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Vol. 50(70)(2015), 1 – 15

PRIMITIVE BLOCK DESIGNS WITH AUTOMORPHISM

GROUP PSL(2, q)
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Abstract. We present the results of a research which aims to deter-
mine, up to isomorphism and complementation, all primitive block designs
with the projective line Fq ∪ {∞} as the set of points and PSL (2, q) as an
automorphism group. The obtained designs are classified by the type of
a block stabilizer. The results are complete, except for the designs with
block stabilizers in the fifth Aschbacher’s class. In particular, the problem
is solved if q is a prime. We include formulas for the number of such designs

with q = p2
α3β , α, β nonnegative integers.

1. Introduction and preliminaries

Our aim is to determine, up to isomorphism and complementation, all
nontrivial primitive block designs on the projective line with PSL (2, q) as an
automorphism group. For each q we denote by npd(q) the number of such
designs. We also determine which of the occurring 2-designs is even a 3-design.

Several authors have considered the action of group PSL (2, q) on the
projective line. For this research the most significant contribution is the work
of Cameron et al. [5, 6], which we use in the part involving 3-designs with
q odd. Focusing on primitive designs only, we extend the results taken from
[5, 6] by solving the problem of isomorphism of the designs and by finding
their full automorphism groups. Additionally, our method yields the series
of 3-designs (Proposition 5.2) undetected in [5, 6]. The rest of the research
comprises 2-designs and 3-designs with q even.

The obtained designs are presented following the type of a block stabilizer.
We completely solved the problem in case when a block stabilizer is not in
the fifth Aschbacher’s class and, in particular, for q a prime number. In
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Section 5 a part of the designs is described by an explicit base block and
an automorphism group. In Section 6 we give the data determining the full
automorphism groups for the rest of the designs. Section 7 is a contribution
to the calculation of the numbers npd(q). Formulas for npd(q) are determined

in case q = p2
α3β , α, β nonnegative integers. For instance, Proposition 7.1

relates to the case α = β = 0. The validity of the obtained formulas is
illustrated through computer construction of designs up to q = 103, for which
we used software packages GAP [9, 15] and MAGMA [3] and the libraries of
primitive groups that they contain.

We start with a few basic notions and facts that are relevant for our study.
More details on design theory the reader can find, for instance, in [2,7], while
for group theory we refer the reader to [1,4,8]. Our notation and terminology
is in accordance with the cited literature.

A t−(v, k, λ) design is a pair D = (Ω,B), where Ω is a set of v points, B a
set of k-sets of Ω called blocks, such that any t different points are contained
in exactly λ blocks, t ≤ k and λ > 0. Any 2 − (v, k, λ) design we simply call
(v, k, λ) block design.

An isomorphism of t-designs D = (Ω,B) and D′ = (Ω,B′) is a permu-
tation of Ω which sends blocks of D to blocks of D′. An isomorphism from
D to itself is called automorphism. The group of all automorphisms of D is
denoted by AutD. For any ω ∈ Ω by Gω ≤ AutD we denote a point stabilizer;
GB ≤ AutD denotes a block stabilizer, B ∈ B.

A permutation group G acting transitively on a set X, |X | ≥ 2, is
primitive if each point stabilizer Gx, x ∈ X, is a maximal subgroup of G
[8, p. 14]. We call a t− design D primitive if there exists an automorphism
group G ≤ AutD which acts primitively on the point and block sets.

It is known that 2-homogeneous permutation groups are primitive [8,
p. 35], thus all 2-transitive permutation groups are primitive.

Proposition 1.1 ([8, p. 9]). Let G be a permutation group acting transi-
tively on a set X. Then a subgroup L ≤ G is transitive if and only if G = LGx,
x ∈ X.

An overgroup of a primitive group is primitive. All primitive groups that
have the same socle with a specified (transitive) permutation action form a
cohort [8, p.138]. The primitive groups G of this research are almost simple,
i.e. T ⊳ G ≤ AutT , T nonabelian simple, [13]. The definition of Aschbacher’s
classes can be found in [11].

We denote by Fq a finite field with q elements; we also set q = pf , p a

prime, F ∗
q = Fq\{0} and F

(2)
q = {x2

∣∣ x ∈ F ∗
q }. We consider primitive designs

with respect to G, such that

(1.1) PSL(2, q) = T E G ≤ AutT = PΓL(2, q).
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The socle T of the cohort (1.1) is the group of all fractional linear transfor-
mations

ta,b,c,d : z 7→
az + b

cz + d
on the projective line Fq ∪ {∞}, a, b, c, d ∈ Fq, where ad − bc is a square;

|T | = q(q2−1)
gcd(2,q−1) .

