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Abstract. In this paper we give some results about primitive integral

elements α in the family of bicyclic biquadratic fields Lc = Q(
√

(c− 2) c,
√

(c+ 4) c) which have index of the form µ (α) = 2a3b and coprime coor-
dinates in given integral bases. Precisely, we show that if c ≥ 11 and α is
an element with index µ (α) = 2a3b ≤ c + 1, then α is an element with
minimal index µ (α) = µ (Lc) = 12. We also show that for every integer
C0 ≥ 3 we can find effectively computable constants M0 (C0) and N0 (C0)
such that if c ≤ C0, than there are no elements α with index of the form
µ (α) = 2a3b, where a > M (C0) or b > N (C0).

1. Introduction

Let α be a primitive integral element of an algebraic number field K of degree
n with ring of integers OK . Then index of α is defined as index of subgroup
Z [α]

+
in group O+

K

µ (α) =
(

O+
K : Z [α]

+
)

,

where O+
K and Z [α]+ denote the additive groups of corresponding rings. The

minimal index µ (K) of the field K we define as the minimum of the indices
of all primitive integers in the field K. The field index m (K) is the greatest
common divisor of indices also taken for all primitive integers of K.

Let {1, ω2, ..., ωn} be an arbitrary integral basis of K. Then discriminant
of corresponding linear form L (X) = X1+ω2X2+ ...+ωnXn can be rewritten
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as

DK/Q (L (X)) = (I (X2, ..., Xn))
2
DK ,

where DK is discriminant of the field K and I (X2, ..., Xn) is a homogeneous
polynomial in n− 1 variables of degree n (n− 1) /2 with rational integer coef-
ficients. The polynomial I (X2, ..., Xn) is called the index form associated to
the integral basis {1, ω2, ..., ωn}. If the primitive integral element α is repre-
sented in that integral basis as α = x1 + x2ω2 + ...+ xnωn, x1, x2, ...xn ∈ Z,
then the index of α is just µ (α) = |I (x2, ..., xn)| . Hence, the problem of de-
termining elements of given index µ ∈ N can be reduced to the solving index
form equations

I (x2, ..., xn) = ±µ in x2, ..., xn ∈ Z.

Bicyclic biquadratic fields are quartic fields of the type Q (
√
m,

√
n), where

m,n are distinct square-free rational integers. These fields were considered
several authors. M. N. Gras, and F. Tanoe ([9]) have found necessary and
sufficient conditions for biquadratic fields being monogenic. I. Gaál, A. Pethő
and M. Pohst ([7]) gave an algorithm for determining the minimal index and
all elements with minimal index in the totally real case using the integral basis
described by K. S. Williams ([14]). G. Nyul ([12]) classified all monogene
totally complex biquadratic fields and gave explicitly all generators of power
integral bases in them. In [10, 11] the author has determined the minimal
index and all elements with minimal index for three infinite families of totally
real bicyclic biquadratic fields. Further, I. Gaál and G. Nyul ([8]) provided an
efficient algorithm for determining elements of index divisible by fixed primes
in biquadratic number fields.

In [11] the author proved following theorem.

Theorem 1.1. Let c ≥ 3 be an integer such that c ≡ 1 or 3 (mod 6) and
c, c− 2, c+ 4 are square-free integers. Then

(1.1) Lc = Q
(

√

c (c− 2),
√

c (c+ 4)
)

is a totally real bicyclic biquadratic field and

i) its field index is m (Lc) = 1 for all c;
ii) the minimal index of Lc is µ (Lc) = 12 if c ≥ 7 and µ (Lc) = 1 if

c = 3;
iii) all integral elements with minimal index are given by

(1.2)
x1+x2

√

(c− 2) (c+ 4)+x3

√

(c− 2) (c+ 4) +
√

(c− 2) c

2

+ x4
1 +

√

c (c+ 4)

2
,

x1 ∈ Z and (x2, x3, x4) = ± (0, 1, 1), ± (0, 1,−1), ± (1,−1,−1) ,
± (1,−1, 1) if c ≥ 7 while (x2, x3, x4) = ± (−1, 1, 0) , ± (0, 1, 0) if c = 3.
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Since the minimal index of the field (1.1) is of the form 2a3b, we wonder
if there exist primitive integral elements α with the index µ (α) of this form
except those with the minimal index. It suffices to observe elements α of the
form (1.2) with gcd (x2, x3, x4) = 1 since the index form I (x2, x3, x4) is a
homogeneous polynomial of degree 6. For a (partial) answer on this question
we need some additional conditions: an upper bound for the index µ (α) or
an upper bound for the parameter c.

The main results of the present paper are given in the following theorems:

Theorem 1.2. Let c ≥ 3 be an integer such that c ≡ 1 or 3 (mod 6) and
c, c− 2, c+ 4 are square-free integers. If α is a primitive integral element of
the field (1.1) given by (1.2), where x1, x2, x3, x4 ∈ Z with gcd (x2, x3, x4) = 1
and index of α is of the form µ (α) = 2a3b, where a ≥ 0, b ≥ 0 are integers,
then the following holds:

i) If c ≥ 11 and µ (α) ≤ c + 1, then µ (α) = 12. Furthermore, if c < 11
and µ (α) ≤ 12, then µ (α) = 12 if c 6= 3 and µ (α) = 1 or µ (α) = 12
if c = 3.

ii) All elements α with µ (α) = 12 are given by x1 ∈ Z, ± (x2, x3, x4) =
(0, 1, 1) , (0, 1,−1) , (1,−1,−1) , (1,−1, 1) except when c = 3, in which
case we have further solutions x1 ∈ Z, ± (x2, x3, x4) = (5,−29, 11) ,
(5,−29,−11) , (24, 29,−11) , (24,−29,−11) . If c = 3, then all elements
α with µ (α) = 1 are given by

x1 ∈ Z,± (x2, x3, x4) = (−1, 1, 0) , (0, 1, 0) .

Theorem 1.3. For every integer C0 ≥ 3 we can find effectively com-
putable constants M0 (C0) and N0 (C0) such that if c ≤ C0, then there
are no primitive integral elements α of the field (1.1) given by (1.2) with
gcd (x2, x3, x4) = 1 and with index of the form µ (α) = 2a3b where a >
M0 (C0) or b > N0 (C0) .

Directly from Theorem 1.2 and Theorem 1.3 we obtain:

Corollary 1.4. For a given parameter c, let α := α (c) denote a cor-
responding primitive integral element of the field (1.1) given by (1.2) with
gcd (x2, x3, x4) = 1. Then the following holds:

i) Let a ≥ 0 and b ≥ 0 be arbitrary but fixed integers such that 2a3b >
12. If there exist a parameter c and an element α (c) with an index
µ (α (c)) = 2a3b, then

c ≤ 2a3b − 2.

ii) Let c > 3 be arbitrary but fixed integer. If there exist an element α (c)
with index of the form µ (α (c)) = 2a3b, then either µ (α (c)) = 12 or we
can find effectively computable constants M0 (c) and N0 (c) such that

c+ 2 ≤ µ (α (c)) ≤ 2M0(c)3N0(c).
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Remark 1.5. For the particular value of c there is an efficient algorithm
for determining all elements with an index of the form 2a3b (see Section 4)
based on a more general algorithm given by I. Gaál and G. Nyul ([8]).

