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Janusz Brzde֒k and Ajda Fošner
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Abstract. Motivated by the notion of the Hyers-Ulam stability, we
prove results that are efficient tools for the study of approximate gene-
ralized Lie derivations on Lie algebras. We also provide simple examples
of applications of our outcomes. In particular, we obtain some auxiliary
results on the stability of the additive Cauchy equation.

1. Introduction

One of the fundamental questions in the theory of the stability of func-
tional equations is: When is it true that a mapping, which satisfies a functional
equation approximately, must be close to an exact solution of that equation?
It is related to a problem raised by Ulam (cf. [13,26]) concerning the stability
of group homomorphisms. This question was partially affirmatively answered
by Hyers ([13]) in Banach spaces. Subsequently, the result of Hyers was gen-
eralized by Aoki ([2], see also [25]). For further information about the topic
we refer the reader to, e.g., [5, 14, 17].

The first result of this area is due to Jun and Park (see [18]) who in-
vestigated approximate derivations of Cn([0, 1]). Further, Badora [3] studied
the Hyers-Ulam stability of derivations acting between Banach algebras. Du-
ring the past few years, approximate derivations were studied by a number of
mathematicians (see [1,3,4,10,11,20–22,24] and references therein). Following
this line of investigations, we prove several results on functions that satisfy
the conditions, defining the generalized Lie derivations, only approximately.

The paper is organized as follows. First we fix the notations and give basic
definitions. In section 2 we obtain some auxiliary results on the stability of
the additive Cauchy equation. In section 3 we prove our main results on the
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stability of generalized Lie derivations and, at the end of the paper, in section
4, we present three simple examples of applications of them.

Throughout the paper, A will represent a Lie algebra over the real or
complex field F and M a Banach A-bimodule. For x ∈ A and y ∈ M, the
symbol [x, y] will denote the commutator xy − yx ∈ M. We say that an
additive mapping d : A → M is a Lie derivation if

d([x, y]) = [d(x), y] + [x, d(y)], x, y ∈ A.

Hvala ([12]) has introduced the notion of generalized Lie derivations as follows.
An additive mapping g : A → M is called a generalized Lie derivation if there
exists an additive mapping d : A → M such that

g([x, y]) = g(x)y − g(y)x+ xd(y)− yd(x), x, y ∈ A.(1.1)

For the sake of precision, given an additive d : A → M, every additive
g : A → M satisfying (1.1) will be named a generalized Lie d-derivation.

Of course, the class of generalized Lie derivations covers both the class
of Lie derivations and the class of generalized derivations. The definition of
generalized Lie derivations was suggested by Brešar (see [12]). Related yet
somewhat different definitions of generalized Lie derivations were introduced
also by Nakajima ([23]).

2. Auxiliary results

Before stating our auxiliary theorems, let us introduce some basic defini-
tions and known results, which we will use in the sequel.

Let BF stand for the family of all sets Γ ⊆ F such that each additive
function f : F → M that is bounded on Γ must be continuous. It is well-
known that if Γ ⊂ F and int Γ 6= ∅, then Γ ∈ BF. This is also the case
when Γ ⊆ F has a positive inner Lebesgue measure or contains a subset of the
second category and with the Baire property (cf. [19]). For more information
on BF and further references concerning the subject we refer the reader to,
e.g., [15, 16, 19].

We say that an additive mapping f : A → M is F-linear if f(λx) = λf(x)
for all x ∈ A and all scalars λ ∈ F.

Lemma 2.1 ([8, Lemma 1]). Let F = C, Γ0 ∈ BC be a bounded set and
let f : A → M be an additive function such that f(λx) = λf(x) for all x ∈ A
and λ ∈ Γ0. Then f is C-linear.

Let S := {λ ∈ C : |λ| = 1}. Using the results of [15, 16] one can also
obtain the following.

Corollary 2.2. Let F = C, Γ be a connected nontrivial subset of S, and
f : A → M be an additive function such that f(λx) = λf(x) for all x ∈ A
and all λ ∈ Γ. Then f is C-linear.
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In the proof of our first theorem we will use a fixed point result from [7].
To simplify its presentation we need the following two hypotheses. Here, X
is a nonempty subset of A, p, q : X → X , and λ, ν ∈ F. As usual, AB denotes
the family of all functions mapping a set B 6= ∅ into a set A 6= ∅ and 2D

stands for the family of all subsets of a set D.
(H1) T : MX → MX is an operator satisfying
∥∥(T ζ)(x) − (T η)(x)

∥∥ ≤ |λ| ‖ζ(p(x)) − η(p(x))
∥∥

+ |ν|
∥∥ζ(q(x)) − η(q(x))

∥∥, ζ, η ∈ MX , x ∈ X.

(H2) Λ : RX
+ → RX

+ is defined by

(Λδ)(x) := |λ|δ(p(x)) + |ν|δ(q(x)), δ ∈ R
X
+ , x ∈ X.

The subsequent theorem follows easily from [7, Theorem 1].

Theorem 2.3. Assume that hypotheses (H1) and (H2) are valid and there
are ε : X → R+ and ϕ : X → M with

∥∥(T ϕ)(x) − ϕ(x)
∥∥ ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑

n=0

Λnε(x) <∞, x ∈ X.

Then there exists a unique fixed point ψ of T such that

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ X.

Moreover,

ψ(x) := lim
n→∞

(T nϕ)(x), x ∈ X.

Let us recall that I ⊂ 2A is an ideal provided 2D ⊂ I and C ∪D ∈ I for
every C,D ∈ I. Next, we write D + x := {x + y : y ∈ D} and γD := {γy :
y ∈ D} for x ∈ A, γ ∈ F, and D ∈ 2A. We will need the following.

Lemma 2.4 ([6, Proposition 3.8]). Assume that I ⊂ 2A is an ideal such
that

D + x ∈ I, D ∈ I, x ∈ A.(2.1)

If I 6= 2A, B ∈ I, and h : A \B → M satisfies

h(x+ y) = h(x) + h(y), x, y ∈ A \B, x+ y ∈ A \B,

then there is a unique additive f : A → M with h(x) = f(x) for x ∈ A \B.

Remark 2.5. Clearly, if I = {D ⊂ A : cardD < cardA}, then I is an
ideal satisfying (2.1) and, in particular, {x} ∈ I for each x ∈ A. The next
natural examples of such ideals are given below.

(a) I = {D ⊂ A : suph(D) < ∞} for some additive and nontrivial h :
A → R.
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(b) A is a real normed space and I = {D ⊂ A : D is bounded }.
(c) A is a real topological linear space of the second category of Baire and

I is the family of all first category subsets of A.
(d) A is a locally compact real linear topological space and I = {A ⊂ A :

µ(A) <∞}, where µ denotes the Haar measure in A.
(e) A is a Polish linear space and I is the σ-ideal of Christensen zero

subsets of A (see [9]).

In what follows I ⊂ 2A always denotes an ideal, which is proper (i.e.,
I 6= 2A) and satisfies the condition (2.1).

We are now in a position to prove our main auxiliary result.

