CLASSIFICATION OF FINITE p-GROUPS WITH CYCLIC INTERSECTION OF ANY TWO DISTINCT CONJUGATE SUBGROUPS

Zvonimir Janko
University of Heidelberg, Germany

Abstract

We give a complete classification of non-Dedekindian finite p-groups in which any two distinct conjugate subgroups have cyclic intersection (Theorems A, B and C).

1. Introduction

The purpose of this paper is to give a complete classification of finite nonDedekindian p-groups (i.e., p-groups that possess non-normal subgroups) in which any two distinct conjugate subgroups have cyclic intersection (Problem 1572 stated in [3]).

In Theorem 16.2 in [1], Theorem A and Theorem B are completely determined finite non-Dedekindian p-groups all of whose non-normal subgroups are either cyclic, abelian of type (p, p) or ordinary quaternion. Since in these groups any two distinct conjugate subgroups have a cyclic intersection, so these results can be considered as a good start in solving problem 1572. Therefore, after proving Theorems A and B, we may always assume that there is in a title group G a non-normal subgroup which is neither cyclic nor abelian of type (p, p) nor an ordinary quaternion group and such groups will be completely determined in Theorem C. Now we state our main results.

Theorem A. Let G be a p-group all of whose non-normal subgroups are cyclic or abelian of type (p, p). Assume in addition that G possesses a nonnormal abelian subgroup of type (p, p). Then G is one of the following groups

[^0](where $\mathrm{S}\left(p^{3}\right), p>2$, denotes the nonabelian group of order p^{3} and exponent p):
(a) $G \cong \mathrm{D}_{16}$ or SD_{16}.
(b) $G=L Z$, where $L \cong \mathrm{~S}\left(p^{3}\right), p>2$, is normal in $G, Z \cong \mathrm{C}_{p^{2}}, L \cap Z=$ $\mathrm{Z}(L)=\mathrm{Z}(G)$.
(c) G is any nonabelian group of order p^{4} with an elementary abelian subgroup of index p.
(d) $p=2$ and $G \cong\left(\mathrm{D}_{8} * \mathrm{Q}_{8}\right) \times \mathrm{C}_{2}$, where $\mathrm{D}_{8} \cap \mathrm{Q}_{8}=\left(\mathrm{D}_{8}\right)^{\prime}$ or $G \cong$ $\mathrm{H}_{16} * \mathrm{Q}_{8}$ with $\mathrm{H}_{16} \cap \mathrm{Q}_{8}=\left(\mathrm{H}_{16}\right)^{\prime}$, where H_{16} is the nonmetacyclic minimal nonabelian group of order 16.
(e) $G \cong \mathrm{M}_{p^{s+1}} \times \mathrm{C}_{p}, s \geq 3$.
(f) $G=(Z * S) \times \mathrm{C}_{p}$, where $Z \cong \mathrm{C}_{p^{s+1}}, s \geq 1, Z \cap S=S^{\prime}$, and either $p=2$ and $S \cong \mathrm{D}_{8}$ or $p>2$ and $S \cong \mathrm{~S}\left(p^{3}\right)$ or
$G=Z * S$, where $Z \cong \mathrm{C}_{p^{s+1}}, s \geq 1, Z \cap S=S^{\prime}$, and S is the nonmetacyclic minimal nonabelian group of order p^{4}.
(g) G is an A_{2}-group of order p^{5} from Proposition 71.4(b2) in [2] for $\alpha=1$.
(h) $G \cong \mathrm{Q}_{8} * \mathrm{Q}_{8} * \mathrm{Q}_{8}$, an extraspecial group of order 2^{7} and type " - ".
(i) $G=\left(A_{1} * A_{2}\right) \mathrm{Z}(G)$, where A_{1} and A_{2} are minimal nonabelian p-groups and $\mathrm{Z}(G)$ is cyclic. In case $p=2, A_{1}$ and A_{2} are isomorphic to one of $\mathrm{D}_{8}, \mathrm{Q}_{8}$ and $\mathrm{M}_{2^{n}}, n \geq 4$, where in case $A_{1} \cong \mathrm{Q}_{8}$ and $A_{2} \cong \mathrm{D}_{8}$ we must have $|\mathrm{Z}(G)|>2$. In case $p>2, A_{1}$ and A_{2} are isomorphic to one of $\mathrm{S}\left(p^{3}\right)$ or $\mathrm{M}_{p^{n}}, n \geq 3$.
Conversely, all the above groups satisfy the assumptions of the theorem.
Theorem B. Let G be a 2-group all of whose non-normal subgroups are either cyclic, abelian of type $(2,2)$ or ordinary quaternion. Assume in addition that G possesses a non-normal subgroup H which is isomorphic to Q_{8}. Then G is isomorphic to one of the following groups :
(a) $G \cong \mathrm{Q}_{32}$ (a generalized quaternion group of order 32).
(b) G is a unique 2-group of order $>2^{4}$ with the property that $\Omega_{2}(G) \cong$ $\mathrm{Q}_{8} \times \mathrm{C}_{2}$ and we have $|G|=2^{5}$, where this group (of class 3) is defined in part A2(a) of Theorem 49.1 in [2].
(c) G is a splitting extension of a cyclic noncentral normal subgroup of order 4 by Q_{8}.
(d) $G=H_{1} \times H_{2}$, where $H_{1} \cong H_{2} \cong \mathrm{Q}_{8}$.
(e) $G=\left\langle h_{0}, h_{1}\right\rangle\langle g\rangle$, where $\left\langle h_{0}, h_{1}\right\rangle \cong \mathrm{Q}_{8}, \mathrm{Z}\left(\left\langle h_{0}, h_{1}\right\rangle\right)=\langle z\rangle,\langle g\rangle \cong \mathrm{C}_{2^{n}}$, $n \geq 3,\left\langle h_{0}, h_{1}\right\rangle \cap\langle g\rangle=\{1\}, \Omega_{1}(\langle g\rangle)=\left\langle z^{\prime}\right\rangle, g^{2} \in \mathrm{Z}(G),\left[g, h_{0}\right]=1$, and $\left[g, h_{1}\right]=z^{\epsilon} z^{\prime}, \epsilon=0,1$. Here we have $|G|=2^{n+3}, n \geq 3, G^{\prime}=\Omega_{1}(G)=$ $\left\langle z, z^{\prime}\right\rangle \cong \mathrm{E}_{4}, G$ is of class 2 and $\mathrm{Z}(G)=\left\langle g^{2}\right\rangle \times\langle z\rangle \cong \mathrm{C}_{2^{n-1}} \times \mathrm{C}_{2}$.
(f) $G=C * Q$, where $C \cong \mathcal{H}_{2}=\left\langle a, b \mid a^{4}=b^{4}=1, a^{b}=a^{-1}\right\rangle, Q \cong \mathrm{Q}_{8}$ and $C \cap Q=\left\langle a^{2} b^{2}\right\rangle=Q^{\prime}$.
Conversely, all the above groups satisfy the assumptions of the theorem.

Theorem C. Let G be a p-group with a cyclic intersection of any two distinct conjugate subgroups. Assume in addition that G has a non-normal subgroup which is neither cyclic nor abelian of type (p, p) nor an ordinary quaternion group. Then G is metabelian and G is either a 2-group of maximal class and order $\geq 2^{5}$ (if $|G|=2^{5}$, then $G \cong \mathrm{D}_{32}$ or SD_{32}) or G is a p-group of class at most 3 with $G^{\prime} \neq\{1\}$ elementary abelian of order at most p^{2} and G is isomorphic to one of the groups defined in Propositions 3(b2), 5, 7, 8, 9, 10, 11 and 12 stated in the section 4.Proof of theorem C.

Conversely, all these groups satisfy the assumptions of our theorem.
In this paper we shall consider only finite p-groups and our notation is standard (see [1]).

2. Proof of Theorem A

Let G be a p-group all of whose non-normal subgroups are cyclic or abelian of type (p, p) and we assume that G possesses a non-normal abelian subgroup H of type (p, p). We set $K=\mathrm{N}_{G}(H)$ so that we have $H<K<G$ and $K \unlhd G$. Since each subgroup X of G with $X>H$ is normal in G, it follows that K / H is Dedekindian and K / H has exactly one subgroup of order p. This implies that $K / H \neq\{1\}$ is either cyclic or $p=2$ and $K / H \cong \mathrm{Q}_{8}$. Let L / H be a unique subgroup of order p in K / H so that $L \unlhd G$ and $\Omega_{1}(K) \leq L$. If $g \in G-K$, then $L=\left\langle H, H^{g}\right\rangle$ and so we have $\Omega_{1}(K)=L$.

Suppose that K does not possess a G-invariant abelian subgroup of type (p, p). By Lemma 1.4 in [1], we get $p=2$ and K is of maximal class. But H is a normal four-subgroup in K and so $K \cong \mathrm{D}_{8}$. Since $\mathrm{C}_{G}(H)=\mathrm{C}_{K}(H)=H$, it follows by a result of M. Suzuki (see Proposition 1.8 in [1]) that G is also a 2-group of maximal class. In this case H has exactly two conjugates in $K=L \cong \mathrm{D}_{8}$ and so $|G: K|=2$ and $|G|=2^{4}$. It follows that $G \cong \mathrm{D}_{16}$ or SD_{16} and we have obtained the groups stated in part (a) of our theorem.

In what follows we may assume that K possesses a G-invariant abelian subgroup U of type (p, p). Since $\Omega_{1}(K)=L$, we have $U \leq L$ and so $L=H U$ with $|H \cap U|=p$. If L is abelian, then $L \cong \mathrm{E}_{p^{3}}$. If L is nonabelian, then in case $p>2$ we have $L \cong \mathrm{~S}\left(p^{3}\right)$ and in case $p=2$ we must have $L \cong \mathrm{D}_{8}$. But the last case cannot happen since $U \unlhd G$ and L has exactly two four-subgroups which would imply that also $H \unlhd G$, a contradiction. Hence we have either $L \cong \mathrm{E}_{p^{3}}$ or $p>2$ and $L \cong \mathrm{~S}\left(p^{3}\right)$.

Suppose that $p>2$ and $L \cong \mathrm{~S}\left(p^{3}\right)$. In that case we have

$$
\langle z\rangle=H \cap U=L^{\prime}=\mathrm{Z}(L) \leq \mathrm{Z}(G)
$$

If $\mathrm{C}_{G}(L)>\langle z\rangle$, then take an element $x \in \mathrm{C}_{G}(L)-\langle z\rangle$ such that $x^{p} \in\langle z\rangle$ and consider the abelian subgroup $S=\langle h, z, x\rangle$ of order p^{3}, where h is any element in $H-\langle z\rangle$. By our assumptions, we have $S \unlhd G$. But $L \cap S=H=\langle h, z\rangle$ and so $H \unlhd G$, a contradiction. We have proved that $\mathrm{C}_{G}(L)=\langle z\rangle$. Since an
S_{p}-subgroup of $\operatorname{Aut}(L)$ is isomorphic to $\mathrm{S}\left(p^{3}\right)$, it follows that $|G: L|=p$ and $K=L$ so that $|G|=p^{4}$. Also note that $G /\langle z\rangle \cong \mathrm{S}\left(p^{3}\right)$ and G / K acting on $p+1$ subgroups of order p^{2} (containing $\langle z\rangle$) fixes U and acts transitively on p other ones. Hence U is the unique G-invariant subgroup of order p^{2} in L. Set $V=\mathrm{C}_{G}(U)$ so that V is an abelian normal subgroup of order p^{3} in G and we have $G=L V$ with $L \cap V=U$. If $V \cong \mathrm{E}_{p^{3}}$, then we get a group stated in part (c) of our theorem. Hence we may assume that there is an element t of order p^{2} in $V-U$ such that $t^{p}=z$. We have obtained a group from part (b) of our theorem.