Let ξ be a primitive element of Fq and let δ = tξ,0,0,1. By φ we denote
the automorphism z 7→ zp of Fq which fixes ∞. Then we have

PGL(2, q) = 〈PSL(2, q), δ〉 = 〈T, δ〉 , |PGL(2, q)| = q(q2 − 1);

PΓL(2, q) = 〈PSL(2, q), δ, φ〉 = 〈T, δ, φ〉 , |PΓL(2, q)| = fq(q2 − 1);

PΣL(2, q) = 〈PSL(2, q), φ〉 = 〈T, φ〉 ; |PΣL(2, q)| =
fq(q2 − 1)

gcd(2, q − 1)
.

Our theoretical considerations are restricted to q ≥ 13, q 6= 23.

2. Construction method

The basis of our construction method is the following theorem.

Theorem 2.1. [2, p.175] Let G be a permutation group on the finite set
Ω, let B ⊂ Ω be a k-subset with at least two elements and let GB ≤ G be a
setwise stabilizer of B.

If G is t-homogeneous and k ≥ t, then D = (Ω, BG = {Bγ | γ ∈ G}) is a
t-design with b =

∣∣BG
∣∣ = |G| / |GB| blocks and

λ = b

(
k

t

)/(
v

t

)
= |G|

(
k

t

)/
|GB|

(
v

t

)
.

The set B is called a base block for D.

We take Ω = Fq ∪ {∞}, |Ω| = q + 1. It is well-known that T -action on
projective line is 2-homogeneous if q ≡ 1(mod 4), whereas it is 3-homogeneous
if q ≡ 3(mod 4) or q is even. It is also known that PGL(2, q) acts 3-
homogeneously on projective line for all q. If, for a given group G from
(1.1), we select a subset B ⊂ Ω and construct the set B =BG, then the pair
D = (Ω,B) is a 2 or 3-design with a base block B and G ≤ AutD (Theorem
2.1). G obviously acts primitively on the set of points of D. If the base block
stabilizer GB ≤ G is a maximal subgroup, then G acts primitively on blocks
as well. Consequently, in order to construct a primitive design D in this way,
it suffices to choose B to be a union of orbits of some maximal subgroup of G.
Hence we denote by D(G,B) such a design. We only consider possible non-
trivial choices for B with the property k = |B| ≤ v/2 because the complement
of a primitive design is also primitive with the same full automorphism group.
If the action of AutD(G,B) is 3-homogeneous then the underlying design is
a 3-design.
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3. Minimal group for performing the construction

Suppose that for primitive designD(G,B) we have T ≤ G1 ≤ G. Then G1

is normal subgroup of G, so G1 acts transitively on blocks. Now, if GB ∩G1 is
maximal inG1, then the constructions byG1 produce also all primitive designs
admitting G as an automorphism group. The consequence of this simple
observation is that, eventually, we only need to consider maximal subgroups
of T and PGL(2, q) as setwise base block stabilizers to construct all desired
primitive designs. Namely, if G is any group from (1.1) and M ≤ G its
maximal subgroup not contained in T , then M ∩ T is maximal in T with
one single exception: normalizer M = NG(A4) = S4 in G = PGL(2, q) and
q = p ≡ ±11, 19(mod40) [10, Theorem 1.1 and Corollary 1.2].

Type H ≤ T (block stabilizer) Asch. GMIN ncc GMAX

1
Cf

p ⋊ C q−1
gcd(2,q−1)

(point stabilizer)
C1 PSL(2, q) 1 PΓL(2, q)

2

D 2(q−1)
gcd(2,q−1)(
two points

setwise stabilizer

)
C2 PSL(2, q) 1 PΓL(2, q)

3 D 2(q+1)
gcd(2,q−1)

C3 PSL(2, q) 1 PΓL(2, q)

4 PGL(2, q0), q = q20 C5 PSL(2, q) 21 PΣL(2, q)

5
PSL(2, q0), q = qr0 ,

q0 6= 2, r odd prime
C5 PSL(2, q) 1 PΓL(2, q)

6

A5, q = p2 ≡ 49 (mod 60) ,

p ≡ 7, 13, 17, 23, 37, 43,

47, 53 (mod60)

C9 PSL(2, q) 2 PΣL(2, q)

7
A5, q = p ≡ 1, 11, 19,

29, 31, 41, 49, 59 (mod 60)
C9 PSL(2, q) 2 PSL(2, q)

8
A4, q = p ≡ 13, 37, 43, 53,

67, 77, 83, 107 (mod 120)
C6 PSL(2, q) 1 PGL(2, q)

9

S4, q = p ≡ 1, 7, 17, 23, 31,

41, 47, 49, 71, 73, 79, 89,

97, 103, 113, 119 (mod 120)

C6 PSL(2, q) 2 PSL(2, q)

10
S4, q = p ≡ 11, 19, 29, 59

61, 91, 101, 109 (mod 120)
C6 PGL(2, q) 1 PGL(2, q)

Table 1



PSL(2, q) PRIMITIVE ACTION 5

Maximal subgroups of T can, for instance, be read off from [10, Theorem
2.1 and Theorem 2.2]. Here we rewrite that division into nine isomorphism
types following the orbit structure. The types are listed in the first nine rows
of Table 1 and denoted by H . The corresponding Aschbacher’s class ([11]) is
indicated in the third column.