Theorem 2.6. Let Γ ⊂ F, B ∈ I, A := A \ B, ψ : A2 → [0,∞),
d : A→ M, and

‖d(γx+ y)− γd(x)− d(y)‖ ≤ ψ(x, y), x, y ∈ A, γ ∈ Γ, γx+ y ∈ A.(2.2)

Suppose that one of the following two collections of assumptions is fulfilled.

(i) There are ξ : A2 → [0, 1), c ∈ F \ {0}, and µ ∈ Γ \ {0} such that
cA ⊂ µA, (1− c)A ⊂ A and

|µ|ψ
( c
µ
x,
c

µ
y
)
+ ψ((1 − c)x, (1− c)y)(2.3)

≤ ξ(x, y)ψ(x, y), x, y ∈ A,

ξ
( c
µ
x,
c

µ
y
)
≤ ξ(x, y), ξ((1 − c)x, (1− c)y) ≤ ξ(x, y), x, y ∈ A.(2.4)

(ii) There is µ ∈ Γ \ {0,−1} such that A ⊂ (µ+ 1)A,

ψ(x) :=

∞∑

n=0

|µ+ 1|nψ
(
(µ+ 1)−nx, (µ + 1)−nx

)
<∞, x ∈ A,(2.5)

lim
n→∞

|µ+ 1|nψ
(
(µ+ 1)−nx, (µ+ 1)−ny

)
= 0, x, y ∈ A.(2.6)

Then there exists a unique additive mapping D : A → M such that

D(γx) = γD(x), x ∈ A, γ ∈ Γ,(2.7)

‖d(x)−D(x)‖ ≤ Ψ(x), x ∈ A,(2.8)

where, for each x ∈ A,

Ψ(x) =

{(
1− ξ((c/µ)x, (1 − c)x)

)−1
ψ
(
(c/µ)x, (1 − c)x

)
, if (i) holds

ψ((µ+ 1)−1x), if (ii) holds
.

In particular,
D(x) := lim

n→∞
(T nd)(x), x ∈ A,

with T defined by (2.16). Moreover, if Γ has a bounded subset belonging to
BF, then D is F-linear.
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Proof. Let

λ :=

{
µ, if (i) holds

µ+ 1, if (ii) holds
, ν :=

{
1, if (i) holds

0, if (ii) holds
.

Given a ∈ F, we define Λa : RA2

+ → R
A2

+ by

Λaδ(x, y) := |λ|δ
( a
µ
x,
a

µ
y
)
+ νδ((1 − a)x, (1 − a)y)

for δ ∈ RA2

+ , (x, y) ∈ A2, and ψa : A2 → [0,∞) by

ψa(x, y) := ψ
( a
µ
x, (1− a)y

)
, x, y ∈ A.

Note that in the case when (i) holds, by (2.3), we have

Λcψ(x, y) ≤ ξ(x, y)ψ(x, y), x, y ∈ A,

whence, by induction, in view of (2.4), we easily get
(
Λc

)n
ψ(x, y) ≤ ξ(x, y)nψ(x, y), x, y ∈ A, n ∈ N,

where N denotes the set of positive integers. Consequently,
∞∑

n=0

(
Λc

)n
ψc(x, x) ≤

ψc(x, x)

1− ξ((c/µ)x, (1 − c)x)
, x ∈ A,(2.9)

lim
n→∞

(
Λc

)n
ψ(x, y) = 0, x, y ∈ A.(2.10)

On the other hand, in the case of (ii), (2.5) and (2.6) mean that (2.10) holds
with c = µ/(µ+ 1) and

∞∑

n=0

(
Λµ/(µ+1)

)n
ψµ/(µ+1)(x, x) <∞, x ∈ A,(2.11)

because ψµ/(µ+1)(x, x) = ψ((µ+ 1)−1x, (µ+ 1)−1x) for x ∈ A. So, writing

a :=

{
c, if (i) holds

µ/(µ+ 1), if (ii) holds
,(2.12)

on account of (2.6), (2.9), (2.10), and (2.11) we get
∞∑

n=0

(
Λa

)n
ψa(x, x) <∞, x ∈ A,(2.13)

lim
n→∞

(
Λa

)n
ψ(x, y) = 0, x, y ∈ A.(2.14)

In the rest of the proof we assume that a is described by (2.12). Replacing
x by (a/µ)x and taking γ = µ, y = (1− a)x in (2.2) we obtain the inequality

∥∥∥d(x)− µd
(a
µ
x
)
− d((1 − a)x)

∥∥∥ ≤ ψ
( a
µ
x, (1− a)x

)
, x ∈ A.(2.15)
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Now, let T : MA → MA be defined by

T η(x) := λη
( a
µ
x
)
+ νη((1 − a)x), x ∈ A, η ∈ MA.(2.16)

Then (H1) holds with p(x) = (a/µ)x and q(x) = (1 − a)x for x ∈ A. Using
(2.15), we get

‖T d(x) − d(x)‖ ≤ ψa(x, x) =: ψ̃(x), x ∈ A.

Next, Λaψa(x, x) = Λψ̃(x) for x ∈ A, where Λ is defined by (H2). Hence,

according to (2.13) and Theorem 2.3 (with ε = ψ̃ and ϕ = d), there is a fixed
point D0 : A→ M of T such that

‖d(x)−D0(x)‖ ≤
∞∑

n=0

Λnψ̃(x) =

∞∑

n=0

(
Λa

)n
ψa(x, x), x ∈ A.

Moreover D0(x) := limn→∞(T nd)(x) for x ∈ A. Clearly, D0 is a solution of
the functional equation

D(x) = λD
( a
µ
x
)
+ νD((1 − a)x).(2.17)

Note that (2.9) (in the case of (i)) and (2.5) (in the case of (ii)) imply that

‖D0(x)− d(x)‖ ≤ Ψ(x), x ∈ X.(2.18)

In the next step we show that for each n ∈ N0 := N ∪ {0}, we have

‖T nd(γx+ y) − γT nd(x) − T nd(y)‖ ≤
(
Λa

)n
ψ(x, y)(2.19)

for all (x, y) ∈ A2 and γ ∈ Γ with γx + y ∈ A. Clearly, the case n = 0 is
trivial. So, fix m ∈ N0 and assume that (2.19) is true for n = m. Then
∥∥T m+1 d(γx+ y)− γT m+1d(x) − T m+1d(y)

∥∥

=
∥∥∥λT md

( a
µ
(γx+ y)

)
+ νT md

(
(1 − a)(γx+ y)

)

− γλT md
( a
µ
x
)
− γνT md

(
(1− a)x

)

− λT md
( a
µ
y
)
− νT md

(
(1− a)y

)∥∥∥

≤ |λ|
∥∥∥T md

( a
µ
(γx+ y)

)
− γT md

( a
µ
x
)
− T md

( a
µ
y
)∥∥∥

+ ν
∥∥T md

(
(1− a)(γx+ y)

)
− γT md

(
(1− a)x

)
− T md

(
(1− a)y

)∥∥

≤ |λ|
(
Λa

)m
ψ
( a
µ
x,
a

µ
y
)
+ ν

(
Λa

)m
ψ((1 − a)x, (1 − a)y)

=
(
Λa

)m+1
ψ(x, y), x, y ∈ A, γ ∈ Γ, γx+ y ∈ A.
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Thus, by induction, we have shown that (2.19) holds for all x, y ∈ A and
γ ∈ Γ with γx+ y ∈ A and all n ∈ N0. Taking the limit n→ ∞ in inequality
(20), due to identity (2.14), we deduce that

D0(γx+ y) = γD0(x) +D0(y), x, y ∈ A, γ ∈ Γ, γx+ y ∈ A.(2.20)

Take x, y ∈ A with x+y ∈ A and γ ∈ Γ\{0}. Since I is an ideal satisfying
(2.1), there is z ∈ A∩(A−γy)∩(A−γ(x+y)). Clearly, γy+z, γ(x+y)+z ∈ A
and, by (2.20),

γD0(x) + γD0(y) +D0(z) = γD0(x) +D0(γy + z)

= D0(γ(x+ y) + z) = γD0(x + y) +D0(z).