2. Preliminaries

Note that the field (1.1) is totally real bicyclic biquadratic field under the
assumption c, c − 2, c + 4 are positive square-free, pairwise relatively prime
integers. Since we use a method of I. Gaál, A. Pethő and M. Pohst [7], we
have to observe the congruence behavior of c, c − 2, c+ 4 modulo 4. Hence,
if c, c − 2, c + 4 are positive square-free integers, then c ≥ 3 and c ≡ 1 or
3 (mod 4) . Note that c, c − 2, c + 4 are pairwise relatively prime integers
if and only if c ≡ 1 or 3(mod 6). Therefore, we observe cases when c ≥ 3,
c ≡ 1, 3, 7, 9 (mod 12) and c, c−2, c+4 are square-free integers. Furthermore,
in [11, Section 4] it was shown, by using the result from [5], that there are
infinitely many integers c with the above properties which again implies that
there are infinitely many totally real bicyclic biquadratic fields of the form
(1.1). Also, in [11, Section 4], by using a method of I. Gaál, A. Pethő and M.
Pohst [7], we showed that finding all elements with given index µ is equivalent
to finding all solvable systems of the form

(c− 2)U2 − cV 2 = ±F1,(2.1)

(c− 2)Z2 − (c+ 4)V 2 = ±F2,(2.2)

cZ2 − (c+ 4)U2 = ±4F3,(2.3)

where F1F2F3 = µ. Then all integral elements α with index equal to µ are
given by (1.2) where

(2.4) U = 2x2 + x3, V = x4, Z = x3,

and (U, V, Z) is passing through all solutions of all solvable systems of the form
(2.1), (2.2) and (2.3) with F1F2F3 = µ. Furthermore, since the equations (2.1),
(2.2) and (2.3) are not independent, the relation

(2.5) c (±F2)− (c+ 4) (±F1) = (c− 2) (±4F3)

holds. Therefore, if we want to find all integral elements α of the form (1.2)
with gcd (x2, x3, x4) = 1 and with index µ (α) = 2a3b, then we have to find
all solvable systems of the form (2.1), (2.2) and (2.3) with F1F2F3 = 2a3b

and all solutions (U, V, Z) of these systems which are a form of (2.4), where
gcd (x2, x3, x4) = 1.

We note here that we have two different approaches to this problem,
depending on whether we have given an upper bound for the index µ (α) (as
in Theorem 1.2), or an upper bound for the parameter c (as in Theorem 1.3).
If we have an upper bound for the index µ (α) , then we first consider the
system (2.1) and (2.3). Namely, we use the theory of continued fractions to
determine all possible small values of the right hand side of (2.1) and (2.3)
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so that the system of these two equations has solutions. After that, from
equation (2.5) by direct testing, we find all possible triples (±F1,±F2,±F3)
such that F1F2F3 is of the form 2a3b. If we have an upper bound on the
parameter c, then we first consider the equation (2.5). Since, in our case Fi,
i = 1, 2, 3 are of the form Fi = 2αi3βi , we obtain a S-unit equation over Z.
Because we have an upper bound C0 on the parameter c, we are able to find
upper bounds for the exponents a and b using p−adic estimates and those
upper bounds depend only on C0. Since our estimates providing large upper
bounds for the exponents, we can diminish the upper bounds using reduction
procedure. Unfortunately, reduction procedure can be used only for particular
values of the parameter c, so reduced upper bounds can not be expressed as
a function of C0.

3. Additional condition: upper bound for the index

We recall that if we want to find all primitive integral elements α of the
field (1.1) with index µ (α) = 2a3b, we have to find all solvable systems of the
form (2.1), (2.2) and (2.3), where F1F2F3 = 2a3b.

Suppose that (U, V, Z) is an integer solution of the system (2.1), (2.2) and
(2.3), where c ≥ 3, c ≡ 1, 3, 7, 9 (mod 12) and c, c − 2, c + 4 are square-free
integers. If one of the integers U, V, Z is equal to zero, then (2.1), (2.2) and
(2.3) imply that other two integers are not equal to zero. Further, if U = 0,
then equation (2.1) implies that c divides F1 which again implies c = 3 since F1

is of the form 2α3β and c ≥ 3 is an odd square-free positive integer. Similarly,
we find if V = 0, then equation (2.2) implies c = 3. Furthermore, we obtain
that there is no c which satisfies the equation (2.2) if Z = 0. Therefore, if c > 3,
then it is sufficient to observe only solutions (U, V, Z) in positive integers.

Let c ≥ 3 and let µ (α) ≤ K, where K is a positive integer. Further, let
(U, V, Z) be a solution in positive integers of the system of Pellian equations
(2.1) and (2.3). Since µ (α) = F1F2F3 ≤ K, then F1 ≤ K and F3 ≤ K. Now,
from (2.1) and (2.3), we obtain

∣

∣

∣

∣

∣

√

c

c− 2
− U

V

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c

c− 2
− U2

V 2

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

√

c

c− 2
+

U

V

∣

∣

∣

∣

∣

−1

<
F1

(c− 2)V 2
·
√

c− 2

c
≤ K

√

c (c− 2)V 2

and
∣

∣

∣

∣

∣

√

c+ 4

c
− Z

U

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c+ 4

c
− Z2

U2

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

√

c+ 4

c
+

Z

U

∣

∣

∣

∣

∣

−1

<
4F3

cU2
·
√

c

c+ 4
≤ 4K

√

c (c+ 4)U2
.
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Note that for c > 3 is enough to assume K ≥ 12, since in that case, by
Theorem 1.1, minimal index is equal to 12.

3.1. Case c > 3. Let c > 3. Additionally, suppose 12 ≤ K ≤
c + 1. Note, that this condition implies c ≥ 11, and since we have c ≡
1, 3, 7, 9 (mod 12) , then c ≥ 13. Under these conditions, from (3.1) and (3.1),
we obtain that all solutions (U, V, Z) in positive integers of the system of
Pellian equations (2.1) and (2.3), satisfying

(3.1)

∣

∣

∣

∣

√

c

c− 2
− U

V

∣

∣

∣

∣

<
K

√

c (c− 2)V 2
≤ c+ 1

√

c (c− 2)V 2
<

2

V 2

and

(3.2)

∣

∣

∣

∣

∣

√

c+ 4

c
− Z

U

∣

∣

∣

∣

∣

<
4K

√

c (c+ 4)U2
≤ 4 (c+ 1)

√

c (c+ 4)U2
<

4

U2
.

Similarly as in [11, Section 4.1], we will use theory of continued fractions to
determine all possible values of ±F1 and ±4F3 such that equations (2.1) and
(2.3) have solutions in relatively prime integers. Precisely, since the inequali-
ties (3.1) and (3.2) are satisfied, we can apply Theorem (Worley, Dujella) given
in [3, Theorem 1] and [4, Lemma 1] (see also [11, Theorem 3 and Lemma 1]).