In Table 1 GMIN denotes minimal groups from (1.1) with maximal sub-
group H , i.e. minimal primitive automorphism groups of the prospective
designs. The tenth row of Table 1 relates to the case GMIN = PGL(2, q);
here the socle T of cohort (1.1) does not act primitively on blocks.

Group GMAX will be defined and explained in the next section. The fifth
column reads the number ncc of conjugacy classes of H in GMIN ; ncc ≤ 2 for
any isomorphism type of maximal subgroup of T.

To accomplish the construction of all our aimed designs it suffices to:

(i) Compose base blocks as all possible unions of H-orbits, H of type 2
thru 10. (Block stabilizer H of type 1 has two orbits whose lengths are

1 and q. The corresponding design is obviously trivial.)
(ii) Generate the block set B from each base block B by the action of

{
T on B, for H of type 2 to 9;
PGL(2, q) on B, for H of type 10.

4. Preliminary analysis of designs

In this section we give important facts about full automorphism groups
and possible isomorphisms of the designs we consider. By H we denote a
maximal subgroup of T.

The following assertion has been observed in [5, Introduction] and [12].

Proposition 4.1. Let G belong to the cohort (1.1) and let D = D(G,B)
and D′ = D(G,B′) be any two considered designs. If π : D → D′ is an
isomorphism, then π ∈ PΓL(2, q).

Taking D′ = D, from the proposition it follows that each considered
design D has the property AutD ≤ PΓL(2, q). Isomorphisms from PΓL(2, q)
act on the set of blocks of a design in the sense that they preserve T as the
generating group:

(4.1)
(
BT
)π

= BTπ = Bππ−1Tπ = (Bπ)
T
, π ∈ PΓL(2, q).

For a given design D = D(T,B), the set stb(D) = {TB∗ |B∗ ∈ B =BT }
of stabilizers of all blocks of D we call D-stabilizer. It is the set of all sub-
groups conjugate to some block stabilizer H = TB, i.e. stb(D) = HT . For an
isomorphism π : D → D′ we have (stb(D))

π
= stb(D′), cf. (4.1). This means

that we obtain all designs up to isomorphism if the construction (i)–(ii) is
performed only for a chosen representative of every conjugacy class of H in
PΓL(2, q). Clearly, PΓL(2, q) acts on the classes of T. So if H = TB for the
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design D(G,B) then by GMAX we denote the set stabilizer of the conjugacy
class of H in T . Obviously, AutD ≤ GMAX and

GMAX =






PΓL(2, q), if there exists one conjugacy class of H in T ;

PΣL(2, q), if q is odd and there exist two conjugacy
classes of H in T.

From Proposition 1.1 we deduce

(4.2) GMAX = T ·NGMAX (H).

NGMAX (H) acts on the set of H-orbits and, accordingly, on the block set
of the design.

Proposition 4.2. Let D1 = D(T,B1) and D2 = D(T,B2) be designs
with TB1 = TB2 = H. Then D1 and D2 are isomorphic if and only if there
exists π ∈ NGMAX (H) so that Bπ

1 = B2.

Proof. Let ϕ : D1 → D2 be an isomorphism. Then there exists g ∈ T
such that Bϕ

1 = Bg
2 , and for the isomorphism π = ϕg−1 : D1 → D2 we have

Bπ
1 = B2. Now H = TB2 = TBπ

1
= T π

B1
= Hπ, which proves π ∈ NGMAX (H).

Conversely, let there exist π ∈ NGMAX (H) such that Bπ
1 = B2. Then

BT
2 = (Bπ

1 )
T (4.1)

=
(
BT

1

)π
,

i.e. π is an isomorphism.

Corollary 4.3. AutD = T · {π ∈ NGMAX (H)|Bπ = B}.

Proof. Proposition 1.1 implies AutD = T · AutDB, while previous
proposition with D1 = D2 = D gives AutDB = {π ∈ NGMAX (H)|Bπ = B}.

5. Designs with block stabilizers of types 2 thru 5

In this and the subsequent section we describe all primitive 2-designs D
with PSL (2, q) E AutD on q + 1 points up to one undecided case. For the
description and for solving the problem of possible isomorphism between two
designs we use group NGMAX (H). Henceforth that group we denote by K.