In this way we have proved that

D0(x + y) = D0(x) +D0(y), x, y ∈ A, x+ y ∈ A.(2.21)

Hence, by Lemma 2.4, there exists an additive D : A → M such that D0(x) =
D(x) for x ∈ A.

Let x ∈ A and γ ∈ Γ \ {0}. Clearly A ∩ (x + A) 6= ∅, which means that
x = x1 − x2 with some x1, x2 ∈ A. Take

y ∈ A ∩ (A+ γx2) ∩ (A+ γx2 − γx1).

Using (2.20) and the additivity of D we derive

γD(x) +D(y) = γD(x1) +D(y)− γD(−x2)

= γD(x1) +D(−γx2 + y)

= D(γx1 − γx2 + y)

= D(γx) +D(y).

Thus, we have proved (2.7). If Γ has a bounded subset belonging to BF, then
Lemma 2.1 implies that D is F-linear.

To prove the uniqueness part of the theorem, assume that there exists an

additive mapping D̃ : A → M with the properties

D̃(µx) = µD̃(x), ‖d(x)− D̃(x)‖ ≤ Ψ(x), x ∈ A.

Then it is easy to see that D̃ is a solution of the equation (2.17) (i.e., it is a
fixed point of T ) and

‖D(x)− D̃(x)‖ ≤ 2Ψ(x), x ∈ A.(2.22)

We have to consider the cases (i) and (ii) separately.
Case (i). We have

Ψ(x) =
ψ
(
(c/µ)x, (1− c)x

)

1− ξ((c/µ)x, (1 − c)x)
, x ∈ A.
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We show by induction that, for each j ∈ N0,

‖D(x)− D̃(x)‖ ≤ 2

(
Λa

)j
ψ
(
(c/µ)x, (1 − c)x

)

1− ξ((c/µ)x, (1 − c)x)
, x ∈ A.(2.23)

The case j = 0 is exactly (2.22). So, fix j ∈ N0 and assume that (2.23) holds
for j. Then, by (2.4), we get

‖D(x) − D̃(x)‖ = ‖T D(x)− T D̃(x)‖

=
∥∥∥λD

( c
µ
x
)
+ νD((1 − c)x) − λD̃

( c
µ
x
)
− νD̃((1− c))

∥∥∥

≤ 2|λ|

(
Λa

)j
ψ
(
(c/µ)2x, (1 − c)(c/µ)x

)

1− ξ((c/µ)2x, (1− c)(c/µ)x)

+ 2|ν|

(
Λa

)j
ψ
(
(c/µ)(1− c)x, (1 − c)2x

)

1− ξ((c/µ)(1− c)x, (1 − c)2x)

≤ 2
|λ|

(
Λa

)j
ψ
(
(c/µ)2x, (1 − c)(c/µ)x

)

1− ξ((c/µ)x, (1 − c)x)

+ 2
|ν|

(
Λa

)j
ψ
(
(c/µ)(1− c)x, (1 − c)2x

)

1− ξ((c/µ)x, (1 − c)x)

= 2

(
Λa

)j+1
ψ
(
(c/µ)x, (1 − c)x

)

1− ξ((c/µ)x, (1 − c)x)
, x ∈ A.

Thus, we have shown (2.23). Letting j → ∞ in (2.23) and using (2.14), we

get D̃(x) = D(x) for x ∈ A, whence Lemma 2.4 yields D̃ = D.
Case (ii). In this case

Ψ(x) =

∞∑

n=0

|µ+ 1|nψ
( 1

(µ+ 1)n+1
x,

1

(µ+ 1)n+1
x
)
, x ∈ A.

We show that, for every j ∈ N0 and x ∈ A, we have

‖D(x)− D̃(x)‖ ≤ 2
∞∑

n=j

|µ+ 1|nψ
( 1

(µ+ 1)n+1
x,

1

(µ+ 1)n+1
x
)
.(2.24)
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The case j = 0 is exactly (2.22). So, fix j ∈ N0 and assume that (2.24) holds
for j. Then, for each x ∈ A, we get

‖D(x) − D̃(x)‖ = ‖T D(x)− T D̃(x)‖

=
∥∥∥(µ+ 1)D

( 1

µ+ 1
x
)
− (µ+ 1)D̃

( 1

µ+ 1
x
)∥∥∥

≤ 2|µ+ 1|
∞∑

n=j

|µ+ 1|nψ
( 1

(µ+ 1)n+2
x,

1

(µ+ 1)n+2
x
)

= 2

∞∑

n=j+1

|µ+ 1|nψ
( 1

(µ+ 1)n+1
x,

1

(µ+ 1)n+1
x
)
.

Thus, we have proved (2.24). Letting j → ∞ in (2.24), due to assumption

(2.6) we get that D̃(x) = D(x) for x ∈ A, whence, by Lemma 2.4, we have

D̃ = D. The proof is completed.

The next theorem provides a result that is complementary to Theorem 2.6
(ii). We can prove it analogously as Theorem 2.6 (ii), but, for the convenience
of the readers, we present a more direct, elementary, and simpler reasoning,
patterned on the original ideas of Hyers from [13].

Theorem 2.7. Let Γ ⊂ F, B ∈ I, A := A \B, ψ : A2 → [0,∞), and let
d : A → M satisfies the inequality (2.2). Suppose that there is µ ∈ Γ\{−1, 0}
such that (µ+ 1)A ⊂ A and

ψ(x) :=

∞∑

n=0

ψ((µ+ 1)nx, (µ+ 1)nx)

|µ+ 1|n+1
<∞, x ∈ A,(2.25)

lim inf
n→∞

ψ((µ+ 1)nx, (µ+ 1)ny)

|µ+ 1|n
= 0, x, y ∈ A.(2.26)

Then there exists a unique additive D : A → M such that (2.7) holds and

‖d(x) −D(x)‖ ≤ ψ(x), x ∈ A.

In particular,

D(x) = lim
n→∞

d((µ+ 1)nx)

(µ+ 1)n
, x ∈ A.

Moreover, if Γ has a bounded subset belonging to BF, then D is F-linear.

