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Abstract. In this paper, we use polygonal and pyramidal numbers
Polm

x
and Pyrm

x
to extend a problem of Mordell. Then we prove that

if m ≥ 3, n ≥ 3 with (m,n) 6= (50, 3), (50, 6), all the solutions x and y

to the related equation verify max(x, y) < C, where C is an effectively
computable constant depending only on m and n.

1. Introduction

Mordell, in his classical book [13, Chapter 27], proposed the following
Diophantine problem. Are the only integer solutions of the equation

(1.1)

(

x

3

)

+

(

x

2

)

+

(

x

1

)

+

(

x

0

)

= y2

given by x = −1, 0, 2, 7, 15, 74? Ljunggren ([12]) and Bremner ([3]), indepen-
dently, resolved this equation, showing that there exists exactly one additional
solution, x = 676. Let Polmx and Pyrmx denote the polygonal and pyramidal
numbers, respectively, with integer parameters x ≥ 1 and m ≥ 3, that is

Polmx =
x((m− 2)x+ 4−m)

2
,
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and

Pyrmx =
x(x + 1)((m− 2)x+ 5−m)

6
.

These numbers are special cases of the figurate numbers, and for their general
properties we refer to [8, 9]. Further, for some Diophantine questions related
to these combinatorial objects, see [5, 10, 11, 15]. The aim of this note is to
generalize equation (1.1) to polygonal and pyramidal numbers. More precisely,
we consider the Diophantine equation

(1.2) Pyrmx−2 + Polmx−1 + x+ 1 = Polny .

One can see that for (m,n) = (3, 4) we get back equation (1.1), using the easy
facts

Pol3x =

(

x+ 1

2

)

, Pyr3x =

(

x+ 2

3

)

, Pol4x = x2.

Now we can prove

Theorem 1.1. For fixed positive integers m ≥ 3, n ≥ 3 with (m,n) 6=
(50, 3), (50, 6), all the solutions x and y to (1.2) satisfy max(x, y) < C, where

C is an effectively computable constant depending only on m and n.

In the exceptional cases (m,n) = (50, 3) and (50, 6), we have the curves

(16x+ 1)(2x− 3)2 = (2y + 1)2

and

(16x+ 1)(2x− 3)2 = (4y − 1)2,

respectively. It is trivial that there are infinitely many integer points (x, y) on
these curves. Apart from these cases, one can transform equation (1.2) into
an elliptic equation and using Baker’s classical result concerning the solutions
of elliptic equations (see Lemma 2.1), it is enough to guarantee that the
discriminant of the corresponding cubic polynomial is nonzero except for the
pairs (m,n) = (50, 3) and (50, 6). To prove this statement we apply a method
different from that developed in [15].

2. Auxiliary result

In this section, we recall a result due to Baker ([1]). For generalizations,
we refer the reader to [4, 6].

Lemma 2.1. Let f(x) be a cubic polynomial with rational integer co-

efficients and nonzero discriminant. The equation f(x) = y2 implies

max(|x|, |y|) < C1, where C1 is an effectively computable constant depend-

ing only on the coefficients of f .

Proof. See [1, Theorems 1 and 2].
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3. Proof of Theorem 1.1

Equation (1.2) leads to the equation

Fm,n(x) = 8(n− 2)
(

Pyrmx−2 + Polmx−1 + x+ 1
)

+ (n− 4)2

= (2(n− 2)y + 4− n)
2
.

A straightforward calculation gives that the discriminant D(Fm,n) of Fm,n(x)
in x is

D(Fm,n) =
16

81
(n− 2)2(64n2m4 − 256nm4 + 256m4 − 2240n2m3 − 8960m3

+ 8960nm3 + 27456m2 − 27456nm2 − 243n4m2 + 15936n2m2

− 4536n3m2 − 20864m+ 972n4m+ 20864nm+ 23976n3m

− 53168n2m− 4672n+ 4672− 31104n3 + 63376n2 − 972n4)

=
16

81
(n− 2)2 ·D(m,n).

If the discriminant vanishes, then there is a rational multiple zero α of Fm,n(x)
and thus α is also a zero of the polynomial

F
′

m,n(x) = (3m− 6)x2 + (18− 6m)x+ 2m− 1.