For H-types 2 thru 5 we explicitly give H-orbits and a base block of the
design. The description is incomplete for H-type 5 in the sense that we found
orbit lengths for H but not for K.

a) H-type 2 (a dihedral group, two point stabilizer)

Proposition 5.1. Let q ≥ 13. A block design D with the socle PSL (2, q)
of AutD and the base block stabilizer H in the second Aschbacher’s class

exists if and only if q ≡ 1(mod 4). Then D is 2-(q+1, q−1
2 , (q−1)(q−3)

8 ) design
which is unique up to isomorphism and complementation. Moreover, AutD =
PΣL (2, q) .
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Proof. If D exists then

H = T{0,∞} =
{
x 7→ ax : a ∈ F (2)

q

}
⋊

〈
x 7→

−1

x

〉
,

GMAX = PΓL (2, q) and K = PΓL (2, q){0,∞} .

The orbits of subgroup
{
x 7→ ax| a ∈ F

(2)
q

}
are {∞},{0}, F

(2)
q and

F ∗
q �F

(2)
q . Consequently,

H − orbits are





{0,∞} and F ∗
q , for q even or q ≡ 3 (mod 4) ;

{0,∞}, F
(2)
q and F ∗

q �F
(2)
q , for q ≡ 1 (mod 4).

Thus, nontrivial 2-designs exist for q ≡ 1 (mod 4) , q ≥ 13. Up to complemen-
tation it remains to consider base blocks consisting of one orbit each, that

being B1 = F
(2)
q and B2 = F ∗

q �F
(2)
q .

Obviously the mapping x 7→ ξx, ξ ∈ F ∗
q �F

(2)
q , lies in K and maps the

orbit F
(2)
q into F ∗

q �F
(2)
q , so up to isomorphism and complementation there

exists a unique 2 −
(
q + 1, q−1

2 , (q−1)(q−3)
8

)
design D = D

(
T, F

(2)
q

)
. Using

Corollary 4.3 we easily get AutD = PΣL (2, q).

b) H-type 3 (a dihedral group of order
2 (q + 1)

gcd(2, q − 1)
)

Proposition 5.2. Let q = pf ≥ 13. A block design D with the so-
cle PSL (2, q) of AutD and the base block stabilizer H in the third As-
chbacher’s class exists if and only if q ≡ 1(mod 4). D is unique up to
isomorphism and complementation. If p ≡ 1(mod 4), then D is a 2-

(q + 1, q+1
2 , (q−1)2

8 ) design with AutD = PΣL (2, q) . If p ≡ 3(mod 4), then

D is a 3 −
(
q + 1, q+1

2 , (q−3)(q−1)
16

)
design with AutD = PSL (2, q) ·∆, where

∆ is cyclic group of order 2f and |PSL (2, q) ∩∆| = 2.

Proof. If q ≡ 3 (mod 4) or q is even, then H acts transitively on the
projective line, which leaves the possibility q ≡ 1 (mod 4) , so H is a dihedral
group of order q + 1 and GMAX = PΓL (2, q) . In [6, Lemma 14, (i)] we find
that H acts in two orbits on Ω.

Let F ∗
q = 〈ξ〉 and A =

{
x 7→ ax+bξ

bx+a : a, b ∈ Fq, a
2 − b2ξ ∈ F

(2)
q

}
. Then

A is a cyclic subgroup of H of order q+1
2 and H = NT (A) . One H-orbit

on Ω is {∞} ∪
{
a ∈ F ∗

q : a2 ∈ ξ + F
(2)
q

}
. Up to isomorphism and comple-

mentation, design D = D
(
T, {∞} ∪

{
a ∈ F ∗

q : a2 ∈ ξ + F
(2)
q

})
is a unique

2 −
(
q + 1, q+1

2 , (q−1)2

8

)
design with the base block stabilizer A ⋊ ∆, where

∆ = {δu|u ∈ Z} is a cyclic group of order 2f and δu is the action on Ω defined
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by x → ξ
1−pu

2 xpu

(δu1 ◦ δu2 = δu1+u2). Corollary 4.3 implies AutD = T ·∆.

If p ≡ 3 (mod 4) , then ξ
1−p
2 is not a square, so AutD is 3-homogeneous.

Remark 5.3. 3-designs from the above proposition are not given in [5,6].
The group PSL (2, q) ·∆ has the same order as PΣL (2, q) but is different from
this group.

c) H-type 4 (H ∼= PGL(2, q0) , q = q20)

Proposition 5.4. Let q = q20 ≥ 13. Then, up to isomorphism and comple-
mentation, there exists a unique primitive block design D with automorphism
group PSL (2, q) and a block stabilizer H = PGL (2, q0) . AutD = PΣL (2, q)
and one of the following holds:

(1) q is even and D is a 3− (q20 + 1, q0 + 1, 1) design;

(2) q is odd and D is a 2− (q20 + 1, q0 + 1, q0+1
2 ) design.