Proof. Replacing y by x in (2.2), we obtain
∥∥∥d((γ + 1)x)− (γ + 1)d(x)

∥∥∥ ≤ ψ(x, x), x ∈ A, γ ∈ Γ \ {−1, 0},

which, with γ = µ, gives
∥∥∥ 1

µ+ 1
d((µ+ 1)x)− d(x)

∥∥∥ ≤
ψ(x, x)

|µ+ 1|
, x ∈ A.
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Using the induction, it is easy to see that

(2.27)

∥∥∥∥
d((µ + 1)px)

(µ+ 1)p
−
d((µ+ 1)qx)

(µ+ 1)q

∥∥∥∥ ≤

p−1∑

k=q

ψ((µ+ 1)kx, (µ+ 1)kx)

|µ+ 1|k+1

for all x ∈ A and all p > q ≥ 0. By (2.25), it follows that for all x ∈ A, the
sequence

{d((µ+ 1)nx)

(µ+ 1)n

}∞

n=0

is Cauchy and, since M is complete, it is convergent. Thus, we can define a
mapping D0 : A→ M by

D0(x) = lim
n→∞

d((µ+ 1)nx)

(µ+ 1)n
, x ∈ A.

Replacing x by (µ+ 1)nx and y by (µ+ 1)ny in (2.2), we obtain

∥∥∥∥
d(γ(µ+ 1)nx+ (µ+ 1)ny)

(µ+ 1)n
− γ

d((µ+ 1)nx)

(µ+ 1)n
−
d((µ+ 1)ny)

(µ+ 1)n

∥∥∥∥

≤
ψ((µ+ 1)nx, (µ+ 1)ny)

|µ+ 1|n

for x, y ∈ A, γ ∈ Γ with γx + y ∈ A and n ∈ N. Hence, by (2.26), we get
(2.20). Next, in the same way as in the proof of Theorem 2.7, we deduce from
(2.20) that there exists an additive D : A → M such that D0(x) = D(x) for
x ∈ A and (2.7) holds. Moreover, such D is F-linear when Γ has a bounded
subset belonging to BF.

Now, writing q = 0 in (2.27), we obtain

∥∥∥∥
d((µ + 1)px)

(µ+ 1)p
− d(x)

∥∥∥∥ ≤

p−1∑

k=0

ψ((µ+ 1)kx, (µ + 1)kx)

|µ+ 1|k+1
, x ∈ A,

whence, letting p→ ∞, we get ‖d(x) −D(x)‖ ≤ ψ(x) for x ∈ A.
It remains to show that D is the unique additive mapping satisfying (2.7).

So, suppose that there exists another additive mapping D̃ : A → M such that

D̃(γx) = γD̃(x) for x ∈ A, γ ∈ Γ, and ‖d(x)− D̃(x)‖ ≤ ψ(x) for x ∈ A. Then
it is easily seen that

D̃(x) =
D̃((µ+ 1)nx)

(µ+ 1)n
, x ∈ A, n ∈ N,
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and, consequently, for all x ∈ A,
∥∥∥D(x)− D̃(x)

∥∥∥ = lim
n→∞

|µ+ 1|−n
∥∥d((µ + 1)nx)− D̃((µ+ 1)nx)

∥∥

≤ lim
n→∞

|µ+ 1|−nψ((µ+ 1)nx)

≤ lim
n→∞

∞∑

k=0

ψ((µ+ 1)k+nx, (µ + 1)k+nx)

|µ+ 1|k+n+1

= lim
n→∞

∞∑

k=n

ψ((µ+ 1)kx, (µ+ 1)kx)

|µ+ 1|k+1
= 0.

Therefore, D(x) = D̃(x) for x ∈ A and, by Lemma 2.4, D̃ = D. This
completes the proof.

3. Stability of generalized Lie derivations

Given A ⊂ A, we write Ã0 := A ∪ {[x, y] : x, y ∈ A}, Ã := Ã0 \ {0} and,
for a ∈ A \ {0} and γ ∈ F \ {0} with aA ⊂ γA and (1− a)A ⊂ A, we define a

linear operator Λ̂γ
a : RA2

+ ∪ RÃ2

+ → RA2

+ ∪ RÃ2

+ by

Λ̂γ
aδ(x, y) := |γ|2δ

(a
γ
x,
a

γ
y
)
+ |γ|δ

(a
γ
x, (1− a)y

)
+ |γ|δ

(
(1 − a)x,

a

γ
y
)

+δ((1− a)x, (1 − a)y), δ ∈ R
A2

+ ∪ R
Ã2

+ , x, y ∈ A.

The next two theorems are the main results of this paper.

Theorem 3.1. Let Γ ⊂ F, B ∈ I, A := A\B, d : A→ M, g : Ã0 → M,

and ϕ1, ϕ2, ϕ3 : Ã 2 → [0,∞) satisfy the following three inequalities

‖d(γx+ y)− γd(x)− d(y)‖ ≤ ϕ1(x, y), x, y ∈ A, γ ∈ Γ, γx+ y ∈ A,(3.1)

‖g(γx+ y)− γg(x)− g(y)‖ ≤ ϕ2(x, y), x, y ∈ Ã, γ ∈ Γ, γx+ y ∈ Ã,(3.2)

‖g([x, y])− g(x)y + g(y)x− xd(y) + yd(x)‖ ≤ ϕ3(x, y), x, y ∈ A.(3.3)

Suppose that one of the following two collections of assumptions is fulfilled.

(i) There are ξ1, ξ2 : Ã 2 → [0, 1), c ∈ F \ {0}, µ ∈ Γ \ {0} such that

cA ⊂ µA, (1− c)A ⊂ A and, for every x, y ∈ Ã, j = 1, 2,

|µ|ϕj

( c
µ
x,
c

µ
y
)
+ ϕj((1− c)x, (1 − c)y) ≤ ξj(x, y)ϕj(x, y),(3.4)

ξj

( c
µ
x,
c

µ
y
)
≤ ξj(x, y), ξj((1− c)x, (1 − c)y) ≤ ξj(x, y),(3.5)

lim
n→∞

(
Λ̂µ
c

)n
ϕ3(x, y) = 0.(3.6)
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(ii) There is µ ∈ Γ \ {0,−1} with A ⊂ (µ+ 1)A and, for all x, y ∈ Ã,

ϕj(x) =
∞∑

n=0

|µ+ 1|nϕj

(
(µ+ 1)−nx, (µ+ 1)−nx

)
<∞,(3.7)

lim
n→∞

|µ+ 1|nϕj

(
(µ+ 1)−nx, (µ+ 1)−ny

)
= 0,(3.8)

lim
n→∞

|µ+ 1|2nϕ3

(
(µ+ 1)−nx, (µ+ 1)−ny

)
= 0.(3.9)

Then there exist a unique additive D : A → M and a unique generalized Lie
D-derivation G : A → M such that

G(γx) = γG(x), D(γx) = γD(x), x ∈ A, γ ∈ Γ,(3.10)

‖d(x) −D(x)‖ ≤ Φ1(x), ‖g(y)−G(y)‖ ≤ Φ2(y), x ∈ A, y ∈ Ã,(3.11)

where Φ1 : A→ M and Φ2 : Ã→ M are given by

Φj(x) =

{
(1− ξj((c/µ)x, (1 − c)x))−1ϕj

(
(c/µ)x, (1 − c)x

)
, if (i) holds

ϕj((µ+ 1)−1x), if (ii) holds
.

