot flexi-
bility in the ankle (pitch and roll). The position vector, of
dimension n, of the active robot links (from the standing
foot up to the IMU) is denoted as qa. As can be seen from
Section 2, where the kinematics of the robot has been de-
scribed, in our case n = 8 (see Fig. 4 and Fig. 9). In a
compact form the position vector of the joints is

q =

[
qp
qa

]
(22)

Fig. 18. Estimation of roll angle with σ(an) = 10I[m/s2]

Fig. 19. Estimation of pitch angle with σ(an) = 10I[m/s2]

The size of such vector is np = n+ 2. The robot’s state
vector is selected to be

x =




q
q̇
q̈

ω0


=




qp
qa
q̇p
q̇a
q̈p
q̈a
ω0




(23)
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Fig. 20. Estimation of roll angle with σ(an) = I[m/s2].
Robot on the crane and subjected to external pushing
forces

Fig. 21. Estimation of pitch angle with σ(an) = I[m/s2].
Robot on the crane and subjected to external pushing
forces

So, the state transition will be




qp(k+1)
qa(k+1)
q̇p(k+1)
q̇a(k+1)
q̈p(k+1)
q̈a(k+1)
ω0(k+1)




=




1 0 Ts 0 0 0 0
0 1 0 Ts 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 Ts 0
0 0 0 0 1 0 Ts
0 0 0 0 0 1 0
0 0 0 0 0 0 1







qp(k)
qa(k)
q̇p(k)
q̇a(k)
q̈p(k)
q̈a(k)
ω0(k)




+




np,p
na,p
np,v
na,v
np,a
na,a
nω




(24)
where Ts is the sampling time.

The measurements will be defined by the nonlinear sys-
tem

y =




ab
ωb
q̇e
qe


=




bRw(a−g)
ω +ω0

q̇a
qa


+




an
ωn
qn

qn,d


 (25)

where qe is the position read by the encoders.

Now, defining JP as the (3×n) matrix relating the con-
tribution of the joint velocities q̇ to the linear velocity and
JO as the (3× n) matrix relating the contribution of the
joint velocities q̇ to the angular velocity, it is possible to
write

J(q) =
[

JP(q)
JO(q)

]
(26)

For a being the linear acceleration, we can write

a = JPq̈+ J̇Pq̇ = JPq̈+ q̇T HPq̇ (27)

the Hessian matrix being denoted by HP = ∂JP
∂q .

Finally, (25) can be rewritten as

y =




ab
ωb
q̇e
qe


=




bRw(q)
(
JP(q)q̈+ q̇T HP(q)q̇−g

)

JO(q)q̇+ω0
q̇a
qa


+




an
ωn
qn

qn,d




(28)
For the sake of simplicity, matrix bRw will be denoted as
R. Writing the measurement function as

h(x) =




R
(
JPq̈+ q̇T HPq̇−g

)

JOq̇+ω0
q̇a
qa


 (29)

its Jacobian matrix can be written as

H =
∂h
∂x

=
[

Hq Hq̇ Hq̈ Hω0

]
(30)
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where

Hq =




∂R
∂q
(
JPq̈+ q̇T HPq̇−g

)
+R

(
HPq̈+ q̇T KPq̇

)

HOq̇
02,n
0n,n
02,n
In




(31)
where KP = ∂HP

∂q is the second-derivative of the Jacobian
JP.

Hq̇ =




R
(
HPq̇+ q̇T HP

)

JO
02,n
In

02,n
0n,n




(32)

Hq̈ =




RJP
03,n+2

0n+2,n+2
0n+2,n+2


 (33)

Hω0 =




03,3
I3

0n,3
0n,3


 (34)

denoting Oi, j as the zero matrix of size i× j and Ii as the
identity matrix of size i× i.

The last part of the experimental test video referenced
before shows the real experiment with HRP-2 robot during
a standard forward walking. From Fig. 22 to Fig. 24 the
results of the estimation during the walking are presented.
The captured data is compared with the OpenHRP estima-
tion and the EKF estimation. Finally, Fig. 25 presents an
estimation of the flexibility in the robot’s ankle.

It is important to remark that the comparison between
the EKF with kinematics information and the EKF running
in OpenHRP is made considering that the real robot’s atti-
tude is the one calculated through the Motion Capture Sys-
tem. Anyway, it is not clearly known how the OpenHRP
estimates the robot’s attitude, since it is a closed system
and not accessible for research. On the contrary, our EKF
estimator is an open solution directly applicable to any hu-
manoid robot, which is the main contribution of our ap-
proach.

6 CONCLUSIONS

This paper has studied a major problem when deal-
ing with the control of humanoid platforms: the attitude
estimation. While most authors estimate the robot’s atti-
tude combining acceleration and gyroscope measurements

Fig. 22. Roll angle estimation during a standard forward
walking

Fig. 23. Pitch angle estimation during a standard forward
walking

through the use of EKF, in our approach the kinematics
information is also integrated in order to improve the fil-
tering. Using the information coming from the robot’s en-
coders and simple kinematic transformations, this method
allows obtaining a good estimation of the robot’s attitude
with respect to the world frame, even considering the ex-
istence of accelerations and mechanical flexibilities in the
robot.

This method has been implemented on the humanoid
robot HRP-2, comparing the results with the information
obtained from the robot’s inner stabilizer and showing the
better performance of the proposed approach.

Other algorithms must be explored next, such as the
particle filtering. A better performance may lie on the use
of an n-states estimator, in which a different estimator is
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Fig. 24. Yaw angle estimation during a standard forward
walking

Fig. 25. Estimation of roll and pitch angles considering
mechanical flexibilities in the ankle

used for each robot walking phase (single and double sup-
port).
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