From now on we may assume that $L \cong \mathrm{E}_{p^{3}}$. If $|G / L|=p$, then $K=L$ is elementary abelian of order p^{3} and index p and again we have obtained the groups from part (c) of our theorem. Thus we may assume in what follows that $|G / L|>p$.

In the rest of the proof we fix our notation for:

$$
\mathrm{E}_{p^{2}} \cong H, K=\mathrm{N}_{G}(H) \neq G, \Omega_{1}(K)=L, \mathrm{E}_{p^{2}} \cong U \unlhd G,
$$

where

$$
L=H U, H \cap U \cong \mathrm{C}_{p}
$$

and $\{1\} \neq K / H$ is either cyclic or $p=2$ and $K / H \cong \mathrm{Q}_{8}$. Also we fix our assumptions that $L \cong \mathrm{E}_{p^{3}}$ and $|G / L|>p$.
(i) First assume that there is a central element z in G of order p which is contained in H.

In that case we have $|G: K|=p$ so that $K>L$ and therefore there is an element $v \in K-L$ of order p^{2} with $v^{p} \in L-H$. We may choose a G-invariant subgroup $U \leq L$ of order p^{2} so that $U \leq \mathrm{Z}(G)$. The socle $\Omega_{1}(X)$ of any cyclic subgroup X in G of composite order is contained in U.

Indeed, acting with G / K on $p+1$ subgroups of order p^{2} in L which contain $\langle z\rangle$, we see that $|G: K|=p$. Since $|G / L|>p$, we have $K>L$ and so there is an element $v \in K-L$ of order p^{2}, where $v^{p} \in L-H$. Considering $\langle v, z\rangle \cong \mathrm{C}_{p^{2}} \times \mathrm{C}_{p}$, we obtain

$$
\langle v, z\rangle \unlhd G \text { and so } \mho_{1}(\langle v, z\rangle)=\left\langle v^{p}\right\rangle \unlhd G .
$$

Then we may set $\mathrm{E}_{p^{2}} \cong U=\left\langle z, v^{p}\right\rangle \leq \mathrm{Z}(G)$. Let X be any cyclic subgroup of composite order in G and assume that $\Omega_{1}(X) \not \leq U$. But then $\Omega_{1}(X) \leq K$ and so $\Omega_{1}(X) \leq L$. Take an element $1 \neq u \in U \leq \mathrm{Z}(G)$ and consider the subgroup $X \times\langle u\rangle \unlhd G$ so that we get $\Omega_{1}(X) \unlhd G$. Since $\Omega_{1}(X) \nsubseteq U$, we get $L \leq \mathrm{Z}(G)$ and so $H \unlhd G$, a contradiction.
(i1) Suppose that K / L is noncyclic. Then we have $p=2, K / H \cong \mathrm{Q}_{8}$, $|G|=2^{6}$ and $K / L \cong \mathrm{E}_{4}$. Since $\mho_{1}(K) \leq U \leq \mathrm{Z}(G), K / U$ is elementary abelian. Considering the Dedekindian group G / U of order 2^{4} which possesses an elementary abelian subgroup K / U of index 2 , it follows that G / U is abelian and so $G^{\prime} \leq U$. Any two non-commuting elements in G generate here a
minimal nonabelian subgroup (see Lemma 65.2 in [2]). For any $g, h \in G$ we have $\left[g^{2}, h\right]=[g, h]^{2}=1$ and so $\mho_{1}(G) \leq \mathrm{Z}(G)$. In particular, for any $g \in G-K, g^{2} \in K-L$ is not possible and so $g^{2} \in L$ and this implies $g^{2} \in U$. Hence $\mho_{1}(G) \leq U$ and $\exp (G)=4$. Since $Z(G) \leq K$, we get $\mathrm{Z}(G)=U$. Because $G / L \cong \mathrm{E}_{8}$, we have $\mathrm{C}_{G}(L)>L$ and so $\mathrm{C}_{G}(L) \leq K$ implies $\mathrm{C}_{K}(L)>L$. Thus there is $v \in \mathrm{C}_{K}(L)-L$ such that $v^{2} \in U-H$. Let $h \in H-U$ and consider the subgroup $\langle h, v\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4}$ so that $\langle h, v\rangle \unlhd G$ and

$$
\Omega_{1}(\langle h, v\rangle)=\left\langle h, v^{2}\right\rangle \unlhd G .
$$

If $\left\langle h, v^{2}\right\rangle \not \leq \mathrm{Z}(K)$, then there is $g \in G-K$ centralizing $\left\langle h, v^{2}\right\rangle$, a contradiction. We have proved that $H \leq \mathrm{Z}(K)$ and so $\mathrm{C}_{G}(L)=K$.

We have $\mathrm{Z}(K)=L$ and so $\left|K^{\prime}\right|=2$ and $U=K^{\prime} \times(H \cap U)$. Suppose that $\mho_{1}(K)=U$. Then there are elements $v_{1}, v_{2} \in K-L$ such that $z_{1}=v_{1}^{2} \neq$ $z_{2}=v_{2}^{2}$, where $z_{1}, z_{2} \in U-H$. Let $h \in H-U$ and $g \in G-K$. Since

$$
\left\langle h, v_{1}\right\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4} \text { and }\left\langle h, v_{2}\right\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4},
$$

we have

$$
\left\langle h, v_{1}\right\rangle \unlhd G \text { and }\left\langle h, v_{2}\right\rangle \unlhd G \text { and so }\left\langle h, z_{1}\right\rangle \unlhd G \text { and }\left\langle h, z_{2}\right\rangle \unlhd G .
$$

But this gives $h^{g}=h z_{1}=h z_{2}$ and $z_{1}=z_{2}$, a contradiction.
We have proved that $\mho_{1}(K)=\langle u\rangle$ is of order 2 , where $u \in U-H$. It follows that $K /\langle u\rangle$ is elementary abelian and so $\mho_{1}(K)=K^{\prime}=\langle u\rangle$. Let $k_{1}, k_{2} \in K-L$ be such that $\left\langle k_{1}, k_{2}\right\rangle$ covers K / L. Since $k_{1}^{2}=k_{2}^{2}=u$ and $\left[k_{1}, k_{2}\right]=u$, we get $Q=\left\langle k_{1}, k_{2}\right\rangle \cong \mathrm{Q}_{8}$ and $K=H \times Q, L=H \times\langle u\rangle$, where $Q \unlhd G$.

Since $G^{\prime} \leq U$ is elementary abelian, it follows that G induces on Q only inner automorphisms of Q and so we have $G=Q * C$, where $C=\mathrm{C}_{G}(Q)$ and $Q \cap C=\langle u\rangle, K \cap C=L$. Also we have $\mathrm{Z}(C)=\mathrm{Z}(G)=U$. By Lemma 1.1 in [1] we get $\left|C^{\prime}\right|=2$. On the other hand, let $h \in H-U, g \in C-L$ and $v \in Q$ with $v^{2}=u$. Since

$$
\mathrm{C}_{2} \times \mathrm{C}_{4} \cong\langle h, v\rangle \unlhd G, \text { it follows that } \Omega_{1}(\langle h, v\rangle)=\langle h, u\rangle \unlhd G .
$$

Thus we get $h^{g}=h u$ and so $u \in C^{\prime}$. We have proved that $C^{\prime}=Q^{\prime}=\langle u\rangle=G^{\prime}$.
Let g be an element in $C-L$ and $h \in H-U$. If $g^{2} \in U-\langle u\rangle$, then $C=\langle g, h\rangle \cong \mathrm{H}_{16}$, where H_{16} denotes the nonmetacyclic minimal nonabelian group of order 16. If $g^{2} \in\langle u\rangle$, then we have $\langle g, h\rangle \cong \mathrm{D}_{8}$ and so in this case $C=\langle g, h\rangle \times\langle z\rangle$, where $\langle z\rangle=H \cap U$. We have obtained the groups stated in part (d) of our theorem.
(i2) Suppose that $\{1\} \neq K / L$ is cyclic so that K / H is cyclic of order $\geq p^{2}$. In this case we show that G / L is abelian.

Indeed, assume that G / L is nonabelian. Since G / L is Dedekindian, it follows that $p=2$ and $G / L \cong \mathrm{Q}_{8}$. We also have $\Omega_{1}(G)=L$. Since $\mathrm{C}_{G}(L)>L$
and $\mathrm{C}_{G}(L) \leq K$, we get $\mathrm{C}_{K}(L)>L$. Let $v \in \mathrm{C}_{K}(L)-L$ with $o(v)=4$ so that $v^{2} \in U-H$ and let $h \in H-U$. Then

$$
\mathrm{C}_{2} \times \mathrm{C}_{4} \cong\langle h, v\rangle \unlhd G, \text { and }\left\langle h, v^{2}\right\rangle \unlhd G .
$$

If $\left\langle h, v^{2}\right\rangle \not \leq \mathrm{Z}(K)$, then there is $g \in G-K$ which centralizes h, a contradiction. Hence $\left\langle h, v^{2}\right\rangle \leq \mathrm{Z}(K)$ and so $H \leq \mathrm{Z}(K)$ which implies that K is abelian.

Since G / U is Dedekindian and nonabelian, it follows that G / U is Hamiltonian. Let Q / U be a subgroup in G / U which is isomorphic to Q_{8} and set

$$
Q_{0} / U=\mathrm{Z}(Q / U)=(Q / U)^{\prime}
$$

Let Q_{1} / U and Q_{2} / U be two distinct cyclic subgroups of order 4 in Q / U so that Q_{1} and Q_{2} are abelian and $Q_{1} \cap Q_{2}=Q_{0}$. It follows that $Q_{0} \leq \mathrm{Z}(Q)$ and so $Q_{0}=\mathrm{Z}(Q)$. By Lemma 1.1 in $[1],\left|Q^{\prime}\right|=2$ and since Q^{\prime} covers Q_{0} / U, it follows that $Q_{0}=U \times Q^{\prime} \cong \mathrm{E}_{8}$. But then $Q_{0}=\Omega_{1}(G)=L$ and so $K=\mathrm{C}_{G}(L) \geq Q$ is nonabelian, a contradiction. We have proved that G / L is abelian and so G / L is either cyclic of order $\geq p^{2}$ or G / L is abelian of type $\left(p^{s}, p\right), s \geq 1$.
(i2a) Assume that G / L is cyclic. Let $g \in G-K$ so that $\langle g\rangle$ covers G / L and let $\langle t\rangle=\Omega_{1}(\langle g\rangle)$ be the socle of $\langle g\rangle$, where $t \in U-H$ and $o(g)=p^{s}$, $s \geq 3$. We may set $t=g^{p^{s-1}}$ and so $\left\langle g^{p}\right\rangle$ covers $K / H \cong \mathrm{C}_{p^{s-1}}$. Also set $v=g^{p^{s-2}}$ so that $\langle v\rangle \cong \mathrm{C}_{p^{2}}$ and $v^{p}=t$.