We find that under above conditions, i.e. if F1 ≤ c+1, where c ≥ 13 and
if equation (2.1) has solutions in relatively prime integers U and V , then

±F1 ∈ S1 (c) = {−2,−c, c− 2} .
Since F1 is of the form F1 = 2α3β, where α ≥ 0, β ≥ 0 are integers and since
c ≡ 1, 3, 7, 9 (mod 12), then the only possibility is ±F1 = −2.

Similarly, if F3 ≤ c+ 1, where c ≥ 13 and equation (2.3) has solutions in
relatively prime integers U and Z, then

±4F 3∈ S3 (c)= {−4,−1, 4c, 4c− 9,−2c− 9, 2c− 1,−c− 4, 3c− 4,−3c− 16} ,
if c > 19. Additionally, we have

±4F3 ∈ S3 (c) ∪ S′
3 (c) if c = 19,

±4F3 ∈ S3 (c) ∪ S′
3 (c) ∪ S′′

3 (c) if c = 15,

±4F3 ∈ S3 (c) ∪ S′
3 (c) ∪ S′′

3 (c) ∪ S′′′
3 (c) if c = 13,

where

S′
3 (c) = {16c− 225, 5c− 16} ,

S′′
3 (c) = {12c− 121, 14c− 169, 15c− 196, 13c− 144} ,

S′′′
3 (c) = {6c− 25, 8c− 49, 10c− 81, 7c− 36, 9c− 64, 11c− 100} .

Since F3 is of the form F3 = 2γ3δ, where γ ≥ 0, δ ≥ 0 are integers and since
c ≡ 1, 3, 7, 9 (mod 12) , then the only possibility is ±4F3 = −4 for all c ≥ 13.
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Now, suppose that (U, V, Z) is a solution of the system of Pellian equations
(2.1) and (2.3) in positive integers. Let gcd (U, V ) = d and gcd (U,Z) = g. If
F1 = 2α3β ≤ c + 1 and F3 = 2γ3δ ≤ c + 1, where c ≥ 13, then ±F1 = −2d2

and ±4F3 = −4g2 which implies

d ≤
√

c+ 1

2
<

c

2
and g ≤

√
c+ 1 <

c

2
.

Let U = dU1 = gU2, V = dV1 and Z = gZ2. Then gcd (U1, V1) =
1, gcd (U2, Z2) = 1 and following equations are hold

(c− 2)U2
1 − cV 2

1 = −2

cZ2
2 − (c+ 4)U2

2 = −4.

By [11, Lemma 3], all such U1 are given recurrently in the following way

(3.3) u0 = 1, u1 = 2c− 1, um+2 = (2c− 2)um+1 − um, m ≥ 0,

and all such U2 are given recurrently by

(3.4) v0 = 1, v1 = c+ 1, vn+2 = (c+ 2) vn+1 − vn, n ≥ 0.

Since U = dU1 = gU2, then there exist nonnegative integersm and n such that
U = dum = gvn, where um and vn are defined by (3.3) and (3.4), respectively.
By [11, Lemma 4], for all m,n ≥ 0, we have

um ≡ (−1)m−1 (m(m+ 1)c− 1) (mod 4c2), vn ≡ n(n+ 1)

2
c+ 1(mod c2).

Therefore, if dum = gvn, then dum ≡ gvn(mod c2) which implies (−1)md ≡
g(mod c). Since 0 < d < c

2 and 0 < g < c
2 , we have d = g, i.e. U1 = U2. Thus,

we obtain a system of simultaneous Pellian equations

(c− 2)U2
1 − cV 2

1 = −2,

cZ2
2 − (c+ 4)U2

1 = −4.

In [11, Theorem 4] we find that for c ≥ 7 only solutions to this system are
(U1, V1, Z2) = (±1,±1,±1). Therefore, all solutions to the corresponding
system of Pellian equations (2.1) and (2.3) (with ±F1 = −2d2, ±4F3 = −4d2

and d ≤
√

c+1
2 ) are of the form (U, V, Z) = (±d,±d,±d) . If gcd (x2, x3, x4) =

1, then (2.4) implies gcd (U, V, Z) = 1 or 2. Therefore, we have d = 1 or 2.

i) If d = 1, then ±F1 = −2, ±4F3 = −4, and from (2.5) we obtain
±F2 = −6, which implies µ (α) = F1F2F3 = 2 · 6 · 1 = 12. Therefore, α
has the minimal index, i.e. µ (α) = µ (Lc) = 12.

ii) If d = 2, then from (2.4), we obtain

x4 = ±2, 2x2 + x3 = ±2, x3 = ±2,

which implies± (x2, x3, x4)=(0, 2, 2) , (0, 2,−2) , (2,−2,−2) , (2,−2, 2),
a contradiction with gcd (x2, x3, x4) = 1.
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When 3 < c < 11 (which implies c = 7), we take K = 12. Since, in this
case, the minimal index of the field Lc is equal to 12, then µ (α) ≤ 12 implies
µ (α) = µ (Lc) = 12.

For each c > 3, by Theorem 1.1, all elements α with minimal index µ (α) =
µ (Lc) = 12 are given by ± (x2, x3, x4) = (0, 1, 1) , (0, 1,−1) , (1,−1,−1) ,
(1,−1, 1) .

To complete the proof of Theorem 1.2 it remains to consider the case
c = 3 and K = 12.

3.2. Case c = 3 and K = 12. Let c = 3 and µ (α) = F1F2F3 ≤ K = 12.
Let (U, V, Z) be a solution in positive integers of the system (2.1) and (2.3)
with c = 3. Since µ (α) = F1F2F3 ≤ 12, then F1 ≤ 12 and F3 ≤ 12. Hence,
from (3.1) and (3.1), we obtain

(3.5)

∣

∣

∣

∣

∣

√
3− U

V

∣

∣

∣

∣

∣

<
F1√
3V 2

≤ 12√
3V 2

<
7

V 2

and

(3.6)

∣

∣

∣

∣

∣

√

7

3
− Z

U

∣

∣

∣

∣

∣

<
4F3

3U2
·
√

3

7
≤ 4 · 12√

21U2
<

11

U2
,

respectively. If gcd (U, V ) = 1 and F1 ≤ 12, then from (3.5) by [3, Theorem
1] and [4, Lemma 1], we obtain

±F1 ∈ S′
1 = {1,−2,−3, 6,−11} .

Knowing that, in our case, F1 is of the form F1 = 2α3β, then the only possi-
bilities are ±F1 = 1,−2,−3, 6. Similarly, if gcd (U,Z) = 1 and F3 ≤ 12 then
from (3.6) , we obtain

±4F3 ∈ S3 = {−1, 3,−4, 5,−7, 12,−15, 17, 20, 21,−25,

−28, 35,−37, 41,−43, 47} .

Since we have F3 = 2γ3δ ≤ 12, then the only possibilities are ±4F3 = −4, 12,
i.e. ±F3 = −1, 3.