In particular,

D(x) := lim
n→∞

(T nd)(x), G(y) := lim
n→∞

(T ng)(y), x ∈ A, y ∈ Ã,(3.12)

where T is given by (3.13) if (i) holds and by (3.14) if (ii) holds. Moreover,
if Γ has a bounded subset belonging to BF, then D and G are F-linear.

Proof. It is easily seen that, by (3.1), (3.2), and Theorem 2.6 with
ψ = ϕi for i = 1, 2, there exist unique additive functions G,D : A → M
satisfying (3.10) and (3.11). Moreover, (3.12) holds. Here, in the case of (i),

T η(x) ≡ µη
( c
µ
x
)
+ η((1− c)x), η ∈ MA ∪MÃ ∪MÃ0 ,(3.13)

and, in the case of (ii),

T η(x) ≡ (µ+ 1)η
( 1

µ+ 1
x
)
, η ∈ MA ∪MÃ ∪MÃ0 .(3.14)

If Γ has a bounded subset belonging to BF, then G and D are F-linear.
Next, we show that

G([x, y]) = G(x)y −G(y)x+ xD(y)− yD(x), x, y ∈ A, [x, y] 6= 0.(3.15)

At this part, we have to distinguish two cases according to (i) and (ii).
Case (i). First, we prove that for all n ∈ N0,

‖T 2ng([x, y])−T ng(x)y + T ng(y)x− xT nd(y) + yT nd(x)‖(3.16)

≤
(
Λ̂µ
c

)n
ϕ3(z, w), x, y ∈ A, [x, y] 6= 0.
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Since (3.16) with n = 0 is just (3.3), it is enough to observe that for every
n ∈ N0 and x, y, z, w ∈ A with [x, y] 6= 0,

T 2(n+1)g([x, y]) =µT 2n+1g
( c
µ
[x, y]

)
+ T 2n+1g

(
(1− c)[x, y]

)

=µT 2n+1g
([ c
µ
x, y

])
+ T 2n+1g

(
[(1− c)x, y]

)

=µ2T 2ng
([ c
µ
x,
c

µ
y
])

+ µT 2ng
([ c
µ
x, (1− c)y

])

+ µT 2ng
([

(1− c)x,
c

µ
y
])

+ T 2ng
([
(1− c)x, (1 − c)y

])
,

T n+1g(z)w =µ2T ng
( c
µ
z
) c
µ
w + µT ng

( c
µ
z
)
(1 − c)w

+ µT ng((1− c)z)
c

µ
w + T ng

(
(1 − c)z

)
(1− c)w,

wT n+1d(z) =µ2
( c
µ
w
)
T nd

( c
µ
z
)
+ µ(1− c)wT nd

( c
µ
z
)

+ µ
( c
µ
w
)
T nd((1 − c)z) + (1− c)wT nd

(
(1− c)z

)
.

Consequently, under the assumption that (3.16) holds for some n ∈ N0, we
have

‖T 2(n+1)g([x, y])− T n+1g(x)y + T n+1g(y)x− xT n+1d(y) + yT n+1d(x)‖

≤ |µ|2
(
Λ̂µ
c

)n
ϕ3

( c
µ
x,
c

µ
y
)
+ |µ|

(
Λ̂µ
c

)n
ϕ3

( c
µ
x, (1 − c)y

)

+ |µ|
(
Λ̂µ
c

)n
ϕ3

(
(1 − c)x,

c

µ
y
)
+
(
Λ̂µ
c

)n
ϕ3

(
(1− c)x, (1 − c)y

)

=
(
Λ̂µ
c

)n+1
ϕ3(x, y), x, y ∈ A, [x, y] 6= 0, n ∈ N0.

So, we have proved (3.16). Letting n→ ∞ in (3.16) and using (3.6), we obtain
the equality (3.15), as desired.
Case (ii). Note that

G(x) = lim
n→∞

(µ+ 1)ng
(
(µ+ 1)−nx

)
, x ∈ Ã,

D(x) = lim
n→∞

(µ+ 1)nd
(
(µ+ 1)−nx

)
, x ∈ A.
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Hence, according to (3.3) and (3.9), for every x, y ∈ A with [x, y] 6= 0, we
have

‖G([x, y])−G(x)y +G(y)x − xD(y) + yD(x)‖

= lim
n→∞

|µ+ 1|2n
∥∥g

([
(µ+ 1)−nx, (µ+ 1)−ny

])

− g
(
(µ+ 1)−nx

)
(µ+ 1)−ny + g

(
(µ+ 1)−ny

)
(µ+ 1)−nx

− (µ+ 1)−nxd
(
(µ+ 1)−ny

)
+ (µ+ 1)−nyd

(
(µ+ 1)−nx

)∥∥

≤ lim
n→∞

|µ+ 1|2nϕ3

(
(µ+ 1)−nx, (µ+ 1)−ny

)
= 0.

Thus, (3.15) holds in this case as well.
Finally, let z, w ∈ A be arbitrary. Utilizing identity (3.15) and the addi-

tivity of the mappings G and D, we receive

G([z, w]) =G([z1 − z2, w1 − w2])

=G([z1, w1])−G([z1, w2])−G([z2, w1]) +G([z2, w2])

=G(z1)w1 −G(w1)z1 + z1D(w1)− w1D(z1)

− G(z1)w2 +G(w2)z1 − z1D(w2) + w2D(z1)

− G(z2)w1 +G(w1)z2 − z2D(w1) + w1D(z2)

+ G(z2)w2 −G(w2)z2 + z2D(w2)− w2D(z2)

=G(z1 − z2)(w1 − w2)−G(w1 − w2)(z1 − z2)

+ (z1 − z2)D(w1 − w2)− (w1 − w2)D(z1 − z2)

=G(z)w −G(w)z + zD(w)− wD(z).

In this way we have shown that G is a generalized Lie D-derivation. The
proof is completed.

As the following corollary shows, assumptions (3.2) and (3.3) in the pre-
vious theorem can be replaced by only one inequality (for the sake of the
simplicity, we consider only the case A = A).

Corollary 3.2. Let Γ ⊂ F, ϕ : A4 → [0,∞), d, g : A → M and

‖d(γx+ y)− γd(x)− d(y)‖ ≤ ϕ(x, y, 0, 0), x, y ∈ A, γ ∈ Γ,(3.17)

∥∥g(γx + y + [z, w])− γg(x)− g(y)− g(z)w + g(w)z(3.18)

− zd(w) + wd(z)
∥∥ ≤ ϕ(x, y, z, w), x, y, z, w ∈ A, γ ∈ Γ.

Suppose that one of the collections of the assumptions (i) and (ii) of Theorem
3.1 is fulfilled for A = A, ϕj(x, y) = ϕ(x, y, 0, 0) (x, y ∈ A, j = 1, 2), and
ϕ3(z, w) = ϕ(0, 0, z, w) (z, w ∈ A). Then all the statements of Theorem 3.1
are valid with A = A.
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Proof. Taking z = w = 0 in (3.18) we get

‖g(γx+ y)− γg(x)− g(y)‖ ≤ ϕ2(x, y), x, y ∈ A, γ ∈ Γ.(3.19)

Next, taking x = y = 0 and γ = µ in (3.18), we obtain
∥∥g([z, w])− g(z)w + g(w)z − zd(w) + wd(z)

∥∥
≤ϕ3(z, w) + |µ+ 1| ‖g(0)‖ =: ϕ̃3(z, w), z, w ∈ A.