Since $\langle g\rangle$ stabilizes the chain $L>U>\{1\}$, it follows that $\left\langle g^{p}\right\rangle$ centralizes L and so K is abelian. Consider the abelian subgroup $\langle h, v\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{2}}$, where h is any element in $H-U$. Since $\langle h, v\rangle \unlhd G$, we get

$$
\Omega_{1}(\langle h, v\rangle)=\langle h, t\rangle \unlhd G
$$

Thus we get $h^{g}=h t^{i}$ for some $i \not \equiv 0(\bmod p)$ and so $G^{\prime} \geq\langle t\rangle$. On the other hand,

$$
\mathrm{Z}(G)=\mathrm{C}_{K}(g)=\left\langle g^{p}, U\right\rangle \text { and so }|G: \mathrm{Z}(G)|=p^{2}
$$

By Lemma 1.1 in [1], we get

$$
|G|=p|\mathrm{Z}(G)|\left|G^{\prime}\right| \text { and so }\left|G^{\prime}\right|=p \text { and } G^{\prime}=\langle t\rangle
$$

We have $\langle g, h\rangle \cong \mathrm{M}_{p^{s+1}}$ and if we set $\langle z\rangle=H \cap U$, then

$$
G=\langle z\rangle \times\langle g, h\rangle \cong \mathrm{C}_{p} \times \mathrm{M}_{p^{s+1}}
$$

We have obtained the groups stated in part (e) of our theorem.
(i2b) Assume that G / L is abelian of type $\left(p^{s}, p\right), s \geq 1$, and K is abelian. Let $v \in K-L$ be such that $\langle v\rangle$ covers $K / L \cong \mathrm{C}_{p^{s}}, s \geq 1$. Then $t=v^{p^{s}} \in$ $U-H$ so that

$$
K / H \cong \mathrm{C}_{p^{s+1}} \text { and } K=H \times\langle v\rangle \cong \mathrm{E}_{p^{2}} \times \mathrm{C}_{p^{s+1}}
$$

Since G / L is abelian of type $\left(p^{s}, p\right)$, there is an element $w \in G-K$ such that $w^{p} \in L$ and so $w^{p} \in U$. Let $h \in H-U$ and consider the abelian subgroup

$$
\langle h, v\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{s+1}}, s \geq 1
$$

Since $\langle h, v\rangle \unlhd G$, we get $\langle h, t\rangle \unlhd G$ and so $h^{w}=h t$ (where we replace h with a suitable power $h^{j}, j \not \equiv 0(\bmod p)$, if necessary). In particular, we get $G^{\prime} \geq\langle t\rangle$.

Suppose that G / U is nonabelian so that $p=2$ and G / U is Hamiltonian. But G / L is abelian and so

$$
(G / U)^{\prime}=\mho_{1}(G / U)=L / U
$$

Hence there is an element $m \in G$ such that $m^{2} \in L-U$, a contradiction. We have proved that G / U is abelian and so $\langle t\rangle \leq G^{\prime} \leq U \leq \mathrm{Z}(G)$ and therefore G is of class 2 with an elementary abelian commutator subgroup.

Note that

$$
\mathrm{C}_{p} \times \mathrm{C}_{p^{s+1}} \cong\langle h, v\rangle \unlhd G \text { and so }[h, w] \in\langle h, v\rangle \cap U=\langle t\rangle
$$

which implies that $\langle v\rangle \unlhd G$ and therefore $p-1$ other cyclic maximal subgroups of $\langle h, v\rangle$ are also normal in G.

In case $\langle v\rangle \not \approx \mathrm{Z}(G)$ we get $v^{w}=v t^{j}$ for some integer $j \not \equiv 0(\bmod p)$. Solve the congruence $i j \equiv-1(\bmod p)$, where $i \not \equiv 0(\bmod p)$. Then we compute:

$$
\left(v^{i} h\right)^{w}=\left(v^{w}\right)^{i} h^{w}=\left(v t^{j}\right)^{i} h t=v^{i} t^{-1} h t=v^{i} h
$$

where $\left\langle v^{i} h\right\rangle \cong \mathrm{C}_{p^{s+1}}$ is also a cyclic maximal subgroup in $\langle h, v\rangle$ and $\left\langle v^{i} h\right\rangle \leq$ $\mathrm{Z}(G)$. Thus replacing $\langle v\rangle$ with $\left\langle v^{i} h\right\rangle$, we may assume from the start that $\langle v\rangle \leq \mathrm{Z}(G)$. We get

$$
\mathrm{Z}(G)=\mathrm{C}_{K}(w)=\langle v\rangle U \text { and so }|G: \mathrm{Z}(G)|=p^{2}
$$

By Lemma 1.1 in [1] we get

$$
|G|=p|\mathrm{Z}(G)|\left|G^{\prime}\right| \text { and so }\left|G^{\prime}\right|=p \text { and } G^{\prime}=\langle t\rangle .
$$

First suppose that $w^{p} \in U-\langle t\rangle$. Then $S=\langle h, w\rangle$ is the nonmetacyclic minimal nonabelian group of order p^{4}. If we set $Z=\langle v\rangle$, then we get

$$
G=Z * S, \text { where } Z \cong \mathrm{C}_{p^{s+1}} \text { and } Z \cap S=S^{\prime}
$$

Assume that $w^{p} \in\langle t\rangle$ and set $\langle z\rangle=U \cap H$. Then $S=\langle h, w\rangle$ is isomorphic to D_{8} in case $p=2$ and to $\mathrm{S}\left(p^{3}\right)$ or $\mathrm{M}_{p^{3}}$ in case $p>2$. Setting again $Z=\langle v\rangle \cong \mathrm{C}_{p^{s+1}}$ we have $Z \leq \mathrm{Z}(G), S \cap Z=S^{\prime}$ and $G=\langle z\rangle \times(S * Z)$. However, in case $p>2$ and $S \cong \mathrm{M}_{p^{3}}$, we have $S * Z=S_{1} * Z$, where $S_{1} \cong \mathrm{~S}\left(p^{3}\right)$ for a suitable subgroup S_{1} in $S * Z$. We have obtained all groups stated in part (f) of our theorem.
(i2c) Assume that G / L is abelian of type $\left(p^{s}, p\right), s \geq 1$, and K is nonabelian. We have $K / L \cong \mathrm{C}_{p^{s}}, s \geq 1$. Let $v \in K-L$ be such that $\langle v\rangle$ covers K / L. Then $1 \neq t=v^{p^{s}} \in U-H$ so that $K / H \cong \mathrm{C}_{p^{s+1}}$. Acting with K on L, we see that K stabilizes the chain $L>U>\{1\}$. Hence if $s>1$, then there is
an element v_{0} of order p^{2} in K which centralizes L and $v_{0}^{p} \in U-H$. For an element $h \in H-U$ we consider

$$
\mathrm{C}_{p} \times \mathrm{C}_{p^{2}} \cong\left\langle h, v_{0}\right\rangle \unlhd G \text { and so } \mathrm{E}_{p^{2}} \cong\left\langle h, v_{0}^{p}\right\rangle \unlhd G .
$$

If $\left\langle h, v_{0}^{p}\right\rangle \not \leq \mathrm{Z}(K)$, then there is an element $g \in G-K$ which centralizes h, a contradiction. Thus we must have $\left\langle h, v_{0}^{p}\right\rangle \leq \mathrm{Z}(K)$ and this implies that K is abelian, a contradiction. We have proved that $s=1$ and so $t=v^{p}$ and $|G|=p^{5}$. Since $\mathrm{C}_{L}(v)=U=\mathrm{Z}(K)$, Lemma 1.1 in [1] gives that $\left|K^{\prime}\right|=p$. On the other hand, $K^{\prime} \leq H$ and since $K^{\prime} \leq \mathrm{Z}(G)$, we get $K^{\prime}=H \cap U$. For any $h \in H-U$, we have $\langle[h, v]\rangle=K^{\prime}$ and so K is the nonmetacyclic minimal nonabelian group of order p^{4} and $\Phi(K)=U$. Because $G / L \cong \mathrm{E}_{p^{2}}$, we have $\exp (G)=p^{2}$ and so for any $x \in G-L$, we have $x^{p} \in U$ and $\mho_{1}(G) \leq U$. For $p=2, G / U$ is elementary abelian. For $p>2$, the fact that G / U is Dedekindian implies that G / U is abelian and so again G / U is elementary abelian. We have proved that $\Phi(G)=U$ and so $G^{\prime} \leq U$ and $\mathrm{d}(G)=3$. Since $\mathrm{Z}(G) \leq K$, we also get $\mathrm{Z}(G)=U$. If $G^{\prime}=K^{\prime}$, then $H \unlhd G$, a contradiction. Thus, $G^{\prime}=U$ and so G is special.

By Lemma 146.7 in [4], G has exactly one abelian maximal subgroup A and for each subgroup X_{i} of order p in $G^{\prime}(i=1,2, \ldots, p+1)$ there are exactly p pairwise distinct maximal subgroups $L_{i j}(j=1,2, \ldots, p)$ of G such that $L_{i j}^{\prime}=X_{i}$.

Suppose that G possesses a nonabelian subgroup S of order p^{3} so that S is minimal nonabelian and $S \unlhd G$. But then $\mathrm{E}_{p^{2}} \cong G^{\prime} \leq S$ and since $G^{\prime}=\mathrm{Z}(G)$, we get that S is abelian, a contradiction. Hence G is an A_{2}-group since each subgroup of index p^{2} in G is abelian and K is a minimal nonabelian maximal subgroup in G. If there is an element $g \in G-K$ of order p, then $\langle g, h\rangle$ (with $h \in H-U)$ is minimal nonabelian of order p^{3}, a contradiction. We have proved that $\mathrm{E}_{p^{3}} \cong L=\Omega_{1}(G)$ and so a unique abelian maximal subgroup A of G is of type (p^{2}, p^{2}). Indeed, A contains $U=\Phi(G)$ and $|K \cap A|=p^{3}$. If $L \leq A$, then there is an element $g \in G-K$ which centralizes L, a contradiction. Hence we have $A \cap L=U=\Omega_{1}(A)$ which shows that $A \cong \mathrm{C}_{p^{2}} \times \mathrm{C}_{p^{2}}$.

By the results of $\S 71$ in [2], it follows that G is one of A_{2}-groups from Theorem $71.4(\mathrm{~b} 2)$ in [2] with $\alpha=1$. We have obtained the groups from part (g) of our theorem.
(ii) We assume that whenever H is a non-normal abelian subgroup of type (p, p) in G, then $H \cap \mathrm{Z}(G)=\{1\}$. Let z be a central element of G which is contained in $L-H$ so that we have $L=\Omega_{1}(K)=\langle z\rangle \times H \cong \mathrm{E}_{p^{3}}$ and $L \cap \mathrm{Z}(G)=\langle z\rangle$. For any $1 \neq h \in H$, we have $\langle h, z\rangle \unlhd G$ and therefore $H \cap\langle h, z\rangle=\langle h\rangle \unlhd K$. Thus, $H \leq \mathrm{Z}(K)$ and $\mathrm{C}_{G}(L)=K$. It follows that G / K acts faithfully on L and stabilizes the chain $L>\langle z\rangle>\{1\}$ and $[H, G]=\langle z\rangle$. Thus $\{1\} \neq G / K$ is elementary abelian of order $\leq p^{2}$. However, if $|G / K|=p$,
then there is an element $g \in G-K$ centralizing an element $1 \neq h \in H$ and so $h \in \mathrm{Z}(G)$, a contradiction. We have proved that we have $G / K \cong \mathrm{E}_{p^{2}}$.

Let X be any cyclic subgroup of composite order in G. Since $\Omega_{1}(X) \leq K$, we have $\Omega_{1}(X) \leq L=\Omega_{1}(K)$. Suppose that $\Omega_{1}(X) \neq\langle z\rangle$. In this case we have

$$
X \times\langle z\rangle \unlhd G \text { and so } \Omega_{1}(X) \unlhd G
$$

This is a contradiction since $L \cap \mathrm{Z}(G)=\langle z\rangle$. We have proved that the socle of each cyclic subgroup of composite order in G is equal $\langle z\rangle \leq G^{\prime}$.