Additionally, for c = 3, equation (2.5) has form

(3.7) 3 (±F2)− 7 (±F1) = ±4F3,

and since F1F2F3 ≤ 12, we obtain that there are only two possibilities:

i) (±F1,±F2,±F3) = (1, 1,−1) which implies µ (α) = 1. Therefore,
µ (α) is equal to minimal index µ (L3) = 1. Now, by Theorem 1.1,
all such α are given by ± (x2, x3, x4) = (−1, 1, 0) , (0, 1, 0) .
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ii) (±F1,±F2,±F3) = (−2,−6,−1) which implies µ (α) = 12. The corre-
sponding system is

U2 − 3V 2 = −2(3.8)

3Z2 − 7U2 = −4.(3.9)

Similarly as in [11, Section 4.2], we find that the only solutions to
the system (3.8) and (3.9) are (U, V, Z) = (±1,±1,±1) and (U, V, Z) =
(±19,±11, ±29). Since integers U, V, Z are of the form given in (2.4), where
gcd (x2, x3, x4) = 1, all α with index µ (α) = 12 are given by ± (x2, x3, x4) =
(0, 1, 1), (0, 1,−1), (1,−1,−1), (1,−1, 1), (5,−29, 11), (5,−29,−11),
(24, 29,−11), (24, −29,−11).

Note that the above results we obtain by assuming (U, V, Z) is a solution
in positive integers to the system (2.1), (2.2) and (2.3) with c = 3. It remains
to observe the cases when (U, V, Z) is solution in nonnegative integers with
U = 0 or V = 0.

If c = 3 and V = 0, then (2.1) and (2.2) imply U2 = ±F1, Z2 = ±F2,
where U 6= 0 and Z 6= 0. Therefore, we have F1F2 = U2Z2 ≤ 12, which implies
(U, V, Z) = (1, 0, 1) , (1, 0, 2) , (1, 0, 3) , (2, 0, 1) , (3, 0, 1) . Since ±F1 = U2,
±F2 = Z2 and F1F2F3 = 2a3b ≤ 12, from equation (3.7), we obtain that
the only possibility is (±F1,±F2,±F3) = (1, 1,−1) and this triple we have
already obtained.

If U = 0, then (2.1) and (2.3) imply −3V 2 = ±F1, 3Z2 = ±4F3, where
V 6= 0 and Z 6= 0. Therefore, we have F1F3 = 9

4V
2Z2 ≤ 12 and Z is an

even integer. This implies (U, V, Z) = (0, 1, 2) . Since ±F1 = −3V 2 = −3,
±4F3 = 3Z2 = 12, from equation (3.7), we find ±F2 = −3. Therefore, we
obtain a triple (±F1,±F2,±F3) = (−3,−3, 3) which does not satisfy the
condition F1F2F3 ≤ 12. Therefore, we finished the proof of Theorem 1.2.

4. Additional condition: upper bound for the parameter c

In this section we show that if have an upper bound on the parameter c,
then we can find an upper bound for the index. We will follow the method
of I. Gaal and G. Nyul given in [8]. We briefly sketch the main steps of our
procedure. We start with equation (2.5). Since, in our case, unknowns Fi in
(2.5), are of the form Fi = 2αi3βi, i = 1, 2, 3, we obtain a S-unit equation over
Z. In order to find all elements α with index µ (α) = F1F2F3 = 2a3b, we have
to find all primitive solution of equation (2.5) and all possibilities for common
factor 2A3B of F1, F2, F3 (see Section 4.1). To find all possibilities for the
exponents in the common factor 2A3B, we need to determine how rational
primes 2 and 3 split in three distinct quadratic subfields of the quartic field
Lc. We show that the exponents A and B attain only very small values (see
Section 4.2). If have an upper bound C0 on the parameter c, then we are
able to find an upper bound for the exponents in primitive solutions using
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p−adic linear form estimates and that upper bound depends only on C0 (see
Section 4.3). Since our estimates giving large upper bounds for the exponents,
we can diminish those upper bounds using reduction procedure (see Section
4.4). Unfortunately, reduced upper bounds can not be expressed as a function
of C0 since reduction procedure can be used only for particular value of the
parameter c.

4.1. S-unit equation. Let α be a primitive integral element of the form
(1.2) with gcd (x2, x3, x4) = 1 and let index of α be µ (α) = 2a3b where
a ≥ 0 and b ≥ 0 are arbitrary but fixed integers. We have shown that µ (α)
is of the form µ (α) = F1F2F3, where F1, F2, F3 satisfy relation (2.5). Since
µ (α) = 2a3b implies

Fi = 2αi3βi, 0 ≤ αi ≤ a, 0 ≤ βi ≤ b, i = 1, 2, 3,

then (F1, F2, F3) is solution of the S-unit equation (2.5) over Z.
We will find all primitive solutions (f1, f2, f3) of (2.5) in positive integers

(those with gcd (f1, f2, f3) = 1). Then all solutions of (2.5) are of the form
Fi = fi · 2A3B, i = 1, 2, 3, where 2A3B = gcd (F1, F2, F3) = P. Set

fi = 2di3ei , i = 1, 2, 3.

Then equation c (±f2) − (c+ 4) (±f1) = (c− 2) (±4f3) can be rewritten in
the form

(4.1) ∓ (c+ 4) 2d13e1 ± c2d23e2 = ± (c− 2) 2d3+23e3 .

Note that, since c ≥ 3, c ≡ 1, 3, 7, 9 (mod 12) and c, c − 2, c + 4 are square-
free integers, we have ord2 (c+ 4) = ord2 (c) = ord2 (c− 2) = ord3 (c+ 4) =
ord3 (c− 2) = 0 and ord3 (c) = k where c = 3kc1, 3

k ‖c and k = 0 or 1. Now,
if the equation (4.1) we simplify with possible common factors 2 and 3, we
obtain equation

(4.2) ∓ (c+ 4) 2d
′

13e
′

1 ± c12
d′

23e
′

2 = ± (c− 2) 2d
′

33e
′

3 ,

where at most one of the d′1, d
′
2, d

′
3 and at most one of the e′1, e

′
2, e

′
2 is positive.