However, the roots of the equation (3m− 6)x2+(18− 6m)x+2m− 1 = 0 are

α1,2 =
3m− 9±

√
3m2 − 39m+ 75

3(m− 2)
,

so 3m2 − 39m+ 75 must be a perfect square. Now, we have to consider the
generalized Pell equation

3m2 − 39m+ 75 = k2,

where m and k are integers. One can see that 3|k. Let k = 3k1, k1 ∈ Z. This
gives

(2m− 13)2 − 3(2k1)
2 = 69,

or

(3.1) X2 − 3Y 2 = 69,

where the new variables are X = 2m− 13 and Y = 2k1.
From the general theory of Pell equations, if the Pell equation (3.1) has

a fundamental solution (X0, Y0), all of integer solutions corresponding to this
fundamental solution are given by

X + Y
√
3 = (X0 + Y0

√
3)(Vj + Uj

√
3) = (X0 + Y0

√
3)βj , j ∈ Z,

where β = 2+
√
3 is the fundamental unit of the corresponding number field

Q(
√
3), and Vj , Uj are integer solutions to the Pell equation

(3.2) V 2 − 3U2 = 1.
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In our case, there are two fundamental solutions (X0, Y0) = (9, 2) and

(12, 5). Notice that 12 + 5
√
3 = (9 − 2

√
3)β, thus all integer solutions to

equation (3.1) are given by

X + Y
√
3 = (9± 2

√
3)(Vj + Uj

√
3) = (9Vj ± 6Uj) + (±2Vj + 9Uj)

√
3, j ∈ Z.

We have 2m− 13 = X = 9Vj ± 6Uj so 2m = 9Vj ± 6Uj + 13. As 2 ∤ Vj ,
we get 2|j. Put j = 2t. Then, we have

2m = 9V2t ± 6U2t + 13 = 9(V 2
t + 3U2

t )± 6 · 2VtUt + 13(V 2
t − 3U2

t )

= 22V 2
t ± 12VtUt − 12U2

t .

Moreover, we get

2k1 = Y = ±2V2t+9U2t = ±2(V 2
t +3U2

t )+9 ·2VtUt = ±2V 2
t +18VtUt± 6U2

t .

Put v = Vt and u = ±Ut = U±t. Thus, we have

(3.3) m = 11v2 + 6vu− 6u2, ±k1 = v2 + 9vu+ 3u2.

Let K = ±k. After substituting α1,2 = 3m−9±k
3(m−2) = 3m−9+K

3(m−2) into the

equation Fm,n(x) = 0, we have quadratic equations for n with discriminant

(3.4)
∆ = 16(3m− 9 +K)(−3mK + 63m− 144 + 9K +K2)

(K3 + 117mK − 9m2K − 225K + 351m2 − 1647m+ 1944).

Substituting (3.3) into (3.4), with 1 = v2 − 3u2, we have

∆ = 24 · 312(v + u)2(3v + 2u)4(2v2 − 4vu− u2)(4v4 − 13v2u2 − 6vu3 − u4).

Let

P = 2v2 − 4vu− u2, Q = 4v4 − 13v2u2 − 6vu3 − u4.

One can check that both P and Q are negative for (±t) ≥ 1 and positive for
(±t) ≤ 0.

If ∆ is a square, then PQ is also a square. Consider the greatest common
divisor of P and Q. One gets

2Q ≡ (16v + 3u)u3 (mod P ),

128P ≡ −23u2 (mod 16v + 3u).

We have
D = (P,Q)|(P, 2Q) = ((16v + 3u)v3, P ).

Since (v, P ) = (v, 2v2 − 4vu− u2) = 1, then

D | (16v + 3u, P ) | (16v + 3u, 128P ) = (16v + 3u, 23u2)

(16v + 3u, 23u2) | (16v + 3u, 23)(16v + 3u, u2) | 28 · 23.
Hence, there exists an integer R such that

(3.5) P = 6v2 − (2v + u)2 = (−1)ε2δ23ηR2, ε, δ, η ∈ {0, 1},
where ε = 0 for u ≤ 0, ε = 1 for u ≥ 1.
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If P ≡ 0 (mod 23), then we have 6v2 ≡ (2v+u)2 (mod 23). This implies
±11v ≡ 2v + u (mod 23). We have u ≡ 9v (mod 23) or u ≡ 10v (mod 23).
When u ≡ 9v (mod 23) holds, we get

1 = v2 − 3u2 ≡ −242v2 ≡ 11v2 (mod 23)

and
(

11
23

)

= −1, which is a contradiction. When u ≡ 10v (mod 23), we have

1 = v2 − 3u2 ≡ −299v2 ≡ 0 (mod 23).