Again, we observe the cases (i) and (ii) separately.
Case (i). Clearly, (3.4) implies that

(|µ|+ 1)ϕ1(0, 0) ≤ ξ(0, 0)ϕ1(0, 0).

Since |µ|+1 > 1 > ξ(0, 0), this means that ϕ2(0, 0) = 0. Consequently, (3.18)
with x = y = z = w = 0 and γ = µ yields g(0) = 0. Hence, in this case
ϕ3 = ϕ̃3 and it is enough to use Theorem 3.1 (i).
Case (ii). Note that if |µ+1| ≥ 1, then from (3.8) we get ϕ2(0, 0) = 0, whence
(3.18), with x = y = z = w = 0 and γ = µ, yields g(0) = 0. Consequently,
ϕ3 = ϕ̃3 and it is enough to use Theorem 3.1 (ii).

Finally, when |µ+ 1| < 1, by (3.9), we have

lim
n→∞

|µ+ 1|nϕ̃3

(
(µ+ 1)−nx, (µ+ 1)−ny

)

= lim
n→∞

|µ+ 1|nϕ3

(
(µ+ 1)−nx, (µ+ 1)−ny

)

+ lim
n→∞

|µ+ 1|n+1 ‖g(0)‖

1− |µ+ 1|
= 0, x, y ∈ A.

Consequently, we use Theorem 3.1 (ii) with ϕ3 replaced by ϕ̃3.

The next theorem is complementary to Theorem 3.1 (ii).

Theorem 3.3. Let Γ ⊂ F, B ∈ I, A := A\B, ϕ1, ϕ2, ϕ3 : Ã 2 → [0,∞),

d : A → M, g : Ã0 → M, and let (3.1)–(3.3) be valid. Suppose that there is
µ ∈ Γ \ {−1} such that (µ+ 1)A ⊂ A,

ϕi(x) :=

∞∑

n=0

ϕi((µ+ 1)nx, (µ+ 1)nx)

|µ+ 1|n+1
<∞, i = 1, 2, x ∈ Ã,(3.20)

lim inf
n→∞

ϕ3((µ+ 1)nx, (µ+ 1)ny)

|µ+ 1|2n
= 0, x, y ∈ A,(3.21)

and (2.26) is fulfilled by ψ ∈ {ϕ1, ϕ2} with A replaced by Ã. Then there exist
a unique additive D : A → M and a unique generalized Lie D-derivation
G : A → M such that (3.10) holds and

‖d(x)−D(x)‖ ≤ ϕ1(x), ‖g(y)−G(y)‖ ≤ ϕ2(y), x ∈ A, y ∈ Ã.(3.22)

In particular, the condition (3.23) is valid. Moreover, if Γ has a bounded
subset belonging to BF, then D and G are F-linear.
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Proof. According to (3.1), (3.2) and Theorem 2.7, there exist additive
mappings G,D : A → M with

D(x) = lim
n→∞

d((µ+ 1)nx)

(µ+ 1)n
, G(y) = lim

n→∞

g((µ+ 1)ny)

(µ+ 1)n
(3.23)

for all x ∈ A, y ∈ Ã. Moreover, the mappings D and G are the unique
solutions of (3.10), resp. (3.22). If Γ has a bounded subset from BF, then D
and G are F-linear.

Further, for every x, y ∈ A,

G([x, y]) = lim
n→∞

g((µ+ 1)2n[x, y])

(µ+ 1)2n
=
g
([
(µ+ 1)nx, (µ+ 1)ny

])

(µ+ 1)2n
,

whence, in view of (3.3) and (3.21),
∥∥G([x, y])−G(x)y +G(y)x− xD(y) + yD(x)

∥∥

= lim
n→∞

|µ+ 1|−2n
∥∥g([(µ+ 1)nx, (µ+ 1)ny])

− g((µ+ 1)nx)(µ+ 1)ny + g((µ+ 1)ny)(µ+ 1)nx

− (µ+ 1)nxd((µ + 1)ny) + (µ+ 1)nyd((µ+ 1)nx)
∥∥

≤ lim inf
n→∞

ϕ3((µ+ 1)nx, (µ+ 1)ny)

|µ+ 1|2n
= 0.

Thus, we have obtained (3.15). Now, in the same way as at the very end of the
proof of Theorem 3.1, we can show that G is a generalized Lie D-derivation.

4. Applications

Let Ai ⊂ A, ηi, εi ∈ [0,∞), and pi ∈ R for i = 1, 2, 3. Moreover, suppose
that pi ≥ 0 or 0 6∈ Ai for i = 1, 2, 3. We will show applications of some of our
results to a very simple case when A is a normed Lie algebra and

ϕi(x, y) := ηi + εi(‖x‖
pi + ‖y‖pi), x, y ∈ Ai, i = 1, 2, 3.(4.1)

In this section, we assume all the time that Γ ⊂ F \ {0}, ∅ 6= A ⊂ A,

ϕ1, ϕ2, ϕ3 : Ã 2 → [0,∞) are defined by (4.1), and g : Ã0 → M and d : A →
M are mappings satisfying conditions (3.1)–(3.3).

The first theorem reads as follows.

Theorem 4.1. Let p3 6= 2, η3(p3 − 2) ≤ 0 and suppose that one of the
following three conditions is valid

(a) A = A, Γ is unbounded, p1 > 1, p2 > 1, and η1 = η2 = 0;
(b) A = A \ {0}, Γ is unbounded, and pi < 1 for i = 1, 2;
(c) pi < 0 for i = 1, 2 and there exists B ∈ I with 2B = B and A = A\B.
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Then there exist a unique additive mapping D : A → M and a unique gene-
ralized Lie D-derivation G : A → M such that (3.10) holds and

d(x) = D(x), g(y) = G(y), x ∈ A, y ∈ Ã.(4.2)

If Γ has a bounded subset from BF, then G and D are F-linear.

Proof. Note that the condition η3(p3 − 2) ≤ 0 is equivalent to the fol-
lowing one

if p3 > 2, then η3 = 0.(4.3)

First, we show that there exist unique additive D,G : A → M fulfilling (3.10)
and (4.2). We have to consider all three cases separately.
Case (a). Clearly, the conditions (3.4) and (3.5) hold with the constant ξj
given by (4.15). Next, for each n ∈ N, there are µn ∈ Γ and cn ∈ F such that
|µn| ≥ n,

‖cn‖
pi |µn|

1−pi + ‖1− cn‖
pi < 1, i = 1, 2,

and limn→∞ cn = 1. Theorem 2.6 (i) implies that, for every n ∈ N, there exist
unique additive Dn, Gn : A → M such that

Gn(γx) = γGn(x), Dn(γx) = γDn(x), x ∈ A, γ ∈ Γ,(4.4)

‖d(x) −Dn(x)‖ ≤ φ1,n(x), ‖g(x)−Gn(x)‖ ≤ φ2,n(x), x ∈ A,(4.5)

where

φi,n(x) =
‖cn‖pi |µn|1−pi + ‖1− cn‖pi

1− ‖cn‖pi |µn|1−pi − ‖1− cn‖pi
εi‖x‖

pi , x ∈ A, i = 1, 2.