After determined d′1, d
′
2, d

′
3, e

′
1, e

′
2, e

′
3, values of fi = 2di3ei , i = 1, 2, 3, we can

obtain using the following:

• If (d′1, d
′
2, d

′
3) = (d′1, 0, 0), then (d1, d2, d3) = (d′1 + 2, 2, 0) ;

• If (d′1, d
′
2, d

′
3) = (0, d′2, 0), then (d1, d2, d3) = (2, d′2 + 2, 0) ;

• If (d′1, d
′
2, d

′
3) = (0, 0, 1), then (d1, d2, d3) = (1, 1, 0) ;

• If (d′1, d
′
2, d

′
3) = (0, 0, d′3) , d

′
3 ≥ 2, then (d1, d2, d3) = (0, 0, d′3 − 2) ;

• If c ≡ 1, 7 (mod 12), then (e1, e2, e3) = (e′1, e
′
2, e

′
3) ;

• If c ≡ 3, 9 (mod 12) and
– (e′1, e

′
2, e

′
3) = (e′1, 0, 0) , then (e1, e2, e3) = (e′1 + 1, 0, 1) ;

– (e′1, e
′
2, e

′
3) = (0, 0, e′3), then (e1, e2, e3) = (1, 0, e′3 + 1) ;

– (e′1, e
′
2, e

′
3) = (0, e′2, 0) , e

′
2 ≥ 1, then (0, e2, 0) = (0, e′2 − 1, 0) .
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It is easy to see that exponents in (4.2) cannot all be equal to zero.
Furthermore, if c > 3, than we have: if there exist i such that d′i 6= 0, then
there exist j such that e′j 6= 0, and vice versa. Also, i 6= j must hold. If c = 3,

then we have the following exceptions: (d′1, d
′
2, d

′
3, e

′
1, e

′
2, e

′
3) = (0, 0, 3, 0, 0, 0) ,

(0, 3, 0, 0, 0, 0) , (0, 0, 1, 0, 0, 1) , (0, 1, 0, 0, 1, 0) . Therefore, from now on, we will
assume that exactly one d′i is positive and exactly one e′j is positive, where
i 6= j.

4.2. gcd (F1, F2, F3) calculations. In order to find an upper bound for the
exponents in P = gcd (F1, F2, F3) = 2A3B we will follow the method of I.
Gaal and G. Nyul ([8, Section 6]). First, we need to determine how rational
primes 2 and 3 splits in three distinct quadratic subfields of the quartic field
Lc = Q (

√
m,

√
n) , namely in the fields M1 = Q (

√
n) , M2 = Q (

√
m), M3 =

Q
(√

m1n1

)

, where m1 = c + 4, n1 = c, m = (c+ 4) (c− 2) , n = c (c− 2) .
Using for example [1, p.245], we find the factorization of the principal ideals
〈2〉 and 〈3〉 into prime ideals of rings of integers OMi

, i = 1, 2, 3 as follows: In
the ring OM1 , we have

〈2〉 =
〈

2, 1 +
√
n
〉2

= P2
1

〈3〉 =
〈

3,
√
n
〉2

= P2
2 , if c ≡ 3, 9 (mod 12)

〈3〉 = P3, if c ≡ 1, 7 (mod 12) .

In the ring OM2 , we obtain

〈2〉 =
〈

2, 1 +
√
m
〉2

= P2
4 ,

〈3〉 =
〈

3, a+
√
m
〉 〈

3, a−
√
m
〉

= P5P̄5, where a2 ≡ m(mod 3),

since x2 ≡ m(mod 3) is solvable. In the ring OM3 , we have

〈2〉 = P6,

〈3〉 = 〈3,√m1n1〉2 = P2
7 , if c ≡ 3, 9 (mod 12) ,

〈3〉 = P8, if c ≡ 1, 7 (mod 12) .

Using primitive solutions fi, i = 1, 2, 3 of (2.5) we can rewrite system (2.1),
(2.2) and (2.3) as

(cV )
2 − nU2 = ±s1P(4.3)

((c+ 4)V )
2 −mZ2 = ±s2P(4.4)

(cZ)
2 −m1n1U

2 = ±s3P(4.5)

with s1 = cf1, s2 = (c+ 4) f2, s3 = 4cf3 and P = 2A3B. Let (U, V, Z)
arbitrary but fixed solution of system (4.3), (4.4) and (4.5). Then, following
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[8, Section 6], we set

i αi βi ϕ1i ϕ2i D1i D2i

1 c
√
n cV−√

nU cV+
√
nU 0 3

2 c+ 4
√
m (c+ 4)V−√

mZ (c+ 4)V+
√
mZ 1 3

3 c
√
m1n1 cZ−√

m1n1U cZ+
√
m1n1U 0 2

and by [8, Lemma 3] we obtain the following:

• Ideal 〈2〉 = P6 is prime in the ring of integers OM3 of the field
M3. Since c ≡ c + 4 ≡ 1 (mod 2), we have ordP6 (2c) = 1 and

ordP6

(

2
√

c (c+ 4)
)

= 1, and by [8, Lemma 3, (ii)], we obtain

A ≤ 2max
{

ordP6 (2c) , ordP6

(

2
√

c (c+ 4)
)}

+D23 = 2 ·max {1, 1}+ 2 = 4;

• Let c ≡ 1, 7 (mod 12) . In this case ideal 〈3〉 = P3 is prime in the ring
of integers OM1 of the field M1. Since c ≡ 1 (mod 3) and c (c− 2) ≡
2 (mod 3) we obtain ordP3 (2c) = 0 and ordP3

(

2
√

c (c− 2)
)

= 0, and

by [8, Lemma 3, (i)], we have

B ≤ 2max
{

ordP3 (2c) , ordP3

(

2
√

c (c− 2)
)}

+D11 = 0, i.e. B = 0;

• Let c ≡ 3, 9 (mod 12) . In this case we have 〈3〉 =
〈

3,
√

c (c− 2)
〉2

= P2
2

in the ring of integers OM1 of the field M1. Since we have 3 ‖c and

3 ∤ (c− 2), then ordP2 (2c) = 2 and ordP2

(

2
√

c (c− 2)
)

= 1, and by

[8, Lemma 3, (iii)], we obtain

B ≤ max
{

ordP2 (2c) , ordP2

(

2
√

c (c− 2)
)}

+D11 = max {2, 1}+ 0 = 2.

Hence, we obtain:

• If c ≡ 1, 7 (mod 12) , than gcd (F1, F2, F3) = 2A, where 0 ≤ A ≤ 4;
• If c ≡ 3, 9 (mod 12) , than gcd (F1, F2, F3) = 2A3B, where 0 ≤ A ≤
4 and 0 ≤ B ≤ 2.

4.3. Upper bound for the exponents. Let us denote θ1 = c+ 4, θ2 = c− 2
and θ3 = c1, where c1 = c if c ≡ 1, 7 (mod 12) and c1 = c/3 if c ≡ 3, 9
(mod 12) . Then ord2 (θl) = ord3 (θl) = 0 for all l = 1, 2, 3. We assumed
that in (4.2) exactly one d′i is positive, exactly one e′j is positive and i 6= j.

Therefore, let d′i 6= 0 and e′j 6= 0, where i 6= j. Then, from (4.2), for distinct
integers i, j, k ∈ {1, 2, 3} , we obtain

1 ≤ d′i = ord2

(

±θj3
e′j ∓ θk3

e′k

)

= ord2

(

3e
′

j −
(

±θk
θj

))

1 ≤ e′j = ord3

(

±θi2
d′

i ∓ θk2
d′

k

)

= ord3

(

2d
′

i −
(

±θk
θi

))
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In all above cases we have expressions of the form

(4.6) ordp

(

αb1
1 − α2

)

,

where b1 is positive integer and α1, α2 ∈ Q. We will apply estimates of Y.
Bugeaud and M. Laurent [2, Corollaire 2] on (4.6).