We have $\mathrm{Z}(G) \leq K$ and so we have

$$
\mathrm{Z}(G) \cap L=\mathrm{Z}(G) \cap \Omega_{1}(K)=\langle z\rangle
$$

This implies that $\mathrm{Z}(G)$ is cyclic and we also have $|G: \mathrm{Z}(G)| \geq p^{4}$.
(ii1) First assume that $K / H \cong \mathrm{Q}_{8}$. In this case we have $|G|=2^{7}$. Let K_{i} be any of the three maximal subgroups of K containing H so that $K_{i} / H \cong \mathrm{C}_{4}$ and therefore each K_{i} is abelian. Hence $\left|K^{\prime}\right|=2$ and so $K^{\prime} \unlhd G$ and $K^{\prime} \leq L$ implies that $K^{\prime}=\langle z\rangle$. Let $v_{1}, v_{2} \in K-L$ be such that $\left\langle v_{1}, v_{2}\right\rangle$ covers K / L. Because $v_{1}^{2}=v_{2}^{2}=z$ and $\left[v_{1}, v_{2}\right]=z$, we get $Q=\left\langle v_{1}, v_{2}\right\rangle \cong \mathrm{Q}_{8}$ so that $K=H \times Q$ and $Q \unlhd G$. For each $K_{i}(i=1,2,3)$ we have $K_{i} \unlhd G$ and so $K_{i} \cap Q \unlhd G$. Thus G induces on Q only inner automorphisms of Q which gives $G=Q * M$ with $Q \cap M=\langle z\rangle=Q^{\prime}$ and $M \cap K=L$, where $M=\mathrm{C}_{G}(Q)$ covers G / K. We have $\mho_{1}(M) \leq\langle z\rangle$ and so $Q /\langle z\rangle$ is elementary abelian. We get $G^{\prime}=\Phi(G)=\mathrm{Z}(G)=\langle z\rangle$ and so G is extraspecial of order 2^{7}. Since $M^{\prime}=\Phi(M)=\mathrm{Z}(M)=\langle z\rangle$, it follows that M is extraspecial of order 2^{5} containing an elementary abelian subgroup L of order 8 and so $M \cong \mathrm{Q}_{8} \times \mathrm{Q}_{8}$ and $G \cong \mathrm{Q}_{8} \times \mathrm{Q}_{8} \times \mathrm{Q}_{8}$. We have obtained the group stated in part (h) of our theorem.
(ii2) Assume that K / H is cyclic. Then $K=H \times\langle v\rangle$ is abelian, where $\langle v\rangle \cong \mathrm{C}_{p^{s}}, s \geq 1$, and $\langle v\rangle \geq\langle z\rangle \leq G^{\prime} \cap \mathrm{Z}(G)$.
(ii2a) First suppose that $G^{\prime}=\langle z\rangle$. Then each cyclic subgroup of composite order is normal in G. Let $x, y \in G$ so that we have $\left[x^{p}, y\right]=[x, y]^{p}=1$ and therefore $\mho_{1}(G) \leq \mathrm{Z}(G)$. Hence we have $\Phi(G)=G^{\prime} \mho_{1}(G) \leq \mathrm{Z}(G)$ and we know that $\mathrm{Z}(G)$ is cyclic. Hence $\Phi(G)$ is also cyclic and $G^{\prime}=\Omega_{1}(\Phi(G))$. Since $v^{p} \in \mathrm{Z}(G)$, we have $|G: \mathrm{Z}(G)|=p^{4}$ or p^{5}. If M is any minimal nonabelian subgroup in G, then either $M \cong \mathrm{~S}\left(p^{3}\right)$ or $\mathrm{Z}(M)=\Phi(M)=\mho_{1}(M)$ and so in this case M has a cyclic subgroup of index p. This gives:

$$
\begin{aligned}
& \text { If } p=2 \text {, then } M \in\left\{\mathrm{D}_{8}, \mathrm{Q}_{8}, \mathrm{M}_{2^{n}}, n \geq 4\right\} \\
& \text { If } p>2 \text {, then } M \in\left\{\mathrm{~S}\left(p^{3}\right), \mathrm{M}_{p^{n}}, n \geq 3\right\}
\end{aligned}
$$

Let A_{1} be any minimal nonabelian subgroup in G. Then we have $G=$ $A_{1} * C$, where $C=\mathrm{C}_{G}\left(A_{1}\right)$ with $A_{1} \cap C=\mathrm{Z}\left(A_{1}\right)$. If C is abelian, then $C=\mathrm{Z}(G)$ and $|G: \mathrm{Z}(G)|=p^{2}$, a contradiction. Thus, C is nonabelian and $\mathrm{Z}(C)=\mathrm{Z}(G)$, where $|C: \mathrm{Z}(C)|=p^{2}$ or p^{3}. Let A_{2} be a minimal nonabelian
subgroup in C. Then we have $C=A_{2} * C^{*}$, where $C^{*}=\mathrm{C}_{C}\left(A_{2}\right)$ and $A_{2} \cap C^{*}=$ $\mathrm{Z}\left(A_{2}\right)$. Note that $\mathrm{Z}\left(C^{*}\right)=\mathrm{Z}(C)$ and so if C^{*} were nonabelian, then we get $\left|C^{*}: \mathrm{Z}\left(C^{*}\right)\right| \geq p^{2}$ and so $|C: \mathrm{Z}(C)| \geq p^{4}$, a contradiction. Hence C^{*} is abelian and so $C^{*}=\mathrm{Z}(C)=\mathrm{Z}(G)$. We have proved that $G=A_{1} * A_{2} \mathrm{Z}(G)$, where $\mathrm{Z}(G)$ is cyclic. Finally, if $p=2$ and $A_{1} \cong \mathrm{Q}_{8}$ and $A_{2} \cong \mathrm{D}_{8}$, then we must have $|\mathrm{Z}(G)|>2$. Indeed, if we have in this case $|\mathrm{Z}(G)|=2$, then $G \cong \mathrm{Q}_{8} * \mathrm{D}_{8}$ and this group does not possess an elementary abelian subgroup of order 8 . We have obtained the groups in part (i) of our theorem.
(ii2b) Finally assume that $\left.G^{\prime}\right\rangle\langle z\rangle$. Set $H=\left\langle h_{1}, h_{2}\right\rangle$ and we know that $\left\langle h_{1}, z\right\rangle \unlhd G,\left\langle h_{2}, z\right\rangle \unlhd G$ and both $G /\left\langle h_{1}, z\right\rangle$ and $G /\left\langle h_{2}, z\right\rangle$ are Dedekindian. If both $G /\left\langle h_{1}, z\right\rangle$ and $G /\left\langle h_{2}, z\right\rangle$ were abelian, then we get $G^{\prime} \leq\left\langle h_{1}, z\right\rangle \cap\left\langle h_{2}, z\right\rangle=$ $\langle z\rangle$, contrary to our assumption. Hence we must have $p=2$ and we may assume that $G /\left\langle h_{1}, z\right\rangle$ is Hamiltonian.

Let $Q /\left\langle h_{1}, z\right\rangle$ be an ordinary quaternion subgroup in $G /\left\langle h_{1}, z\right\rangle$ and set

$$
C /\left\langle h_{1}, z\right\rangle=\left(Q /\left\langle h_{1}, z\right\rangle\right)^{\prime}
$$

so that Q^{\prime} covers $C /\left\langle h_{1}, z\right\rangle$. Since $G / K \cong \mathrm{E}_{4}$, we have $G^{\prime} \leq K$ and we know that K is abelian. It follows that $C=\left\langle h_{1}, z\right\rangle Q^{\prime} \leq K$ and so C is abelian of order 8 . For each $x \in Q-C$ we have $x^{2} \in C-\left\langle h_{1}, z\right\rangle$. On the other hand, the socle of each cyclic subgroup of composite order in G is equal $\langle z\rangle$ and so $o\left(x^{2}\right)=4$ and therefore C is abelian of type $(4,2)$. We get $\Omega_{1}(Q)=\left\langle h_{1}, z\right\rangle, \Omega_{2}(Q)=C$, and all elements in $Q-C$ are of order 8. Also we have $Q \cap L=\left\langle h_{1}, z\right\rangle$. If $Q^{\prime}=C$, then $\left|Q: Q^{\prime}\right|=4$ and a well known result of O. Taussky would imply that Q is of maximal class (and order 2^{5}), contrary to the fact that $\Omega_{1}(Q)=\left\langle h_{1}, z\right\rangle \cong \mathrm{E}_{4}$. On the other hand, Q^{\prime} must cover $C /\left\langle h_{1}, z\right\rangle$ and so we have $Q^{\prime} \cong \mathrm{C}_{4}$.

By Lemma 42.1 in [1], we have

$$
Q=\left\langle a, b \mid a^{8}=b^{8}=1, a^{4}=b^{4}=z, a^{b}=a^{-1}\right\rangle
$$

where $Q^{\prime}=\left\langle a^{2}\right\rangle, \mathrm{Z}(Q)=\left\langle b^{2}\right\rangle, \Omega_{2}(Q)=\left\langle a^{2}, b^{2}\right\rangle$, and $\Omega_{1}(Q)=\left\langle z, a^{2} b^{2}\right\rangle$. Since $\mathrm{Z}(Q)=\left\langle b^{2}\right\rangle$, we have $\mathrm{C}_{Q}(b)=\langle b\rangle$ and so $\mathrm{C}_{\left\langle h_{1}, z\right\rangle}(b)=\langle z\rangle$. On the other hand, $b^{2} \in K>L$ and therefore b^{2} centralizes L and so b induces an involutory automorphism on $L \cong \mathrm{E}_{8}$. Hence $\mathrm{C}_{L}(b) \cong \mathrm{E}_{4}$ and so there exists an involution $e \in H-\left\langle h_{1}\right\rangle$ such that $[e, b]=1$.

We have

$$
\mathrm{C}_{2} \times \mathrm{C}_{8} \cong\langle e, b\rangle \unlhd G, \text { where } \Omega_{1}(\langle e, b\rangle)=\langle e, z\rangle .
$$

On the other hand,

$$
b^{a}=a^{-1} b a=b\left(b^{-1} a^{-1} b\right) a=b a^{2}
$$

which shows that $a^{2} \in\langle e, b\rangle$. But then $\langle e, b\rangle$ contains $\left\langle e, z, a^{2} b^{2}\right\rangle \cong \mathrm{E}_{8}$, contrary to

$$
\Omega_{1}(\langle e, b\rangle)=\langle e, z\rangle \cong \mathrm{E}_{4}
$$

We have proved that the case $\left.G^{\prime}\right\rangle\langle z\rangle$ cannot occur.
It remains to be proved the converse that all groups G stated in our theorem satisfy the assumptions of that theorem. In fact, we have to prove that each noncyclic subgroup of order $\geq p^{3}$ is normal in G and that G has a non-normal abelian subgroup of type (p, p).

If $G \cong \mathrm{D}_{16}$ or $G \cong \mathrm{SD}_{16}$, a four-subgroup in G is not normal in G.
Let G be a p-group in part (b) of our theorem. Then we have $L^{\prime}<G^{\prime}<L$, where $G^{\prime} \cong \mathrm{E}_{p^{2}}$. For an element $l \in L-G^{\prime}$, set $H=\left\langle L^{\prime}, l\right\rangle \cong \mathrm{E}_{p^{2}}$. If $H \unlhd G$, then $|G / H|=p^{2}$ implies that $G^{\prime} \leq H$, a contradiction. Hence H is not normal in G.

Let E be an elementary abelian maximal subgroup in a nonabelian p group G of order p^{4} (from part (c) of our theorem). Then we have $1 \neq G^{\prime}<E$. Let $\mathrm{E}_{p^{2}} \cong H$ be any subgroup of order p^{2} in E which does not contain G^{\prime}. If $H \unlhd G$, then $|G / H|=p^{2}$ implies that $G^{\prime} \leq H$, a contradiction. Hence H is not normal in G.