It is impossible. Hence, we have 23 ∤ P .
Therefore, we have to solve the equation

(3.6) P = 6v2 − (2v + u)2 = (−1)ε2δR2, ε, δ,∈ {0, 1}.
We have 3 ∤ (2v+u). Otherwise, one has 3|R, and so 9|6v2. The condition

3|v contradicts the fact that v2 − 3u2 = 1. By consideration modulo 3, the
above equation gives

−1 =

(−1

3

)

=

(−(2v + u)2

3

)

=

(

(−1)ε2δR2

3

)

=

(−1

3

)ε (
2

3

)δ

= (−1)ε+δ.

Thus, we have ε+ δ = 1. We divide equation (3.6) into two cases.

3.1. Case I: ε = 1, δ = 0. In this case, equation (3.6) becomes

(3.7) 6v2 − (2v + u)2 = −R2.

If 2|u, then 2 ∤ v. We have −R2 ≡ 2 (mod 4). It is impossible. Then we
have 2 ∤ u. This implies 2 ∤ R. This and 3 ∤ R give gcd(2v + u,R) = 1. From
equation (3.7), we have

(2v + u+R)(2v + u−R) = 6v2.

There exist integers G and H such that

2v + u+R = 2c1G
2, 2v + u−R = 2c2H

2, v = 2GH, c1c2 = 6.

This implies

u = c1G
2 + c2H

2 − 4GH.

Substituting this into v2 − 3u2 = 1, we have

−3c2G4 + 24cG3H − 80G2H2 +
144

c
H3 − 108

c2
H4 = 1,

where c ∈ {1, 2, 3, 6}. Put (X,Y ) = (G,H) for c = 1 or 2, (X,Y ) = (H,G)
for c = 3 or 6. We have two quartic Thue equations

(3.8) −3X4 + 24X3Y − 80X2Y 2 + 144XY 3 − 108Y 4 = 1, if c = 1, 6;

and

(3.9) −12X4 + 48X3Y − 80X2Y 2 + 72XY 3 − 27Y 4 = 1, if c = 2, 3.
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We use MAGMA (and also PARI/GP) to solve the two above Thue equa-
tions. There is no integer solution (X,Y ) to the Thue equation (3.8). All the
integer solutions to equation (3.9) are given by (X,Y ) = (1, 1) and (−1,−1).

This implies v = 2GH = 2XY = 2 and u = 2X2 + 3Y 2 − 4XY = 1.
Substituting m = 11v2 + 6vu− 6u2 = 50 into equation D(m,n) = 0, we have

−1296(n− 3)(n− 6)(432n2 + 11737n− 23474) = 0.

Hence, we have (m,n) = (50, 3) and (50, 6).

3.2. Case II: ε = 0, δ = 1. In this case, equation (3.6) becomes

(3.10) 6v2 − (2v + u)2 = 2R2.

One can see that 2|u. We have

R2 + 2(v + u/2)2 = 3v2.

The fact 2 ∤ v gives 2 ∤ R. Since 3 ∤ v, then gcd(R, v + u/2) = 1. We have

(R+ (v + u/2)
√
−2, R− (v + u/2)

√
−2)|(2R, (v + u/2)

√
−2) =

√
−2.

But v is odd, therefore the common divisor of R + (v + u/2)
√
−2 and its

conjugate is 1. The factorization of this equation over Q(
√
−2) implies

R+ (v + u/2)
√
−2 = ±(1±

√
−2)(G +H

√
−2)2,

for some integers G,H . Express it, then we have

v + u/2 = ±(G2 ± 2GH − 2H2)

and

v = G2 + 2H2.

Since v2 > 3u2 and v > 0, we have v + u/2 > 0. Put (X,Y ) = (G,±H), we
have

u/2 = |X2 + 2XY − 2Y 2| − (X2 + 2Y 2), v = X2 + 2Y 2.

Substituting this into v2 − 3u2 = 1, we have two Thue equations

(3.11) X4 − 44X2Y 2 + 192XY 3 − 188Y 4 = 1

and

(3.12) −47X4 − 96X3Y − 44X2Y 2 + 4Y 4 = 1.

Using MAGMA (and checking by PARI/GP), we see that there is no
integer solution (X,Y ) to the Thue equation (3.12). All integer solutions to
equation (3.11) are (X,Y ) = (±1, 0). This implies that u = 0 and v = 1. We
have m = 11. Substituting the value of m into the equation D(m,n) = 0, we
get

−81(n2 + 8n− 16)(243n2 + 1960n− 3920) = 0.

There is no integer solution to the above equation.
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Finally, if (m,n) 6= (50, 3), (50, 6), one can see that the cubic polynomial
Fm,n(x) has integer coefficients and nonzero discriminant. Therefore, using
Lemma 2.1, we complete the proof of Theorem 1.1.
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