Let us denote by h (α) the absolute logarithmic height of the algebraic
number α, given by h (0) = 0 and by

h (α) =
1

d
log

(

|a|
d
∏

l=1

max {1, |αl|}
)

if a (x− α1) ... (x− αd) is the minimal polynomial of α 6= 0 over Z. We have
h (2) = log 2, h (3) = log 3, and

h

(

±θk
θt

)

=
1

1
log

(

θt ·
1
∏

l=1

max

{

1,

∣

∣

∣

∣

±θk
θt

∣

∣

∣

∣

})

= log (max {θt, θk}) ,

where t = i or j. Therefore, if θk = θ1 or θt = θ1, then

h

(

±θk
θt

)

= log (c+ 4) .

If θk
θt

= c−2
c1

or c1
c−2 , then

h

(

±θk
θt

)

=

{

log (c− 2) , if c ≡ 3, 9 (mod 12) ,
log c1 = log c, if c ≡ 1, 7 (mod 12) .

Using the notations from [2], we have K = Q
(

± θk
θt
, 2
)

= Q
(

± θk
θt
, 3
)

= Q,

f = 1 and D = [K:Q]
f = 1. Let A1 > 1 and A2 > 1 be real numbers such that

max

{

h (αi) ,
log p

D

}

≤ logAi, i = 1, 2.

In our case we have

max

{

h (α1) ,
log p

D

}

= log 3,

max

{

h (α2) ,
log p

D

}

= max {logmax {θk, θt} , log p} ≤ log (c+ 4) ,

so we can take logA1 = log 3 and logA2 = log (c+ 4) . Now, we have

b′ =
b1

D logA2
+

b2
D logA1

=
b1

log (c+ 4)
+

1

log 3
.
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where b1 = d′i if p = 3 and b1 = e′j if p = 2. Hence, if c ≥ 3, then [2, Corollaire

2] implies

d′i ≤
48 log 3

(log 2)
4

(

max

{

log

(

e′j
log (c+ 4)

+
1

log 3

)

+ L(2), 10

})2

log (c+ 4)

≤ 48 log 3

(log 2)
4

(

max

{

log

(

e′j
log 7

+
1

log 3

)

+ L(2), 10

})2

log (c+ 4)

(4.7)

and

e′j ≤
36 log (c+ 4)

(log 3)
3

(

max

{

log

(

d′i
log (c+ 4)

+
1

log 3

)

+ L(3), 10 log 3

})2

≤ 36 log (c+ 4)

(log 3)
3

(

max

{

log

(

d′i
log 7

+
1

log 3

)

+ L(3), 10 log 3

})2

,(4.8)

where L(p) = log log p+ 0.4 for p = 2, 3.
Let 3 ≤ c ≤ C0 and T (c) = max {d′1, d′2, d′3, e′1, e′2, e′3} = max

{

d′i, e
′
j

}

. If
T (c) = d′i, then from (4.7) we have
(4.9)

e′j ≤ d′i ≤
{

22845 log (C0 + 4) , if e′j ≤ 41448

228. 447
(

log
(

e′j
log 7 + 1

log 3

)

+ L(2)
)2

log (C0 + 4) , if e′j ≥ 41449.

If T (c) = e′j , then from (4.8) we obtain
(4.10)

d′i ≤ e′j ≤
{

3276.87 log (C0 + 4) , if d′i ≤ 70107

27.16
(

log
(

d′

i

log 7 + 1
log 3

)

+ L(3)
)2

log (C0 + 4) , if d′i ≥ 70108.

Therefore, if 3 ≤ c ≤ C0, then T (c) ≤ T0 (C0) , where T0 (C0) we can obtain
from inequalities (4.9) and (4.10). Note, for calculating T0 (C0) it is enough
to consider inequality

(4.11) x ≤ 228. 447 ·
(

log

(

x

log 7
+

1

log 3

)

+ L(2)

)2

· log (C0 + 4) .

Indeed, if inequality (4.11) implies x ≤ K0, then T (c) ≤ K0, so we take
T0 (C0) = K0. For example, if c ≤ C0 = 100, then from inequality (4.11) we
obtain T (c) ≤ T0 (100) = 132125. Similarly, we find T0

(

1010
)

= 899597 and
T0 (3) = 45234.

Since estimates of Y. Bugeaud and M. Laurent [2, Corollaire 2] give a large
upper bound for the exponents in (4.2), we can diminish that upper bound
using [6, Lemma 4.1]. Note that (4.6) is easy to convert into expressions with
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p−adic logarithms. Namely, by [13, Lemma II.9], we have d′i = 1 or

(4.12)

2 ≤ d′i = ord2

(

3e
′

j −
(

±θk
θj

))

= ord2

((

± θj
θk

)

· 3e′j − 1

)

= ord2

(

log2

(

± θj
θk

)

+ e′j log2 3

)

and

(4.13)

1 ≤ e′j = ord2

(

2d
′

i −
(

±θk
θi

))

= ord2

((

± θi
θk

)

· 2d′

i − 1

)

= ord3

(

log3

(

± θi
θk

)

+ d′i log3 2

)

since
(

± θi
θk

)

· 3e′j is 2−adic unit in Ω2 and
(

± θj
θk

)

· 2d′

i is 3−adic unit in Ω3

for all distinct integers i, j, k ∈ {1, 2, 3}. By repeating the p−adic reduction
procedure given in [6, Lemma 4.1] for linear forms in p−adic logarithms from
(4.12) and (4.13) as long as the reduced bounds are less than the original one,
for each c, 3 ≤ c ≤ C0, we can obtain

d′i := d′i (c) ≤ M
(i)
R (c) and e′j := e′j (c) ≤ N

(j)
R (c) ,

where M
(i)
R (c) and N

(j)
R (c) are the best possible bounds for d′i and e′j , respec-

tively. Denote

MR (C0) = max
i∈{1,2,3}, c≤C0

M
(i)
R (c) and NR (C0) = max

j∈{1,2,3}, c≤C0

N
(j)
R (c) ,

(where four exceptional cases for c = 3 given in Section 4.1 are also included).
Then

d′i ≤ MR (C0) ≤ T0 (C0) and e′i ≤ NR (C0) ≤ T0 (C0) ,

for all 3 ≤ c ≤ C0 and all i, j ∈ {1, 2, 3} . The results from Section 4.1
now imply that the values of d1, d2, d3, e1, e2, e2 are also bounded which
again implies, together with the results from Section 4.2, that values of the
Fi = 2di+A3ei+B , i = 1, 2, 3 are bounded too. Precisely, we obtain

ord2 (F1F2F3) =

3
∑

i=1

di+3A ≤ (MR (C0) + 4)+3·4 = MR (C0)+16 = M0 (C0) ,

and

ord3 (F1F2F3) =

3
∑

j=1

ej + 3B

≤
{

NR (C0) = N0 (C0) , if c ≡ 1, 7 (mod 12) ,
(NR (C0) + 2) + 3 · 2 = NR (C0) + 8 = N0 (C0) , if c ≡ 3, 9 (mod 12) .