Proof. If q is odd, in [6, Lemma 14, (i)] we find that H acts in two orbits
on Ω. If q is even, then H consists of all fractional linear transformations in T
with coefficients from Fq0 . Obviously, {∞}∪Fq0 is aH-orbit. Let γ ∈ Fq�Fq0 .
γ generates Fq and every element in Fq�Fq0 can be presented in the form
aγ+b, a ∈ F ∗

q0 , b ∈ Fq0 . H contains the group
{
x 7→ ax+ b : a ∈ F ∗

q0 , b ∈ Fq0

}
,

so Fq�Fq0 is also a H-orbit, i.e. H acts in two orbits on Ω also for q even.
Thus, because D (T, Fq�Fq0) is complementary to D = D (T, Fq0 ∪ {∞}) , D

is a unique existing 2−
(
q20 + 1, q0 + 1, q0+1

gcd(2,q0−1)

)
design up to isomorphism

and complementation; AutD = PΣL (2, q). For q even, the group PΣL (2, q)
is 3-homogeneous, so D is a 3−

(
q20 + 1, q0 + 1, 1

)
design.

Designs from the above proposition, (1), are called Möbius planes ([7, p.
82]).

d) H-type 5 (H ∼= PSL(2, q0), q = qr0 , q0 6= 2, r > 2 prime)

For this H-type we only partly solved the problem by finding orbit struc-
ture for H . Orbit structure for K = NPΓL(2,q)(H) remained beyond our reach
because of the great number of combinatorial possibilities for the action of the
automorphisms of Fq (contained in K) on H-orbits.

If q is odd, from [6, Lemma 14, (ii)] it follows that {∞} ∪ Fq0 is the only
H-orbit which is not regular. In case q is even, H consists of all elements
in T with coefficients a, b, c, d ∈ Fq0 , q0 6= 2 is a prime power. Obviously,
{∞} ∪ Fq0 is a H-orbit. Let γ ∈ Fq�Fq0 . Because r is prime, γ generates

Fq. Let x 7→ ax+b
cx+d be an element of H which stabilizes γ. Then aγ+b

cγ+d = γ, i.e.

cγ2 +(d− a) γ− b = 0. c 6= 0 would imply that γ is a root of a polynomial of
degree 2 with coefficients in F

q0
, which is a contradiction. Thus c = 0, a = d

and b = 0, which means that points in Fq�Fq0 have trivial stabilizer and that
{∞} ∪ Fq0 is the only non regular H-orbit also in case q is even.



PSL(2, q) PRIMITIVE ACTION 9

Consequently, for H-orbit lengths we find (q0 + 1)
1
|PSL(2, q0)|

sr , where

sr =
qr−1
0 −1

q20−1
· gcd (2, q0 − 1). Substituting q0 = pf/r we can write sr =

pf(1−1/r)−1
p2f/r−1

· gcd (2, p− 1) as well.

Design D = D (T, {∞} ∪ Fq0) is 3−(qr0 + 1, q0 + 1, 1) design called spher-
ical geometry, [7, p. 82]; AutD = PΓL(2, q).

In case r = 3 we can easily describe all existing designs because s3 ∈
{1, 2}. If q is even then s3 = 1, so there exist only spherical geometry and its
complement. If q is odd then s3 = 2. Let γ ∈ Fq�Fq0 generate Fq . There exists

π ∈ F ∗
q0 such that π /∈ F

(2)
q . Now γ and πγ lie in different orbits as an equation

aγ+b
cγ+d = πγ with a, b, c, d ∈ Fq0 is impossible. In this case there exists exactly

one more design (up to isomorphism and complementation), that being D+ =

D
(
T, γPSL(2,q0)

)
. D+ is 2−

(
q30 + 1,

q0(q
2
0−1)
2 ,

(q30−1)(q0(q
2
0−1)−2)

4

)
design. If q ≡

3 (mod 4) , then D+ is 3−
(
q30 + 1,

q0(q
2
0−1)
2 ,

(q0(q
2
0−1)−2)(q0(q

2
0−1)−4)

8

)
design.

6. On the designs obtained for H-types 6 thru 10

In this section we consider designs with block stabilizers H from the last
five rows of Table 1, i.e. H ∼= A4, S4, A5 ≤ PSL(2, q) andH ∼= S4 ≤ PGL(2, q).
We determine the number of designs and their full automorphism groups using
orbit lengths of groups H and K; here either K = H or [K : H ] = 2. Orbit
lengths for groups H and K, in case of H-types 7-10, can be found in [5, 6],
as well as H-orbit lengths in case of H-type 6 (q = p2). On the other hand,
if H is of type 6 then K-orbit sizes can not be read off from the papers of
Cameron et al. Therefore, subsequently in the section, we give in detail only
the determining of K-orbit lengths for H-type 6.