The uniqueness of Dn and Gn implies that D1 = Dn and G1 = Gn for every
n ∈ N. Since

lim
n→∞

φi,n(x) = 0, x ∈ A,

(4.5) yields (4.2) with D = D1 and G = G1.
Case (b). For each n ∈ N, there is µn ∈ Γ such that |µn + 1| ≥ n. Note that

ψi,n(x) :=

∞∑

k=0

ϕi((µn + 1)kx, (µn + 1)kx)

|µn + 1|k+1

=
2

|µn + 1|

∞∑

k=0

|µn + 1|k(pi−1)εi‖x‖
pi +

∞∑

k=0

ηi
|µn + 1|k+1

=
2εi‖x‖pi

|µn + 1| − |µn + 1|pi
+

ηi
|µn + 1| − 1

,

lim
k→∞

ϕi((µn + 1)kx, (µn + 1)ky)

|µn + 1|k
= lim

k→∞
εi

‖x‖pi + ‖y‖pi

|µn + 1|k(1−pi)
+

ηi
|µn + 1|k

= 0,



94 J. BRZDE֒K AND A. FOŠNER

for x, y ∈ A, n ∈ N, i = 1, 2. Hence, Theorem 2.7 implies that, for every
n ∈ N, there are unique additive Dn, Gn : A → M such that (4.4) holds and

‖d(x) −Dn(x)‖ ≤ ψ1,n(x), ‖g(x) −Gn(x)‖ ≤ ψ2,n(x)(x), x ∈ A.(4.6)

The uniqueness of Dn and Gn implies that D1 = Dn and G1 = Gn for every
n ∈ N. Since

lim
n→∞

ψi,n(x) = 0, x ∈ A, i = 1, 2,

(4.6) yields (4.2) with D = D1 and G = G1.
Case (c). Fix µ ∈ Γ \ {0}. Since p1 < 0 and p2 < 0, there is an m ∈ N such
that

2npi |µ|1−pi + (2n − 1)pi < 1, i = 1, 2, n ≥ m.

It is easy to check that conditions (2.3) and (2.4) hold with ψ = ϕi and
ξ = ξi,n for i = 1, 2 and n ∈ N, n ≥ m, where

ξi,n(x, y) ≡ 2npi |µ|1−pi + (2n − 1)pi , i = 1, 2, n ∈ N, n ≥ m.

From Theorem 2.6 (i) we derive that, for each n ∈ N, n ≥ m, there exist
unique additive Dn, Gn : A → M such that (4.4) is fulfilled and

‖d(x) −Dn(x)‖ ≤ φ1,n(x), ‖g(x)−Gn(y)‖ ≤ φ2,n(y)(4.7)

for x ∈ A, y ∈ Ã and with

φi,n(x) =
2npi |µ|1−pi + (2n − 1)pi

1− 2npi |µ|1−pi + (2n − 1)pi
ε1‖x‖

pi

for i = 1, 2, n ∈ N, n ≥ m, x ∈ Ã. Clearly, the uniqueness of Dn and Gn

implies that

Dm = Dn, Gm = Gn, n ∈ N, n ≥ m.

Consequently, (4.7) yields (4.2) for D = D1 and G = G1 because

lim
n→∞

φi,n+m(x) = 0, i = 1, 2, x ∈ Ã.

Thus, we have proved that, in all those three cases, there exist unique
additive D,G : A → M such that (3.10) and (4.2) are valid. Moreover, if
Γ has a bounded subset belonging to BF, then (3.10) and Lemma 2.1 imply
that D and G are F-linear.

It remains to show that G is a generalized Lie D-derivation. To this end,
we first prove that

g([x, y]) = g(x)y − g(y)x+ xd(y)− yd(x), x, y ∈ A, [x, y] 6= 0,(4.8)

g(x)y − g(y)x+ xd(y)− yd(x) = 0, x, y ∈ A, [x, y] = 0.(4.9)
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Suppose that p3 < 2 and fix x, y ∈ A. If [x, y] 6= 0, then, according to
(3.3) and (4.2),

‖g([x, y])− g(x)y + g(y)x− xd(y) + yd(x)‖

=2−2n‖g([2nx, 2ny])− g(2nx)2ny

+ g(2ny)2nx− 2nxd(2ny) + 2nyd(2nx)‖

≤ 2−2nε3(‖2
nx‖p3 + ‖2ny‖p3) + 2−2nη3

=2(p3−2)nε3(‖x‖
p3 + ‖y‖p3) + 2−2nη3, n ∈ N,

whence, letting n→ ∞, we obtain that (4.8) holds. If [x, y] = 0, then for each
n ∈ N, we have g(0) = g([2nx, 2ny]) and, again by (3.3) and (4.2),

∥∥g(0)− 22n
(
g(x)y − g(y)x+ xd(y)− yd(x)

)∥∥
≤ ε3(‖2

nx‖p3 + ‖2ny‖p3) + η3 = 2p3nε3(‖x‖
p3 + ‖y‖p3) + η3,

whence
∥∥2−2ng(0)− g(x)y + g(y)x− xd(y) + yd(x)

∥∥

≤ 2(p3−2)nε3(‖x‖
p3 + ‖y‖p3) + 2−2nη3,

which, with n→ ∞, yields (4.9).
Now, let p3 > 2 and x, y ∈ A. If [x, y] 6= 0, then, in view of (3.3), (4.2),

and (4.3), we obtain that

‖g([x, y])− g(x)y + g(y)x− xd(y) + yd(x)‖

=22n‖g([2−nx, 2−ny])− g(2−nx)2−ny

+ g(2−ny)2−nx− 2−nxd(2−ny) + 2−nyd(2−nx)‖

≤ 22nε3(‖2
−nx‖p3 + ‖2−ny‖p3)

= 2(2−p3)nε3(‖x‖
p3 + ‖y‖p3), n ∈ N.

Letting n → ∞, we get (4.8). If [x, y] = 0, then, again by (3.3), (4.2), and
(4.3), for every n ∈ N, we have

∥∥g(0)− 2−2n
(
g(x)y − g(y)x+ xd(y)− yd(x)

)∥∥

≤ ε3(‖2
−nx‖p3 + ‖2−ny‖p3) + η3 = 2−p3nε3(‖x‖

p3 + ‖y‖p3) + η3

and, consequently,
∥∥22ng(0)− g(x)y + g(y)x− xd(y) + yd(x)

∥∥ ≤ 2(2−p3)nε3(‖x‖
p3 + ‖y‖p3),

whence, with n→ ∞, we get (4.9).
It is easily seen that from (4.2), (4.8), and (4.9) we obtain

G([x, y]) = G(x)y −G(y)x+ xD(y)− yD(x), x, y ∈ A.(4.10)

Now, we can complete the proof analogously as in the proof of Theorem 3.1.
Namely, for every z, w ∈ A, there exist z1, z2, w1, w2 ∈ A with z = z1 − z2,
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w = w1 − w2 and, consequently, by (4.10) and by the additivity of G and D,
we have

G([z, w]) =G([z1 − z2, w1 − w2])

=G([z1, w1])−G([z1, w2])−G([z2, w1]) +G([z2, w2])

=G(z1)w1 −G(w1)z1 + z1D(w1)− w1D(z1)

=G(z1)w1 −G(w1)z1 + z1D(w1)− w1D(z1)

− G(z1)w2 +G(w2)z1 − z1D(w2) + w2D(z1)

− G(z2)w1 +G(w1)z2 − z2D(w1) + w1D(z2)

+ G(z2)w2 −G(w2)z2 + z2D(w2)− w2D(z2)

=G(z1 − z2)(w1 − w2)−G(w1 − w2)(z1 − z2)

+ (z1 − z2)D(w1 − w2)− (w1 − w2)D(z1 − z2)

=G(z)w −G(w)z + zD(w)− wD(z).