Note that reduction procedure can be used only for particular values of the
parameter c, so, unfortunately, reduced upper bounds MR (C0) and NR (C0)
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are not effectively computable constants if C0 is too large. Therefore, if we
put effectively computable constant T0 (C0) instead MR (C0) and NR (C0) in
above formulas for M0 (C0) and N0 (C0), we have proved Theorem 1.2.

4.4. The reduction procedure. Let 3 ≤ c ≤ C0. Suppose

T (c) = max {d′1, d′2, d′3, e′1, e′2, e′3} = max
{

d′i, e
′
j

}

≤ T0 (C0) .

where d′i 6= 0, e′j 6= 0 and i 6= j. We consider linear forms

(4.14) Λ2 = log2

(

± θj
θk

)

+ e′j log2 3 and Λ3 = log3

(

± θi
θk

)

+ d′i log3 2,

where i, j, k are distinct integers from the set {1, 2, 3} and θ1 = c+4, θ2 = c−2,
θ3 = c1. We can diminish the upper bound T0 (C0) applying [6, Lemma 4.1]
on linear forms in (4.14). Using the notations from [6, Lemma 4.1] we have
n = 2, p = 2 or 3,

X = max {|x1| , |x2|} = max
{

1, e′j
}

= e′j ≤ T (c) ≤ T0 (C0) = X0 if p = 2,

X = max {|x1| , |x2|} = max
{

1, d′j
}

= d′i ≤ T (c) ≤ T0 (C0) = X0 if p = 3,

ϑ1 = log2

(

± θj
θk

)

, ϑ2 = log2 3 if p = 2,

ϑ1 = log3

(

± θi
θk

)

, ϑ2 = log3 2 if p = 3.

Then we have

ord2 (Λ2) = d′i ≥ e′j = 0 + 1 · e′j if T (c) = d′i,

ord3 (Λ3) = e′j ≥ d′i = 0 + 1 · d′i if T (c) = e′j.

Therefore, constants c1 and c2 from the [6, Lemma 4.1] are given by (c1, c2) =
(0, 1) . Since

ord2

(

log2

(

± θj
θk

))

≥ ord2 (log2 3) = 2,

ord3

(

log3

(

± θi
θk

))

≥ ord3 (log3 2) = 1,
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for all distinct integers i, j, k from the set {1, 2, 3} (see below), then, following
[6, Lemma 4.1], we define

Λ′
2 =

Λ2

log2 3
= −



−
log2

(

± θj
θk

)

log2 3



 + e′j = − (ϑj,k) + e′j , if e
′
j ≥ 1 and p = 2,

(4.15)

Λ′
3 =

Λ3

log3 2
= −



−
log3

(

± θi
θk

)

log3 2



 + d′i = − (ϑi,k) + d′i, if d′i ≥ 2 and p = 3.

(4.16)

For 0 < µp ∈ Z and ϑt,k ∈ Ωp let ϑ
(µp)
t,k be a unique rational integer with

ord2(ϑt,k−ϑ
(µp)
t,k ) ≥ µp and 0 ≤ ϑ

(µp)
t,k ≤ pµp −1, where t = j if p = 2 and t = i

if p = 3. Denote by Γµp
the lattice spanned by the columns of the matrix

[

1 0

ϑ
(µp)
t,k pµp

]

.

Let

N
(j)
0 (c) =

µ2 − 1 + ord2 (log2 3)− 0

1
= µ2 + 1

and

M
(i)
0 (c) =

µ3 − 1 + ord3 (log3 2)− 0

1
= µ3.

Denote by b
(p)
1 the first vector of the LLL−reduced basis of Γµp

. If
∥

∥

∥b
(p)
1

∥

∥

∥ > 2
n−1
2

√
2 · T0 (C0) = 2 · T0 (C0) ,

then, by [6, Lemma 4.1] we have:

- If T (c) = d′i there is no e′j with N
(j)
0 (c) ≤ e′j ≤ T0 (C0) .

- If T (c) = e′j there is no d′i with M
(i)
0 (c) ≤ d′i ≤ T0 (C0) .

Using these new bounds, the reduction can be repeated, as long as the
new bound for e′j or d′i is less than the previous one. Finally, we obtain:

- If T (c) = d′i, then 1 ≤ e′j ≤ N
(j)
R (c) , where N

(j)
R (c) is the best possible

bound for e′j and all possible values for
(

d′i, e
′
j

)

we obtain from equation

2d
′

i = ± θj3
e′
j±θk
θi

, where 1 ≤ e′j ≤ N
(j)
R (c) and d′i ≥ e′j .

- Similarly, if T (c) = e′j , then 1 ≤ d′i ≤ M
(i)
R (c) , where M

(i)
R (c) is the

best possible bound for d′i and all possible values for
(

d′i, e
′
j

)

, we obtain

from equation 3e
′

j = ± θi2
d′
i±θk
θj

, with 1 ≤ d′i ≤ M
(i)
R (c) and e′j ≥ d′i.
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In order to find all possible elements with an index of the form 2a3b

for given c, 3 ≤ c ≤ C0, we have to perform above reduction procedure
for each of six possible couples

(

d′i, e
′
j

)

, where i 6= j. Having determined

all possible sextuples (d′1, d
′
2, d

′
3, e

′
1, e

′
2, e

′
3), we have to find all possible sex-

tuples (d1, d2, d3, e1, e2, e3) (a connection between them is given in Section
4.1) which give us all possible primitive triples (f1, f2, f3), where fi = 2di3ei ,
i = 1, 2, 3. After that, all solutions of equation (2.5) which are of the form
(±f1,±f2,±f3), we obtain using direct testing. Now all required triples
(±F1,±F2,±F3) are of the form ±Fi = ±fi2

A3B, i = 1, 2, 3, where 0 ≤ A ≤ 4
and B = 0 if c ≡ 1, 7 (mod 12) or 0 ≤ B ≤ 2 if c ≡ 3, 9 (mod 12) . For each
explicit value of the triple (±F1,±F2,±F3) we have to solve a corresponding
system (2.1), (2.2) and (2.3). Every solution (U, V, Z) of that system which is
of the form (2.4), where gcd (x2, x3, x4) = 1, determines an integral element
α of the form (1.2) with index µ (α) = F1F2F3. For 3 ≤ c ≤ C0, we can give
solutions in the form (c; µ (α) ; α) =

(

c; 2a3b; x2, x3, x4

)

.

Computing ordp

(

logp

(

± θt
θk

))

and ϑ
(µp)
t,k

From a definition of p−adic logarithm follows that, in our case, it is enough
to find

logp
θt
θk

= logp
c− 2

c+ 4
, logp

c− 2

c1
and logp

c1
c+ 4

for p = 2 and p = 3 since

logp
θk
θt

= − logp
θt
θk

and logp

(

− θt
θk

)

= logp
θt
θk

.

Also, we have

ordp

(

logp
θt
θk

)

= ordp

(

− logp
θt
θk

)

.