Let us begin with the calculation of the numbers npdH(q) of nontrivial
primitive t-designs having a particular block stabilizer H , regarded up to
isomorphism and complementation. Let θ be the number of H-orbits. If
K = H , obviously npdH(q) = (2θ − 2)/2 = 2θ−1 − 1. In case [K : H ] = 2 let
l ≥ 0 be the number of H-orbits that K fixes setwise. Then θ − l is even,
say θ− l = 2j, j ≥ 1. Let O = {o11, o21, o12, o22, . . . , o1j , o2j} be the set of H-
orbits that K does not fix setwise, where {o1i, o2i} , i = 1, . . . , j are K-orbits
on O. If we denote by Λ the number of nonisomorphic designs with base

blocks B̃ ⊆ O, then we have npdH(q) = [2l · Λ − 2]/2. In order to calculate
Λ one can observe 2× j matrices A = [Ami] whose 0, 1 entries correspond to

the specific base block B̃ in the sense that

Ami =

{
1, omi ⊆ B̃

0, omi * B̃
.
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The action of K\H on O and the consequent development of B̃ reflect in the
entries of A as swapping the position of the rows of A. Eventually, we use the
following lemma to determine Λ.

Lemma 6.1. Let A be the set of all 2 × j matrices with 0, 1 entries. For
A1, A2 ∈ A we define A1 ∼ A2 if and only if A1 = A2 or A2 is obtained from
A1 by swapping the rows. Then ∼ is an equivalence relation and |A/∼| =
22j−1 + 2j−1.

Proof. Obviously |A| = 22j . It is easily checked that ∼ is an equivalence
relation with 1 or 2 elements in each equivalence class. A class consists of only

one matrix if the columns of that matrix are of the form

[
0
0

]
or

[
1
1

]
, so

the number of singleton classes is 2j . Let’s denote the number of classes with
two elements by µ. Then we have 2j + 2µ = 22j or µ = 22j−1 − 2j−1. From
|A/∼| = 2j + µ we finally obtain |A/∼| = 22j−1 + 2j−1.

From the lemma we conclude that for a given block stabilizer H with
[K : H ] = 2 we have Λ = 22j−1 + 2j−1 and consequently npdH(q) = [2l ·
(22j−1 + 2j−1)− 2]/2.

e) H-type 6 (H ∼= A5)

Here q = p2 ≡ 49 (mod 60), p ≡ 7, 13, 17, 23, 37, 43, 47, 53 (mod 60) , [10,
Theorem 2.2]. There are two conjugacy classes of H in T, so GMAX =
PΣL(2, q); K = S5. According to [6, Lemma 11, (i)] the only possible com-

bination of H-orbit lengths is: 20130160
q−49
60 . H-orbits of length 20 and 30

are obviously fixed by K- action. On K-orbits of length 20, 30 and 60 H
acts transitively, so for any point ω from these orbits Kω � H holds. Let
τ ∈ K�H be an involution. All such involutions are conjugate in K, thus
they fix the same number of points, say ϕ. The list of possibilities for K-
action on the orbits of length m is obtained by computer calculations ([9],
[3]):

m 20 20 30 30 60
Kω S3 C6 C4 C2

2 C2

ϕ 6 2 0 6 6

If K acts on an orbit of length 20, then τ has at least two fixed points in
that orbit. Without loss of generality we may take that τ fixes points 0 and
∞; namely, such a choice of K can be obtained by the action of some element

from GMAX . Then xτ = axp, where a ∈ F
(2)
q and ap+1 = 1. The equation

xp−1 = a−1 has p − 1 solutions in F ∗
q . These solutions are fixed points of τ ,

so that τ has exactly p+ 1 fixed points. Let ϕ1, ϕ2 be the numbers of fixed
points in orbits of length 20 and 30, respectively; ϕ1 ∈ {2, 6}, ϕ2 ∈ {0, 6}.
Let d be the number of orbits of length 60 fixed by involution τ . Then the
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equation

(6.1) ϕ1 + ϕ2 + 6d = p+ 1

holds. By substituting all admissible ϕ1 and ϕ2 into equation (6.1) and then
solving it for d we finally obtain orbit lengths for K:

1. p ≡ 13, 37 (mod 60) → 20130160
p−1
6 120

1
2 (

q−49
60 − p−1

6 ),

2. p ≡ 17, 53 (mod 60) → 20130160
p−5
6 120

1
2 (

q−49
60 − p−5

6 ),

3. p ≡ 7, 43 (mod 60) → 20130160
p−7
6 120

1
2 (

q−49
60 − p−7

6 ),

4. p ≡ 23, 47 (mod 60) → 20130160
p−11

6 120
1
2 (

q−49
60 −p−11

6 ).

Obviously the following assertion holds.

Proposition 6.2. Let p ≥ 5 and let S5 be a maximal subgroup of
PΣL(2, p2). If orbit lengths of S5 are 20130160d120d1, d1 = 1

2

(
q−49
60 − d

)
,

then for the number of primitive designs with q = p2 we have the following:

1) If p 6≡ 49(mod60), then npd(q) = 3.
2) If p ≡ 49(mod60), then npd(q) = 2 + 2d+1(22d1−1 + 2d1−1).