Let G be a 2 -group of order 2^{6} from part (d) of our theorem. Note that $\mathrm{Z}(G) \cong \mathrm{E}_{4}$ implies that G has no abelian maximal subgroup. Indeed, if G would have an abelian maximal subgroup, then we may use Lemma 1.1 in [1] and we get

$$
|G|=2^{6}=2\left|G^{\prime}\right||\mathrm{Z}(G)|=2^{3}\left|G^{\prime}\right| \text { and }\left|G^{\prime}\right|=2^{3},
$$

which contradicts the fact that $\left|G^{\prime}\right|=2$. Let S be a noncyclic subgroup of order $\geq 2^{3}$ and assume that S is not normal in G. Then $G^{\prime} \not \leq S$ and so S is noncyclic abelian. If $|S|=2^{4}$, then $S \times G^{\prime}$ would be an abelian maximal subgroup of G, a contradiction. Assume that $|S|=2^{3}$. Since G has no elementary abelian subgroups of order 2^{4}, we get that S is abelian of type $(4,2)$. In case $G \cong\left(\mathrm{D}_{8} * \mathrm{Q}_{8}\right) \times \mathrm{C}_{2}$, we have $\mho_{1}(G)=G^{\prime}$ and so (since $G^{\prime} \not \leq S$) we must be in case
$\mathrm{H}_{16} * \mathrm{Q}_{8} \cong G=D * Q$, where $D \cong \mathrm{H}_{16}, Q \cong \mathrm{Q}_{8}$ and $D \cap Q=D^{\prime}=\langle z\rangle=Q^{\prime}$, and z is not a square of any element in D. Since all elements in $G-D$ are of order 4 , we have $\Omega_{1}(S) \leq D$ and so

$$
\mathrm{E}_{8} \cong \Omega_{1}(D)=\Omega_{1}(S) \times D^{\prime}=\Omega_{1}(S) \times\langle z\rangle
$$

We have

$$
\begin{gathered}
\mathrm{C}_{D}\left(\Omega_{1}(S)\right)=\Omega_{1}(S) \times\langle z\rangle=\Omega_{1}(D) \text { and } \mathrm{C}_{G}\left(\Omega_{1}(S)\right)=\Omega_{1}(D) * Q \\
\text { where } \mho_{1}\left(\mathrm{C}_{G}\left(\Omega_{1}(S)\right)\right)=\langle z\rangle
\end{gathered}
$$

But $S \leq \mathrm{C}_{G}\left(\Omega_{1}(S)\right)$ and so $G^{\prime}=\langle z\rangle \leq S$, a contradiction. It is easy to see that G possesses a non-normal abelian subgroup $H \cong \mathrm{E}_{4}$. Set $H=\langle t, u\rangle$, where t is a noncentral involution in G and u is a central involution in G such that $\langle u\rangle \neq G^{\prime}$. Then we have $G^{\prime} \not 又 H$. If $H \unlhd G$, then there is $g \in G$ such
that $[g, t] \neq 1$ and so $G^{\prime}=\langle[g, t]\rangle \leq H$, a contradiction. Hence $H=\langle t, u\rangle$ is not normal in G.

Let $G=M \times\langle t\rangle$, where $M \cong \mathrm{M}_{p^{s+1}}, s \geq 3$, and $\langle t\rangle \cong \mathrm{C}_{p}$ (which are groups of part (e) of our theorem). We have $\Omega_{1}(G) \cong \mathrm{E}_{p^{3}}, \Omega_{2}(G)$ is abelian of type $\left(p^{2}, p, p\right)$ with $\mho_{1}\left(\Omega_{2}(G)\right)=G^{\prime}=\mathrm{C}_{p}$. Thus any subgroup of order $\geq p^{3}$ is normal in G. Let H be a complement of G^{\prime} in $\Omega_{1}(G)$ so that $H \not 又 \mathrm{Z}(G)$ and so H is not normal in G. Indeed, if in this case $H \unlhd G$, then $[G, H] \neq\{1\}$ and $[G, H] \leq H$ and so $G^{\prime} \leq H$, a contradiction.

Let G be a group of part (f) of our theorem. Let X be any subgroup of G of order $\geq p^{3}$ which is not normal in G. Then we have $G^{\prime}=S^{\prime} \not \leq X$ and so X is abelian of order $\geq p^{3}$ with $X \cap Z=\{1\}$. But $|G / Z|=p^{3}$ and so $|X|=p^{3}$ and $G=Z \times X$ is abelian, a contradiction. Let $H=\langle t, u\rangle \cong \mathrm{E}_{p^{2}}$, where t is a noncentral element of order p in S and u is a central element of order p in G with $\langle u\rangle \neq G^{\prime}$. Then we have $G^{\prime} \notin H$ and so H is not normal in G.

Let G be a group of order p^{5} given in part (g) of our theorem. Then G is special with $G^{\prime} \cong \mathrm{E}_{p^{2}}$ and G is an A_{2}-group. Let Y be any subgroup of G of order p^{3} which does not contain G^{\prime}. Since $|G: Y|=p^{2}$ and G is an A_{2}-group, it follows that Y is abelian of type $\left(p^{2}, p\right)$. Then $A=G^{\prime} Y$ is a unique abelian maximal subgroup of G and we know that $A \cong \mathrm{C}_{p^{2}} \times \mathrm{C}_{p^{2}}$. But then $\mathrm{E}_{p^{2}} \cong \Omega_{1}(A)=\Phi(A)=G^{\prime}$, a contradiction. Let H be an abelian subgroup of order p^{2} contained in $\Omega_{1}(G) \cong \mathrm{E}_{p^{3}}$ distinct from G^{\prime}. If $H \unlhd G$, then $G=H A$ and G / H is abelian so that $G^{\prime} \leq H$, a contradiction. Hence H is not normal in G.

Let $G \cong \mathrm{Q}_{8} * \mathrm{Q}_{8} * \mathrm{Q}_{8}$ be the extraspecial group of order 2^{7} given in part (h) of our theorem. Let X be any subgroup of order $\geq 2^{3}$ and assume that X is not normal in G. Then $X \cap G^{\prime}=\{1\}$ and so X is elementary abelian. But then $X \times G^{\prime}$ is an elementary abelian subgroup of order $\geq 2^{4}$ in G. Since G is extraspecial of order 2^{7} and type " - ", there are no such elementary abelian subgroups in G. Hence $X \unlhd G$. Let H be a four-subgroup in G with $H \cap G^{\prime}=\{1\}$. If $H \unlhd G$, then $H \cap \mathrm{Z}(G) \neq\{1\}$, a contradiction.

Finally, let G be a group stated in part (i) of our theorem. Then we have

$$
\Omega_{1}(\mathrm{Z}(G))=G^{\prime}, \text { where } \mathrm{Z}(G) \text { is cyclic. }
$$

Also note that $|G: \mathrm{Z}(G)|=p^{4}$ and so G does not possess an abelian maximal subgroup. Indeed, if G would have an abelian maximal subgroup, then Lemma 1.1 in [1] implies that

$$
|G|=p\left|G^{\prime}\right||\mathrm{Z}(G)|, \text { where }\left|G^{\prime}\right|=p
$$

a contradiction. Let X be any subgroup of order $\geq p^{3}$ in G. Then we claim that $X \unlhd G$. Indeed, assume that X is not normal in G. Then we have $G^{\prime} \not \leq X$ and so $X \cap \mathrm{Z}(G)=\{1\}$ and therefore X is abelian of order $\geq p^{3}$. But then $\mathrm{Z}(G) \times X$ is an abelian subgroup of index $\leq p$ in G, a contradiction. It remains to be shown that $G=\left(A_{1} * A_{2}\right) \mathrm{Z}(G)$ possesses an abelian subgroup of type
(p, p) which is not normal in G. If A_{1} and A_{2} possess noncentral elements $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ of order p, then $H=\left\langle a_{1}, a_{2}\right\rangle \cong \mathrm{E}_{p^{2}}$ and H is not normal in G since $H \cap \mathrm{Z}(G)=\{1\}$. If $p>2$, then

$$
A_{1}, A_{2} \in\left\{\mathrm{~S}\left(p^{3}\right), \mathrm{M}_{p^{n}}, n \geq 3\right\}
$$

and in this case there are such elements a_{1} and a_{2}. If $p=2$, then we have

$$
A_{1}, A_{2} \in\left\{\mathrm{D}_{8}, \mathrm{Q}_{8}, \mathrm{M}_{2^{n}}, n \geq 4\right\}
$$

and we may replace A_{1} and A_{2} with suitable other minimal nonabelian subgroups of G so that again we find noncentral involutions $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$. Indeed we have:

$$
\begin{gathered}
\mathrm{Q}_{8} * \mathrm{Q}_{8}=\mathrm{D}_{8} * \mathrm{D}_{8} \\
\mathrm{Q}_{8} * \mathrm{M}_{2^{n}}=\mathrm{D}_{8} * \mathrm{M}_{2^{n}}, n \geq 4
\end{gathered}
$$

and

$$
\left(\mathrm{D}_{8} * \mathrm{Q}_{8}\right) \mathrm{Z}(G)=\left(\mathrm{D}_{8} * \mathrm{D}_{8}\right) \mathrm{Z}(G), \text { where }|\mathrm{Z}(G)|>2
$$

Theorem A is completely proved.

3. Proof of Theorem B

First we shall prove a series of lemmas about 2-groups G which satisfy the assumptions of Theorem B, where H always denotes a non-normal subgroup in G which is isomorphic to Q_{8}. Set $K=\mathrm{N}_{G}(H)$ so that $H<K<G$ and $K \unlhd G$. Let L be a unique subgroup in G which contains H as a subgroup of index 2 . We fix this notation in the sequel.

Lemma 3.1. The factor-group $K / H \neq\{1\}$ is either cyclic or isomorphic to Q_{8} and $G / L \neq\{1\}$ is Dedekindian. We have $\Omega_{1}(K) \leq L$ and if K does not possess a G-invariant four-subgroup, then $G \cong \mathrm{Q}_{2^{5}}$ (the case (a) of Theorem B). From now on we shall assume that K possesses a G-invariant foursubgroup U. We have in that case $L=H U$ with $U_{0}=H \cap U=\mathrm{Z}(H) \leq \mathrm{Z}(G)$ and G / U is also Dedekindian.

Proof. Since K / H is Dedekindian and L / H is a unique subgroup of order 2 in K / H, it follows that $K / H \neq\{1\}$ is either cyclic or isomorphic to Q ${ }_{8}$ which also implies that $\Omega_{1}(K) \leq L$.

Assume that K has no G-invariant four-subgroup. By Lemma 1.4 in [1], K is a 2 -group of maximal class and then $K=L$ is of order 2^{4}. We have $\mathrm{C}_{G}(H)=\mathrm{C}_{K}(H)<H$ and then Proposition 10.17 in [1] implies that G is also of maximal class. Since $K \unlhd G$, we must have $|G / K|=2$ and so $|G|=2^{5}$. The only possibility is $G \cong \mathrm{Q}_{2}{ }^{5}$ and this group obviously satisfies the assumptions of Theorem B.

From now on we shall assume that K has a G-invariant four-subgroup U. Since $\Omega_{1}(K) \leq L$, we have $U \leq L$ and so $L=H U$ with $U_{0}=H \cap U=\mathrm{Z}(H)$. But $L^{\prime} \leq H \cap U$ and so we have $L^{\prime}=U_{0} \leq \mathrm{Z}(G)$. Also, G / U is Dedekindian.

Lemma 3.2. We have $U=\mathrm{Z}(L) \leq G^{\prime}, K=H * \mathrm{C}_{G}(H)$ with $U \leq \mathrm{C}_{G}(H)$ and $H \cap \mathrm{C}_{G}(H)=U_{0}$. Also, G / K is elementary abelian of order 2 or 4 and $\Omega_{1}(K)=U$.