Using presentation of the p−adic logarithm as Taylor series, first we find

log2 3 =
1

2
log2

(

1−
(

−23
))

=
∞
∑

n=0
(−1)

n 23n+2

n+ 1
,

log3 2 =
1

2
log3 (1− (−3)) =

∞
∑

n=0
(−1)n

3n+1

2 (n+ 1)
,

which implies ord2 (log2 3) = 2 and ord3 (log3 2) = 1, respectively.
Similarly, we find all logp

θt
θk

for p = 2 and p = 3 from which it follows

that

ord2

(

log2

(

± θt
θk

))

≥ ord2 (log2 3) = 2,

ord3

(

log3

(

± θt
θk

))

≥ ord3 (log3 2) = 1.
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for all θt
θk

= c−2
c+4 ,

c−2
c1

, c1
c+4 . Therefore, since we follow [6, Lemma 4.1], the

p−adic integers ϑj,k and ϑi,k in (4.15) and (4.16) have to be defined as:

ϑj,k = −
log2

(

± θj
θk

)

log2 3
if p = 2

and

ϑi,k = −
log3

(

± θi
θk

)

log3 2
if p = 3.

Additionally, using the presentation of the p−adic logarithm as Taylor
series, each α := ϑt,k we can rewrite in the form

α =

±
∞
∑

n=0
an

∞
∑

n=0
bn

=
α1

α2
,

where ordp (α1) ≥ 0 and ordp (α2) = 0. Then, for every 0 < µ ∈ Z, we can
find sufficiently large integers n1 and n2 such that

α′
1 = ±

n1
∑

n=0
an and α′

2 =
n2
∑

n=0
bn

satisfy

α(µ) ≡ α′
1

α′
2

(mod pµ) ,

where α(µ) is a unique rational integer with ordp(α−α(µ)) ≥ µ and 0 ≤ α(µ) ≤
pµ − 1. We obtain the following

α(µ) ≡
± log2

θt
θn

log2 3
(mod 2µ) ≡

±
n1
∑

n=0
an

n2
∑

n=0
(−1)

n 23n

n+1

(mod 2µ) ,

where n2 =
⌊

µ−1
2

⌋

and

α(µ) ≡
± log3

θt
θn

log3 2
(mod 3µ) ≡

±
n1
∑

n=0
an

n2
∑

n=0
(−1)

n 3n

2(n+1)

(mod 3µ) ,

where n2 = 2µ− 3 if µ ≥ 3, and n2 = 2 if µ = 1, 2. The values of ±∑n1

n=0 an
are given in the following two tables:
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1) Case c ≡ 1, 7 (mod 12) . Note, in this case we have c1 = c.

Case α(µ) ≡ α (mod pµ) n1 = n
(l)
1 α′

1 = ±
n1
∑

n=0
an

1.1
± log2

(

c−2
c1

)

log2 3 (mod 2µ)
⌊

µ−l−1
l+2

⌋

±
n1
∑

n=0

−23k( c−1
2 )

n+1

(n+1)c2k+2

1.2
± log2( c−2

c+4 )
log2 3 (mod2µ)

⌊

µ−l−1
l+2

⌋

±
n1
∑

n=0

23k3n+1( c+1
2 )n+1

(n+1)(c+4)2k+2

1.3
± log2(

c1
c+4 )

log2 3 (mod 2µ) µ− 1 ±
n1
∑

n=0

−22k

(n+1)(c+4)n+1

1.4
± log3

(

c−2
c1

)

log3 2 (mod 3µ)

⌊

µ−l−1
l

⌋

if l > 0

2µ− 3 if l = 0, µ ≥ 3
2 if l = 0 , µ = 1, 2

±
n1
∑

n=0

−22k+13n( c−1
3 )n+1

(n+1)c2k+2

1.5
± log3( c−2

c+4 )
log3 2 (mod3µ)

2µ− 3, if µ ≥ 3
2, if µ = 1, 2

±
n1
∑

n=0

−2n+13n

(n+1)(c+4)n+1

1.6
± log3(

c1
c+4 )

log3 2 (mod 3µ)

⌊

µ−l−1
l

⌋

if l > 0

2µ− 3 if l = 0, µ ≥ 3
2 if l = 0 , µ = 1, 2

±
n1
∑

n=0

−23k+33n( c+2
3 )n+1

(n+1)(c+4)2k+2

where values of 0 ≤ l ≤ µ− 1 are given by:

Case 1.1 1.2 1.4 1.6

l ord2
(

c−1
2

)

ord2
(

c+1
2

)

ord3
(

c−1
3

)

ord3
(

c+2
3

)

2) Case c ≡ 3, 9 (mod 12) . Note, in this case we have c1 = c
3 .

Case α(µ) ≡ α (mod pµ) n1 = n
(l)
1 α′

1 = ±
n1
∑

n=0
an

2.1
± log2

(

c−2
c1

)

log2 3 (mod 2µ)
⌊

µ−l−1
l+1

⌋

±
n1
∑

n=0

(−1)n22k( c−3
2 )

n+1

(n+1)cn+1

2.2
± log2(

c−2
c+4 )

log2 3 (mod 2µ)
⌊

µ−l−1
l+2

⌋

±
n1
∑

n=0

−23k3n+1( c+1
2 )n+1

(n+1)(c+4)2k+2

2.3
± log2(

c1
c+4 )

log2 3 (mod 2µ)
⌊

µ−l−3
l+4

⌋

±
∞
∑

n=0

24k+2(c+6)n+1( c+3
2 )

n+1

32k+2(n+1)(c+4)2k+2

2.4
± log3

(

c−2
c1

)

log3 2 (mod 3µ)

⌊

µ−l−1
l

⌋

if l > 0

2µ−3 if l = 0, µ ≥ 3
2 if l = 0 , µ = 1, 2

±
n1
∑

n=0

(−1)n2n+13n( c−3
3 )n+1

(n+1)cn+1

2.5
± log3( c−2

c+4 )
log3 2 (mod 3µ)

2µ− 3, if µ ≥ 3
2, if µ = 1, 2

±
n1
∑

n=0

−2n+13n

(n+1)(c+4)n+1

2.6
± log3(

c1
c+4 )

log3 2 (mod 3µ)

⌊

µ−l
l−1

⌋

if l≥ 2

2µ−3 if l = 1, µ ≥ 3
2 if l = 1 , µ = 1, 2

±
n1
∑

n=0

(−1)n23k+2( (c+3)(c+6)
9 )

n+1

3(n+1)(c+4)2k+2
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where values of 0 ≤ l ≤ µ− 1 are given by:

Case 2.1 2.2 2.3 2.4 2.6

l ord2
(

c−3
2

)

ord2
(

c+1
2

)

ord2
(

c+3
3

)

ord3
(

c−3
3

)

ord3

(

(c+3)(c+6)
9

)

If l > µ− 1, then α(µ) ≡ α (mod pµ) ≡ 0. Taking the appropriate values of α′
1

given in the tables above, we can calculate the values of ϑ
(µp)
t,k at each step of

the reduction procedure.
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