For q = p2 ≡ 49 (mod 60) we obtain the series of 2−
(
q + 1, k, (q−1)k(k−1)

120

)

designs D with PSL(2, q) ≤ AutD ≤ PΣL(2, q).

For H-types 7 through 10 we only note possible orbit lengths and the cor-
responding number of primitive designs npdH (q) which we need for counting
the total number of designs. AutD is easily read off from Table 1, except for
H-type 8 where it is necessary to take into account Corollary 4.3 to obtain
AutD.

f) H-type 7 (H ∼= A5)

q = p ≡ H = K ∼= A5 orbit lengths npdH (q)

1 (mod 60) 12120130160
q−61
60 2

q+59
60 − 1

11 (mod 60) 12160
q−11
60 2

q−11
60 − 1

19 (mod 60) 20160
q−19
60 2

q−19
60 − 1

29 (mod 60) 30160
q−29
60 2

q−29
60 − 1

31 (mod 60) 12120160
q−31
60 2

q+29
60 − 1

41 (mod 60) 12130160
q−41
60 2

q+19
60 − 1

49 (mod 60) 20130160
q−49
60 2

q+11
60 − 1

59 (mod 60) 60
q+1
60 2

q−59
60 − 1
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g) H-type 8 (H ∼= A4)

q = p ≡ H ∼= A4 K ∼= S4 npdH (q)

53, 77 (mod 120) 6112
q−5
12 6124

q−5
24 2

q−17
12 + 2

q−29
24 − 1

83, 107 (mod 120) 12
q+1
12 12124

q−11
24 2

q−23
12 + 2

q−35
24 − 1

13, 37 (mod 120) 426112
q−13
12 618124

q−13
24 2

q−1
12 + 2

q−13
24 − 1

43, 67 (mod 120) 4212
q−7
12 8112124

q−19
24 2

q−7
12 + 2

q−19
24 − 1

h) H-type 9 (H ∼= S4)

q = p ≡ H = K ∼= S4 orbit lengths npdH (q)

1, 49, 73, 97 (mod 120) 618112124
q−25
24 2

q+23
24 − 1

7, 31, 79, 103 (mod 120) 8124
q−7
24 2

q−7
24 − 1

17, 41, 89, 113 (mod 120) 6112124
q−17
24 2

q+7
24 − 1

23, 47, 71, 119 (mod 120) 24
q+1
24 2

q−23
24 − 1

i) H-type 10 (H ∼= S4)

q = p ≡ H = K ∼= S4 orbit lengths npdH (q)

29, 101 (mod 120) 6124
q−5
24 2

q−5
24 − 1

11, 59 (mod 120) 12124
q−11
24 2

q−11
24 − 1

61, 109 (mod 120) 618124
q−13
24 2

q+11
24 − 1

19, 91 (mod 120) 8112124
q−19
24 2

q+5
24 − 1

7. Survey of results

The q-range covered theoretically in this research is q ≥ 13, q 6= 23.
Cases with q < 13 and q = 23 are solved using programming and com-
putation in GAP and MAGMA. In this way the nonexistence of primitive
designs with q = 4, 7, 8, 11, and 23 is proved. For q = 23 it is interesting that
PSL(2, 23) < M24 holds, [14], cf. Proposition 4.1. However, an exhausting
computer search shows the nonexistence of primitive design with an automor-
phism group having PSL(2, 23) as the socle.

Below we give the number of primitive designs obtained through exhaus-
tive computer search for all q ≤ 103. The designs and the related documen-
tation are available at: http://www.pmfst.hr/~sbraic/t-designs/.
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q 4 5 7 8 9 11 13 16 17 19 23 25 27
npd (q) 0 1 0 0 2 0 4 1 3 1 0 3 2

q 29 31 32 37 41 43 47 49 53 59 61 64 67
npd (q) 3 2 0 11 6 9 1 4 11 3 12 2 35

q 71 73 79 81 83 89 97 101 103
npd (q) 4 17 8 3 35 18 33 20 15

The sole existing design for q = 5 has a block stabilizer H of type 3. It is a
2−(6, 3, 2) design to which extends the validity of Proposition 5.2. Out of two
designs existing for q = 9, one is 2− (10, 4, 2) design with a block stabilizer H
of type 4, described in Proposition 5.4, (2). The other is 3− (10, 5, 3) design
with a block stabilizer H = C5 ⋊C4. The subgroup H ∩ T is not maximal in
T = PSL(2, 9), whereas H is maximal in M10, which is the full automorphism
group of this design.