Proof. Since $L^{\prime}=H^{\prime}=U_{0}$, we get $L=H * Z$, where $Z \cong \mathrm{C}_{4}$ or E_{4} and $H \cap Z=U_{0}$. However, if $Z \cong \mathrm{C}_{4}$, then H would be a unique subgroup in L which is isomorphic to Q_{8} and this gives $H \unlhd G$, a contradiction. Hence we have $Z \cong \mathrm{E}_{4}$ and so

$$
U=\Omega_{1}(L)=\Omega_{1}(K)=\mathrm{Z}(L)
$$

Let H_{1} be any cyclic subgroup of order 4 in H. Then

$$
H_{1} U \unlhd G \text { and so } H_{1}=\left(H_{1} U\right) \cap H \unlhd K .
$$

Thus each element in K induces on H an inner automorphism of H and so we get

$$
K=H * \mathrm{C}_{G}(H) \text { with } U \leq \mathrm{C}_{G}(H) \text { and } H \cap \mathrm{C}_{G}(H)=U_{0}
$$

For an element $x \in G-K$, there is an element $h \in H$ of order 4 such that $h^{x} \in L-H$. But $\langle h\rangle U \unlhd G$ with $h^{2} \in U_{0}$ and so $h^{x}=h u$ for some $u \in U-U_{0}$. Then we have $[h, x]=u$ and so we get $U \leq G^{\prime}$.

There are exactly three maximal subgroups of L which contain U and they all are abelian of type $(4,2)$. The other four maximal subgroups of L which do not contain U are isomorphic to Q. This gives $1 \neq|G / K| \leq 4$.

For any element $y \in H-U_{0}$ and any $g \in G-K$, we have

$$
y^{2} \in U_{0}, U\langle y\rangle \unlhd G \text { and } y^{g}=y u, \text { where } u \in U
$$

This gives

$$
y^{g^{2}}=(y u)^{g}=(y u) u^{g}=(y u) u u_{0}=y u_{0} \text { with some } u_{0} \in U_{0} .
$$

Hence $g^{2} \in K$ and so G / L is elementary abelian of order ≤ 4.
Lemma 3.3. If $U \not \leq \mathrm{Z}(G)$, then G is the group of order 2^{5} and class 3 from part (b) of Theorem B and this group satisfies the assumptions of that theorem.

Proof. Assume that $U \nsubseteq \mathrm{Z}(G)$. Note that $K / H \cong \mathrm{C}_{G}(H) / U_{0}$ is either cyclic or isomorphic to Q_{8}. Hence if $K>L$, then $\mathrm{C}_{G}(H)=\mathrm{C}_{K}(H)>U$ and so there is an element k of order 4 in $\mathrm{C}_{K}(H)-U$ such that $k^{2} \in U-U_{0}$. In that case we have

$$
U\langle k\rangle=U_{0} \times\langle k\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4} \unlhd G
$$

But then we get $\left\langle k^{2}\right\rangle \unlhd G$ and so $U \leq \mathrm{Z}(G)$, a contradiction.
We have proved that $K=L$. Suppose that $G-K$ contains an element y of order ≤ 4 which does not centralize U. Since $y^{2} \in U$, we get $D=U\langle y\rangle \cong$
$\mathrm{D}_{8} \unlhd G$. Let V be a four-subgroup in D which is distinct from U. Because $U \unlhd G$, we get also $V \unlhd G$ and $V \cap K=U_{0}=\mathrm{Z}(D)$. But then we have

$$
[H, V] \leq K \cap V=U_{0}<H
$$

and so V normalizes H, a contradiction. Hence each element in $G-K$ of order ≤ 4 centralizes U and since $U \not Z \mathrm{Z}(G)$, there is an element x of order 8 in $G-K$ so that we have $x^{2} \in L-U$ and $\left\langle x^{4}\right\rangle=U_{0}$. Note that $\langle x\rangle U \unlhd G$ and we have either $\langle x\rangle U \cong \mathrm{C}_{8} \times \mathrm{C}_{2}$ or $\langle x\rangle U \cong \mathrm{M}_{16}$. In any case $\left\langle x^{2}\right\rangle$ is characteristic in $\langle x\rangle U$ and so $\left\langle x^{2}\right\rangle \unlhd G$. Then there are exactly three maximal subgroups of $K=L$ which contain $\left\langle x^{2}\right\rangle$, where two of them are isomorphic to Q_{8} and $\left\langle x^{2}\right\rangle U \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$. Thus acting with G / K on four maximal subgroups of L which are isomorphic to Q_{8}, we get $|G: K|=2$ and so $|G|=2^{5}$. Since $U \leq \mathrm{Z}(K)$ (noting that $K=L$), each element in $G-K$ does not centralize U and so (by the above argument) all elements in $G-K$ are of order 8.

We have proved that $\Omega_{2}(G)=K=L \cong \mathrm{C}_{2} \times \mathrm{Q}_{8}$ and so by Theorem 52.1 in [2], G is isomorphic to the group defined in part A2(a) of Theorem 49.1 in [2]. Since $\Omega_{1}(G)=G^{\prime}=U$, this group obviously satisfies the assumptions of Theorem B and we are done.

From now on we shall always suppose that $U \leq \mathrm{Z}(G)$.
Lemma 3.4. The factor-group G / U is abelian and so we have $G^{\prime}=U \leq$ $\mathrm{Z}(G)$. Since for all $x, y \in G$ we get $\left[x^{2}, y\right]=[x, y]^{2}=1$, it follows that $\Phi(G) \leq \mathrm{Z}(G)$.

Proof. Assume that G / U is nonabelian so that G / U is Hamiltonian. Let Q / U be an ordinary quaternion subgroup in G / U, where by our assumption we have $U \leq \mathrm{Z}(G)$ (see Lemma 3). Set

$$
Q_{0} / U=(Q / U)^{\prime}=\mathrm{Z}(Q / U), \text { where }\left|Q_{0}: U\right|=2
$$

Let Q_{1} / U and Q_{2} / U be two distinct cyclic subgroups of order 4 in Q / U so that Q_{1} and Q_{2} are two distinct abelian maximal subgroups in Q. This implies that $\left|Q^{\prime}\right|=2$. On the other hand, Q^{\prime} covers $Q_{0} / U=(Q / U)^{\prime}$ and so $Q_{0}=U \times Q^{\prime} \cong \mathrm{E}_{8}$. For each $l \in Q-Q_{0}$, we have $l^{2} \in Q_{0}-U$ and $l^{2} \in K$ (since G / K is elementary abelian of order ≤ 4). But then $Q_{0} \leq K$ which contradicts Lemma 2 which states that $\Omega_{1}(K)=U$.

Lemma 3.5. There are no involutions in $G-K$ and so we have $U=G^{\prime}=$ $\Omega_{1}(G) \leq \mathrm{Z}(G)$.

Proof. Set $\mathrm{Z}(H)=H^{\prime}=\langle z\rangle$ and suppose that there is an involution i in $G-K$. Then $H \neq H^{i}$ and i normalizes $H_{0}=H \cap H^{i} \cong \mathrm{C}_{4}$. It follows that $H_{0}\langle i\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$ or D_{8} and $H_{0}\langle i\rangle \unlhd G$. If $\langle z, i\rangle$ is not normal in G, then $H_{0}\langle i\rangle \cong \mathrm{D}_{8}$ and there is $g \in G$ which induces on $H_{0}\langle i\rangle$ an outer automorphism (which permutes two four-subgroups in $\left.H_{0}\langle i\rangle\right)$. But in that case we have $\left[\left(H_{0}\langle i\rangle\right),\langle g\rangle\right]=H_{0} \cong \mathrm{C}_{4}$, contrary to the fact that $G^{\prime}=U \cong \mathrm{E}_{4}$. It follows
that we have $E=\langle z, i\rangle \unlhd G$. But then we have $[H, E] \leq K \cap E=\langle z\rangle$ and so i normalizes H, a contradiction.

Lemma 3.6. The factor-group K / H is cyclic.
Proof. Assume that K / H is noncyclic so that setting $\mathrm{Z}(H)=H^{\prime}=\langle z\rangle$ we get

$$
\mathrm{Q}_{8} \cong K / H \cong \mathrm{C}_{G}(H) /\langle z\rangle
$$

and therefore

$$
\mathrm{Z}\left(\mathrm{C}_{G}(H)\right)=U \text { and } \mathrm{Z}(K)=U=\mathrm{Z}(G)
$$

By Lemma 4, we have $\Phi(G) \leq \mathrm{Z}(G)$ and so $\Phi(G)=U$. On the other hand, $|K|=2^{6}$ and so $|G| \geq 2^{7}$ and $\mathrm{d}(G) \geq 5$. By Lemma $5, G$ has no normal elementary abelian subgroup of order 8 and so by the four-generator theorem (see Theorem 50.3 in [2]), we must have $\mathrm{d}(G) \leq 4$, a contradiction.

Proof of Theorem B. We continue with the situation which we have reached after Lemma 6. Hence we have

$$
\begin{gathered}
U=G^{\prime}=\Omega_{1}(G) \leq \mathrm{Z}(G), \Phi(G) \leq \mathrm{Z}(G) \\
K=H \times\langle a\rangle \text { with }\langle a\rangle \cong \mathrm{C}_{2^{n}}, n \geq 1, L=H \times \Omega_{1}(\langle a\rangle)
\end{gathered}
$$

and $G / K \neq\{1\}$ is elementary abelian of order ≤ 4.
(i) First assume $K=L$. In this case G is a special group of order 2^{5} or 2^{6} with

$$
\Omega_{1}(G)=\Phi(G)=\mathrm{Z}(G)=G^{\prime}=U \cong \mathrm{E}_{4} \text { and we set } \mathrm{Z}(H)=\langle z\rangle
$$

Let G_{0} / K be any fixed subgroup of order 2 in G / K and let $x \in G_{0}-K$. Then x normalizes

$$
H_{0}=\left\langle h_{0}\right\rangle=H \cap H^{x} \cong \mathrm{C}_{4} .
$$

If x inverts h_{0}, then for an element $h \in H-H_{0}$, we have $h x \in G_{0}-K$ and $h x$ centralizes H_{0}. Hence there is an element $v \in G_{0}-K$ such that v centralizes an element $h_{0} \in H$ of order 4. If $v^{2}=z$, then $h_{0} v$ is an involution in $G-K$, a contradiction. Hence we have $v^{2}=z^{\prime} \in U-\langle z\rangle$. Since H is not normal in in G_{0}, we have for any $h_{1} \in H-\left\langle h_{0}\right\rangle,\left[h_{1}, v\right] \in\left\{z^{\prime}, z z^{\prime}\right\}$. However, if $\left[h_{1}, v\right]=z z^{\prime}$, then we get

$$
\left(h_{1} v\right)^{2}=h_{1}^{2} v^{2}\left[h_{1}, v\right]=z z^{\prime}\left(z z^{\prime}\right)=1
$$

and so $h_{1} v$ is an involution in $G-K$, a contradiction. Thus we get $\left[h_{1}, v\right]=$ $z^{\prime}=v^{2}$ and so $\langle v\rangle \unlhd G_{0}$. It follows that G_{0} is a splitting extension of the cyclic noncentral normal subgroup $\langle v\rangle$ of order 4 (with $v^{2}=z^{\prime}$) by $H \cong \mathrm{Q}_{8}$. We have obtained the group stated in part (c) of Theorem B. Note that $\left(h_{0} v\right)^{2}=z z^{\prime},\left\langle h_{0} v\right\rangle$ centralizes $\left\langle h_{0}\right\rangle$ and $\left[h_{1}, h_{0} v\right]=z z^{\prime}$ and so G_{0} is also a splitting extension of the cyclic noncentral normal subgroup $\left\langle h_{0} v\right\rangle$ of order 4 (with $\left.\left(h_{0} v\right)^{2}=z z^{\prime}\right)$ by $H \cong \mathrm{Q}_{8}$.