In this way we have shown that G is a generalized Lie D-derivation. The
proof is completed.

The next two theorems concern some cases that are complementary to
those described in (a)–(c). For the sake of simplicity we present them only
for A = A or, when necessary, for A = A \ {0}. As before, we assume that

g : Ã0 → M and d : A→ M are mappings satisfying conditions (3.1)–(3.3).

Theorem 4.2. Let A = A and s := sup {|γ| : γ ∈ Γ} < ∞. If there is
γ0 ∈ Γ with |γ0| = 1, η1 = η2 = η3 = 0, p1 > 1, p2 > 1, and p3 > 2, then
there exist a unique additive mapping D : A → M and a unique generalized
Lie D-derivation G : A → M such that (3.10) holds and

‖d(x) −D(x)‖ ≤
ρ1ε1‖x‖p1

1− ρ1
, ‖g(x)−G(x)‖ ≤

ρ2ε2‖x‖p2

1− ρ2
(4.11)

for all x ∈ A, where

ρi := inf
{
|c|pis1−pi + |1− c|pi : c ∈ F

}
, i = 1, 2.

Moreover, if Γ has a subset from BF, then G and D are F-linear.

Proof. Taking x = y = 0 in (3.1) and (3.2) we get

g(0) = 0, d(0) = 0.(4.12)

Next, since pi > 1 for i = 1, 2, p3 > 2, and s ≥ 1, there are c ∈ F \ {0} and
µ ∈ Γ \ {0} with

|c|pi |µ|1−pi + |1− c|pi < 1, i = 1, 2,(4.13)

(|µ|+ 1)(|c|p3 |µ|1−p3 + |1− c|p3) < 1.(4.14)

For example, we can choose c = 1/2 and µ = γ0.
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It is easy to check that conditions (3.4) and (3.5) hold with the constant
function ξj , defined by

ξj(x, y) ≡ |c|pj |µ|1−pj + |1− c|pj , j = 1, 2.(4.15)

Further, for every z, w ∈ A, we have

Λ̂µ
cϕ3(z, w) = ε3(|µ|+ 1)(|c|p3 |µ|1−p3 + |1− c|p3)(‖z‖p3 + ‖w‖p3)

= (|µ|+ 1)(|c|p3 |µ|1−p3 + |1− c|p3)ϕ3(z, w),

whence, on account of (4.13),

lim
n→∞

(
Λ̂µ
c

)n
ϕ3(z, w) = 0.

By Theorem 3.1 (i) (with A = A) and by (4.12), there exist a unique additive
D : A → M and a unique generalized Lie D-derivation G : A → M fulfilling
(3.10) and such that

‖d(x) −D(x)‖ ≤ Φ1(x), ‖g(x)−G(x)‖ ≤ Φ2(x), x ∈ A,

with

Φi(x) =
|c|pi |µ|1−pi + |1− c|pi

1− |c|pi |µ|1−pi − |1− c|pi
εi‖x‖

pi , x ∈ A, i = 1, 2.

Moreover, by Theorem 2.6 (i), for every c0 ∈ F \ {0} and µ0 ∈ Γ \ {0} with

‖c0‖
pi |µ0|

1−pi + ‖1− c0‖
pi < 1, i = 1, 2,

there exist unique additive D0, G0 : A → M such that

G0(γx) = γG0(x), D0(γx) = γD0(x), x ∈ A, γ ∈ Γ,

‖d(x) −D0(x)‖ ≤ Φ̂1(x), ‖g(x)−G0(x)‖ ≤ Φ̂2(x), x ∈ A,

where

Φ̂i(x) =
‖c0‖

pi |µ0|
1−pi + ‖1− c0‖

pi

1− ‖c0‖pi |µ0|1−pi − ‖1− c0‖pi
εi‖x‖

pi , x ∈ A, i = 1, 2.

Clearly, the uniqueness of G, G0, D, and D0 means that G = G0 and D = D0,
whence (4.11) is valid. The proof is completed.

Theorem 4.3. Let A = A \ {0}, σ := sup {|µ+ 1| : µ ∈ Γ} > 1, p1 < 1,
p2 < 1, p3 < 2, and suppose that Γ is bounded. Then there are a unique
additive mapping D : A → M and a unique generalized Lie D-derivation
G : A → M such that (3.10) holds and

‖d(x) −D(x)‖ ≤
2ε1‖x‖p1

σ − σp1

+
η1

σ − 1
, x ∈ A \ {0},(4.16)

‖g(x)−G(x)‖ ≤
2ε2‖x‖p2

σ − σp2

+
η2

σ − 1
, x ∈ A \ {0}.(4.17)

Moreover, if Γ has a subset from BF, then G and D are F-linear.
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Proof. Take µ ∈ Γ with |µ+ 1| > 1. Note that

ϕi(x) :=

∞∑

n=0

ϕi((µ+ 1)nx, (µ+ 1)nx)

|µ+ 1|n+1

=
2

|µ+ 1|

∞∑

n=0

|µ+ 1|n(pi−1)εi‖x‖
pi +

∞∑

n=0

ηi
|µ+ 1|n+1

=
2εi‖x‖pi

|µ+ 1| − |µ+ 1|pi
+

ηi
|µ+ 1| − 1

, x ∈ A,

lim
n→∞

ϕi((µ+ 1)nx, (µ+ 1)ny)

|µ+ 1|n

= lim
n→∞

εi
‖x‖pi + ‖y‖pi

|µ+ 1|n(1−pi)
+

ηi
|µ+ 1|n

= 0, x, y ∈ A, i = 1, 2,

lim
n→∞

ϕ3((µ+ 1)nz, (µ+ 1)nw)

|µ+ 1|2n

= lim
n→∞

ε3
‖z‖p3 + ‖w‖p3

|µ+ 1|n(2−p3)
+

η3
|µ+ 1|2n

= 0, z, w ∈ A.

Hence, by Theorem 3.3, there exist a unique additive Dµ : A → M and a
unique generalized LieDµ-derivation Gµ : A → M such that (3.10) and (3.22)
hold with D and G replaced by Dµ and Gµ, respectively. Moreover, if Γ has
a bounded subset belonging to BF, then Dµ and Gµ are F-linear.

Clearly, the uniqueness of Dµ and Gµ implies that D := Dµ = Dν and
G := Gµ = Gν for all ν ∈ Γ with |ν + 1| > 1. Thus, (4.16) and (4.17) are
valid and the proof is completed.
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