The total number of nontrivial primitive t-designs, up to isomorphism
and complementation, for a given q is the sum of npd (q) over all H-types.
Due to the incompleteness of results for block stabilizers H of type 5, in the
following proposition we give that number only for q = p. The proof is pure
combinatorics.

Proposition 7.1. If q ≥ 7 is prime then the following formulas hold:

1. q ≡ 1 (mod 120) ⇒ npd (q) = 2
q+59
60 + 2

q+23
24 ,

2. q ≡ 7, 103 (mod 120) ⇒ npd (q) = 2
q−7
24 − 1,

3. q ≡ 11 (mod 120) ⇒ npd (q) = 2
q−11
60 + 2

q−11
24 − 2,

4. q ≡ 13, 37 (mod 120) ⇒ npd (q) = 2
q−1
12 + 2

q−13
24 + 1,

5. q ≡ 17, 113 (mod 120) ⇒ npd (q) = 2
q+7
24 + 1,

6. q ≡ 19 (mod 120) ⇒ npd (q) = 2
q−19
60 + 2

q+5
24 − 2,

7. q ≡ 23, 47 (mod 120) ⇒ npd (q) = 2
q−23
24 − 1,

8. q ≡ 29 (mod 120) ⇒ npd (q) = 2
q−29
60 + 2

q−5
24 ,

9. q ≡ 31 (mod 120) ⇒ npd (q) = 2
q+29
60 + 2

q−7
24 − 2,

10. q ≡ 41 (mod 120) ⇒ npd (q) = 2
q+19
60 + 2

q+7
24 ,

11. q ≡ 43, 67 (mod 120) ⇒ npd (q) = 2
q−7
12 + 2

q−19
24 − 1,

12. q ≡ 49 (mod 120) ⇒ npd (q) = 2
q+11
60 + 2

q+23
24 ,

13. q ≡ 53, 77 (mod 120) ⇒ npd (q) = 2
q−17
12 + 2

q−29
24 + 1,

14. q ≡ 59 (mod 120) ⇒ npd (q) = 2
q−59
60 + 2

q−11
24 − 2,

15. q ≡ 61 (mod 120) ⇒ npd (q) = 2
q+59
60 + 2

q+11
24 ,

16. q ≡ 71 (mod 120) ⇒ npd (q) = 2
q−11
60 + 2

q−23
24 − 2,

17. q ≡ 73, 97 (mod 120) ⇒ npd (q) = 2
q+23
24 + 1,

18. q ≡ 79 (mod 120) ⇒ npd (q) = 2
q−19
60 + 2

q−7
24 − 2,
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19. q ≡ 83, 107 (mod 120) ⇒ npd (q) = 2
q−23
12 + 2

q−35
24 − 1,

20. q ≡ 89 (mod 120) ⇒ npd (q) = 2
q−29
60 + 2

q+7
24 ,

21. q ≡ 91 (mod 120) ⇒ npd (q) = 2
q+29
60 + 2

q+5
24 − 2,

22. q ≡ 101 (mod 120) ⇒ npd (q) = 2
q+19
60 + 2

q−5
24 ,

23. q ≡ 109 (mod 120) ⇒ npd (q) = 2
q+11
60 + 2

q+11
24 ,

24. q ≡ 119 (mod 120) ⇒ npd (q) = 2
q−59
60 + 2

q−23
24 − 2.

The number npd(p2) is given in Proposition 6.2. Notice that q = pf , f > 2
can appear only for H-types 2, 3, 4 and 5.

Proposition 7.2. Let α, β be nonnegative integers. Then for the number

of primitive designs with q = p2
α3β we have the following:

1. npd(22
α

) = 1, α ≥ 2.
2. npd(23

α

) = 1, α ≥ 2.

3. npd(22
α3β ) = 2, α, β ≥ 1.

4. npd(p2
α

) = 3, p 6= 2 and α ≥ 2.
5. npd(p3

α

) = 2, p ≡ 3(mod 4) and α ≥ 1.
6. npd(p3

α

) = 4, p ≡ 1(mod 4) and α ≥ 1.

7. npd(p2
α3β ) = 5, p 6= 2 and α, β ≥ 1.

Proposition 7.3. Let q ≥ 4. Then npd(q) = 0 if and only if q = 7, 11, 23
or q = 2r, r a prime.

Proof. If q = 7, 11, 23 or q = 2r, r a prime, we use Proposition 7.1,
Proposition 5.1 and Proposition 5.2 to obtain npd(q) = 0. Conversely, let
npd(q) = 0. If q = p, we simply solve the equalities npd (q) = 0 in Proposition
7.1. If q = pf , f ≥ 2, then there exists a prime r| f so that q = qr0 (q0 = pf/r,
this relates toH-types 4 and 5) and it is known that 3-designsD(T, {∞}∪Fq0)
called spherical geometries exist, [7, p. 82]. The spherical geometry is not
primitive design only in case p = 2 and f is a prime.
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