Suppose now in addition that we have $G / K \cong \mathrm{E}_{4}$. If a cyclic subgroup $\langle h\rangle$ of order 4 in H is normal in G, then acting with G / K on four quaternion subgroups in $K=L$, we see that G interchanges two quaternion subgroups which contain $\langle h\rangle$ and so G interchanges also the other two quaternion subgroups in K. But this implies that $|G / K|=2$, a contradiction. Hence if G_{i} / K are three subgroups of order 2 in $G / K, i=1,2,3$, then each G_{i} normalizes exactly one of the three cyclic subgroups of order 4 in H. This implies that that there is an element $w \in G-G_{0}$ such that w centralizes h_{1} (from the previous paragraph), $w^{2}=z^{\prime}$ and $\left[h_{0}, w\right]=z^{\prime}$ so that $K\langle w\rangle$ is a splitting extension of the cyclic noncentral normal subgroup $\langle w\rangle$ of order 4 (with $w^{2}=z^{\prime}$) by $H \cong \mathrm{Q}_{8}$. We have

$$
\left[h_{0}, v w\right]=z^{\prime},\left[h_{1}, v w\right]=z^{\prime},\left[h_{0} h_{1}, v w\right]=1
$$

and so H normalizes $\langle v w\rangle$ with $H \cap\langle v w\rangle=\{1\}$. By the above, we must have $(v w)^{2}=z^{\prime}$ and so we have

$$
z^{\prime}=(v w)^{2}=v^{2} w^{2}[v, w]=z^{\prime} z^{\prime}[v, w]=[v, w]
$$

which implies that $\langle v, w\rangle \cong \mathrm{Q}_{8}$ with $\mathrm{Z}(\langle v, w\rangle)=\left\langle z^{\prime}\right\rangle$. But H normalizes both $\langle v\rangle$ and $\langle w\rangle$ and so $H_{1}=\langle v, w\rangle \unlhd G$. The structure of G is uniquely determined. We verify that we have also $H_{2}=\left\langle h_{1} w, h_{0} v\right\rangle \cong \mathrm{Q}_{8}$ with $\mathrm{Z}\left(\left\langle h_{1} w, h_{0} v\right\rangle\right)=\left\langle z z^{\prime}\right\rangle$ and $\left[H_{1}, H_{2}\right]=\{1\}$. Since $H_{1} \cap H_{2}=\{1\}$, we have obtained the group $G=H_{1} \times H_{2}$ from part (d) of Theorem B.

Finally, in both cases of groups G in parts (c) and (d) of Theorem B, we have $\Omega_{1}(G)=G^{\prime} \cong \mathrm{E}_{4}$ and so if X is any subgroup in G of order $\geq 2^{3}$ and if X contains only one involution, then $X \cong \mathrm{Q}_{8}$ and if X contains more than one involution, then $X \geq G^{\prime}$ and so $X \unlhd G$. Thus in both cases the assumptions of Theorem B are satisfied.
(ii) Now assume that $K>L$ and so $\left|\mathrm{C}_{G}(H): U\right| \geq 2$. Since G / L is abelian, G / K is elementary abelian of order 2 or 4 , and K / L is cyclic of order ≥ 2, we have to consider two subcases.
(ii1) G / K has a subgroup G_{0} / K of order 2 such that G_{0} / L is cyclic of order ≥ 4 and either $G=G_{0}$ or $G=G_{0} G_{1}$ with $G_{0} \cap G_{1}=L$ and $\left|G_{1}: L\right|=2$. We set $\mathrm{Z}(H)=\langle z\rangle$. Let g be an arbitrary element in $G_{0}-K$ so that $\langle g\rangle$ covers G_{0} / L. Since $g^{2} \in \mathrm{Z}(G)$, we have $g^{2} \in \mathrm{C}_{G}(H)$. Because K / H is cyclic but $U \leq \mathrm{C}_{G}(H)$ is noncyclic and $\mathrm{C}_{G}(H) /\langle z\rangle \cong \mathrm{K} / \mathrm{H}$, we get $\mathrm{C}_{G}(H)=\langle z\rangle \times\left\langle g^{2}\right\rangle$ with $o\left(g^{2}\right) \geq 4$ and so $o(g) \geq 8$. Let $\left\langle z^{\prime}\right\rangle=\Omega_{1}(\langle g\rangle)$ be the socle of $\langle g\rangle$, where $U=\left\langle z, z^{\prime}\right\rangle$. We have

$$
H_{0}=\left\langle h_{0}\right\rangle=H \cap H^{g} \cong \mathrm{C}_{4}
$$

is $\langle g\rangle$-invariant and so $H_{0} \unlhd G_{0}$. But $h_{1} \in H-H_{0}$ inverts $\left\langle h_{0}\right\rangle$ and so $\mathrm{C}_{G}\left(h_{0}\right)$ covers G_{0} / K. Therefore we may choose $g \in \mathrm{C}_{G}\left(h_{0}\right)-K$ so that we may assume $\left[g, h_{0}\right]=1$. But H is not normal in G_{0} and so $\left[h_{1}, g\right] \in\left\{z^{\prime}, z z^{\prime}\right\}$ and we may set $\left[h_{1}, g\right]=z^{\epsilon} z^{\prime}$, where $\epsilon=0,1$. We have obtained the groups
from part (e) of Theorem B which obviously satisfy the assumptions of that theorem.

Continuing with this case, we assume that $G=G_{0} G_{1}$ with $G_{0} \cap G_{1}=$ $L=H U$ and $\left|G_{1}: L\right|=2$. The group G_{1} is isomorphic to a group in part (c) of Theorem B and so there is an element $v \in G_{1}-L$ of order 4 such that $v^{2}=z^{\prime}$ and H normalizes but does not centralize $\langle v\rangle$ (see arguments in (i)). On the other hand, $g^{2} \in \mathrm{Z}(G)$ and $o\left(g^{2}\right) \geq 4$ and so there is an element w of order 4 in $\left\langle g^{2}\right\rangle$. But then $v w$ is an involution in $G-K$, contrary to Lemma 5.
(ii2) $G=K G^{*}$, where $K \cap G^{*}=L$ and G^{*} / L is elementary abelian of order 2 or 4 . Also we have $K=H \times\langle a\rangle$, where $o(a) \geq 4$. Also we set $\mathrm{Z}(H)=\langle z\rangle$ and $\Omega_{1}(\langle a\rangle)=\left\langle z^{\prime}\right\rangle$ so that $U=\left\langle z, z^{\prime}\right\rangle$. In any case, we have in $G^{*}-L$ an element v of order 4 such that $v^{2}=z^{\prime}$ and H normalizes but does not centralize $\langle v\rangle$. We have $\mathrm{Z}(G) \leq \mathrm{C}_{G}(H)=U\langle a\rangle$. If $\mathrm{Z}(G)>U$, then there is an element w of order 4 in $\langle a\rangle$ with $w^{2}=z^{\prime}$ and $[v, w]=1$. But then $v w$ is an involution in $G-K$, contrary to Lemma 5 .

We have proved that $\Omega_{1}(G)=\mathrm{Z}(G)=U$ and so, in particular, $o(a)=4$ and $a \notin \mathrm{Z}(G)$. This also gives that $\exp (G)=4$ (because $\mho_{1}(G) \leq \mathrm{Z}(G)$). Hence G is a special group of order 2^{6} or 2^{7}. But G has no normal elementary abelian subgroup of order 8 and so by the four-generator theorem we must have $\mathrm{d}(G) \leq 4$. Since $\Phi(G)=U$, we must have $|G|=2^{6}$ and $\left|G^{*}: L\right|=2$. We may set $H=\left\langle h_{0}, h_{1}\right\rangle$ so that $\left[h_{0}, v\right]=1$ and $\left[h_{1}, v\right]=z^{\prime}$. Set $[a, v]=u$, where $1 \neq u \in U$. We compute:

$$
\begin{aligned}
& (v a)^{2}=v^{2} a^{2} u=z^{\prime} z^{\prime} u=u \neq 1 \\
& \left(v\left(a h_{0}\right)\right)^{2}=z^{\prime}\left(z z^{\prime}\right) u=u z \text { and so } u \neq z, \\
& \left(v\left(a h_{1}\right)\right)^{2}=z^{\prime}\left(z z^{\prime}\right) u z^{\prime}=u\left(z z^{\prime}\right) \text { and so } u \neq z z^{\prime} .
\end{aligned}
$$

It follows that $u=z^{\prime}$ and so $[a, v]=z^{\prime}$ and $Q=\langle a, v\rangle \cong \mathrm{Q}_{8}$ which is normalized but not centralized by H and $Q \cap H=\{1\}$. The structure of G is uniquely determined.

Set $C=\left\langle h_{0}, h_{1} a\right\rangle$. Since $h_{0}^{2}=z,\left(h_{1} a\right)^{2}=z z^{\prime}$ and $\left[h_{0}, h_{1} a\right]=z$, we have that $C \cong \mathcal{H}_{2}$ and $C \cap Q=\left\langle z^{\prime}\right\rangle$, where z^{\prime} is not a square in C. Also we have $[C, Q]=\{1\}$ and therefore we have obtained the group in part (f) of Theorem B, which obviously satisfies the assumptions of that theorem, Our result is completely proved.

4. Proof of Theorem C

This theorem will be proved with a series of Propositions 1 to 12 .
Proposition 4.1. Let G be a p-group with a cyclic intersection of any two distinct conjugate subgroups. Then each non-normal subgroup X in G possesses a cyclic subgroup of index p.

Proof. Let H be a maximal non-normal subgroup of G containing X. Let $L>H$ be such that $|L: H|=p$ so that we have $L \unlhd G$. Since H is not normal in G, there is $g \in G-L$ such that $H^{g} \neq H$. Hence we have $L=H H^{g}$ and $\left|H:\left(H \cap H^{g}\right)\right|=p$. By our assumption, $H \cap H^{g}$ is cyclic and so H has a cyclic subgroup of index p. Since $X \leq H$, it follows that X also has a cyclic subgroup of index p.

In the rest of the paper we assume:
$(*) \quad G$ is a p-group with cyclic intersection of any two distinct conjugate subgroups. Assume in addition that G has a maximal non-normal subgroup H which is neither cyclic nor abelian of type (p, p) nor an ordinary quaternion group. We set $K=\mathrm{N}_{G}(H)$ so that $H<K<G$ and $K \unlhd G$ and let L / H be a unique subgroup of order p in K / H, where $L \unlhd G$. This notation will be fixed in the sequel.

Proposition 4.2. We have that $K / H \neq\{1\}$ is either cyclic or $p=2$ and $K / H \cong \mathrm{Q}_{8}$. Also we have $\Omega_{1}(K) \leq L$.

If K does not possess a G-invariant subgroup isomorphic to $\mathrm{E}_{p^{2}}$, then G is a 2-group of maximal class and order $\geq 2^{5}$ and if $|G|=2^{5}$, then $G \cong \mathrm{D}_{32}$ or SD_{32} and all these groups satisfy our assumption (*).

From now on we always assume that K has a G-invariant subgroup U isomorphic to $\mathrm{E}_{p^{2}}$ and then we have $L=H U$ with $U_{0}=H \cap U \cong \mathrm{C}_{p}$ and G / U is Dedekindian.

Proof. Suppose that K / H has two distinct subgroups K_{1} / H and K_{2} / H of order p. Then $K_{1} \unlhd G, K_{2} \unlhd G$ and so $K_{1} \cap K_{2}=H \unlhd G$, a contradiction. Hence L / H is a unique subgroup of order p in K / H and so K / H is either cyclic or generalized quaternion. On the other hand, K / H is Dedekindian and so $K / H \neq\{1\}$ is either cyclic or $p=2$ and $K / H \cong \mathrm{Q}_{8}$. In any case, we have $\Omega_{1}(K) \leq L$.

Assume that K does not have a G-invariant abelian subgroup of type (p, p). By Lemma 1.1 in [1], we have $p=2$ and K is a 2-group of maximal class and order $\geq 2^{4}$. In that case $K / H \cong \mathrm{Q}_{8}$ cannot happen and so K / H is cyclic. It follows that $K^{\prime} \leq H$ and $K / K^{\prime} \cong \mathrm{E}_{4}$ and so $K=L$ and K^{\prime} is a cyclic subgroup of index 2 in H and $K^{\prime} \unlhd G$. Since H has only two conjugates in G, we have $|G: K|=2$ and so $|G| \geq 2^{5}$. Since H is not normal in G, we have $G^{\prime}>K^{\prime}$ and so $\left|G: G^{\prime}\right|=4$. By a well known result of O. Taussky, G is a 2 -group of maximal class and order $\geq 2^{5}$. However, Q_{32} does not satisfy $(*)$ and so if $|G|=2^{5}$, then $G \cong \mathrm{D}_{32}$ or SD_{32}.

Conversely, let G be a 2 -group of maximal class and order $\geq 2^{5}$. Let Z be a unique cyclic subgroup of index 2 in G. Let H be any non-normal subgroup in G so that we have $H \not \leq Z$ and set $H_{0}=H \cap Z \unlhd G$ with $\left|H: H_{0}\right|=2$. Hence if $g \in G$ is such that $H^{g} \neq H$, then we have $H \cap H^{g}=H_{0}$ is cyclic.

In the sequel we shall always assume that K possesses a G-invariant abelian subgroup U of type (p, p). Since $\Omega_{1}(K) \leq L$, we have $U \leq L$. On
the other hand, G / U is Dedekindian and so $U \not \leq H$. We get $L=H U$ with $U_{0}=H \cap U \cong \mathrm{C}_{p}$.

Proposition 4.3. Assuming that G is not a 2-group of maximal class, then it follows that $|G: K|=p$ and we may choose a G-invariant abelian subgroup U of type (p, p) in L so that $\mathrm{C}_{p} \cong U_{0}=H \cap U \leq \mathrm{Z}(G)$. Also, G^{\prime} covers U / U_{0} and we have one of the following possibilities.
(a) We have

$$
\begin{gathered}
p=2, H \cong \mathrm{D}_{8}, \mathrm{Z}(L)=U \leq G^{\prime} \text { and } K=H * \mathrm{C}_{G}(H) \text { with } \\
U \leq \mathrm{C}_{G}(H) \text { and } H \cap \mathrm{C}_{G}(H)=U_{0} .
\end{gathered}
$$

Also, the unique cyclic subgroup of order 4 in H is normal in G.
(b) We have $H \cong \mathrm{M}_{p^{n}}, n \geq 3$, (if $p=2$, then $n \geq 4$) or H is abelian of type $\left(p^{s}, p\right), s \geq 2$. Set $H_{0}=\Omega_{1}(H)$ and then $H_{0} \cong \mathrm{E}_{p^{2}}, \mathrm{~N}_{G}\left(H_{0}\right)=K$ and K / H_{0} is Dedekindian. There are two subcases:
(b1) If $S=H_{0} U$ is abelian, then $S \unlhd G$ is elementary abelian of order p^{3} and either $H \cong \mathrm{M}_{p^{n}}, n \geq 3$, (if $p=2$. then $n \geq 4$) and in this case we have $U=\Omega_{1}(\mathrm{Z}(L))$, $L^{\prime}=U_{0}$, and $U \leq G^{\prime}$,
or H is abelian of type $\left(p^{s}, p\right), s \geq 2$, and in this case L is abelian of type $\left(p^{s}, p, p\right)$ with $\mho_{1}(L)=\mho_{1}(H) \geq U_{0}$.
(b2) If $S=H_{0} U$ is nonabelian, then $p>2, S \cong \mathrm{~S}\left(p^{3}\right) \unlhd G$ (the nonabelian group of order p^{3} and exponent p) with $\mathrm{Z}(S)=U_{0}$. We have

$$
\begin{aligned}
G= & (Z * S)\langle e\rangle, \text { where } \mathrm{C}_{p^{m}} \cong Z=\mathrm{C}_{G}(S) \unlhd G, m \geq 2, S \cong \mathrm{~S}\left(p^{3}\right) \unlhd G, \\
& Z \cap S=\mathrm{Z}(S)=U_{0}, Z\langle e\rangle=\langle e\rangle \cong \mathrm{C}_{p^{m+1}} \text { or } o(e)=p \text { and } Z\langle e\rangle
\end{aligned}
$$

is either abelian of type $\left(p^{m}, p\right)$ or $Z\langle e\rangle \cong \mathrm{M}_{p^{m+1}}$, where in any case e induces on S an outer automorphism of order p (normalizing U and fusing the other p maximal subgroups of S). We have $\mathrm{E}_{p^{2}} \cong G^{\prime}=U<S$ and G is a group of class 3 . We have $\Omega_{1}(Z * S)=S$ and if $Z\langle e\rangle=\langle e\rangle \cong \mathrm{C}_{p^{m+1}}$, then $\Omega_{1}(G)=S$.
Conversely, groups G defined in (b2) satisfy our assumption (*).
Proof. By Proposition 1, H possesses a cyclic subgroup of index p.
(i) First assume that H is a 2 -group of maximal class. In that case $U_{0}=U \cap H=\mathrm{Z}(H)$. If $|H|>2^{3}$, then we have $H / U_{0} \cong L / U \cong \mathrm{D}_{2^{n}}, n \geq 3$, contrary to the fact that G / U is Dedekindian. It follows that $H \cong \mathrm{D}_{8}$ and because $|L / U|=4$, we get $L^{\prime} \leq H \cap U=U_{0}$ and so $L^{\prime}=U_{0} \leq \mathrm{Z}(G)$. Then we have $L=H * Z$, where $Z=\mathrm{C}_{L}(H), Z \cap H=U_{0}$ and $Z \cong \overline{\mathrm{C}}_{4}$ or E_{4}.

Let $\langle h\rangle$ be a unique cyclic subgroup of order 4 in H and let $x \in G-K$ so that $H^{x} \neq H$. Since $H \cap H^{x}$ is cyclic, we get $H \cap H^{x}=\langle h\rangle$ for all $x \in G-K$. This gives $\langle h\rangle \unlhd G$. But $L /\langle h\rangle \cong \mathrm{E}_{4}$ and so L contains exactly two distinct conjugates of H in G and this implies $|G: K|=2$. Let t be an involution in $H-\langle h\rangle$. Because $U\langle t\rangle \unlhd G$ and H is not normal in G, we get for an
$x \in G-K, t^{x} \notin H$ and therefore we have $t^{x}=t u$ with some $u \in U-U_{0}$. Hence $[t, x]=u \in G^{\prime}$, which implies that G^{\prime} covers U / U_{0} and so in this case $U \leq G^{\prime}$.

Assume for a moment that $Z \cong \mathrm{C}_{4}$. In this case it is well known that $L \cong \mathrm{D}_{8} * \mathrm{C}_{4}$ contains a unique subgroup Q isomorphic to Q_{8} and so $Q \unlhd G$. For any cyclic subgroup $\langle v\rangle$ of order 4 in Q we have $U_{0}<\langle v\rangle$ and $U\langle v\rangle \unlhd G$. But then

$$
\langle v\rangle=(U\langle v\rangle) \cap Q \unlhd G,
$$

and so G induces on Q only inner automorphisms of Q. We get $G=Q * C$, where $C=\mathrm{C}_{G}(Q)$ and $Q \cap C=U_{0}$. Since Q does not centralize U, we have $U \nsubseteq C$ and so $U \cap C=U_{0}=Q^{\prime}$. On the other hand, we get

$$
G^{\prime}=Q^{\prime} C^{\prime}=U_{0} C^{\prime} \leq C
$$

contrary to $U \leq G^{\prime}$. We have proved that $Z \cong \mathrm{E}_{4}$ and $Z=\mathrm{Z}(L) \unlhd G$.
Suppose that $U \neq Z$ so that $U \cap Z=U_{0}, S=U Z \cong \mathrm{E}_{8}$ and $S \unlhd G$. Acting with an element $x \in G-K$ on three subgroups of order 4 in S which contain $U_{0} \leq \mathrm{Z}(G)$, we see that $Z \unlhd G, U \unlhd G$ and so also we have $\mathrm{E}_{4} \cong S \cap H \unlhd G$. But we know that a cyclic subgroup of order 4 in H is normal in G and so we get $H \unlhd G$, a contradiction. We have proved that $U=Z=\mathrm{Z}(L)$.

Let t be any involution in H. Since $U\langle t\rangle \unlhd G$ and $H \unlhd K$, it follows that

$$
(U\langle t\rangle) \cap H=\left\langle t, U_{0}\right\rangle \unlhd K
$$

Thus, each element in K induces on H only inner automorphisms of H. It follows

$$
K=H * \mathrm{C}_{G}(H) \text { with } U \leq \mathrm{C}_{G}(H)=\mathrm{C}_{K}(H) \text { and } H \cap \mathrm{C}_{G}(H)=U_{0}
$$

(ii) Now suppose that $H \cong \mathrm{M}_{p^{n}}, n \geq 3$, (where in case $p=2$ we have $n \geq 4)$ or H is abelian of type $\left(p^{s}, p\right), s \geq 2$. Set $H_{0}=\Omega_{1}(H) \cong \mathrm{E}_{p^{2}}$ so that $H_{0} \unlhd K$. It follows that $\mathrm{N}_{G}\left(H_{0}\right)=K$ and K / H_{0} is Dedekindian. Set $S=H_{0} U \unlhd G$. We have
$L / U \cong H / U_{0}$, where $H^{\prime} \leq U_{0} \leq \mathrm{Z}(H)$, and so $L^{\prime} \leq H \cap U=U_{0}$.
If L is nonabelian, then $L^{\prime}=U_{0} \leq \mathrm{Z}(G)$. In that case we act with G / K on $p+1$ subgroups of order p^{2} in S which contain $U_{0} \leq \mathrm{Z}(G)$, where U is the only one of them which is normal in G and all p other ones are fused with G / K and so we get $|G: K|=p$. Also, if $h_{0} \in H_{0}-U_{0}$ and $x \in G-K$, then $h_{0}^{x}=h_{0} u$ with $u \in U-U_{0}$. Hence G^{\prime} covers U / U_{0} and so we have in this case $U \leq G^{\prime}$.

Now assume that L is abelian so that L is of type (p^{s}, p, p). If $U_{0} \leq \mathrm{Z}(G)$, then with the same arguments as above, we get $|G: K|=p$ and G^{\prime} covers U / U_{0}. Now suppose that $U_{0} \not \leq \mathrm{Z}(G)$. Then there is a subgroup U_{1} of order p in U such that $U=U_{0} \times U_{1}$ and $U_{1} \leq \mathrm{Z}(G)$. We have

$$
\mho_{1}(L)=\mho_{1}(H) \unlhd G \text { and } \mho_{1}(H) \neq\{1\} \text { is cyclic }
$$

Let H_{1} be the subgroup of order p in $\mho_{1}(H)$ so that we get $H_{1} \leq \mathrm{Z}(G)$. Then we replace U with

$$
\mathrm{E}_{p^{2}} \cong U^{*}=U_{1} \times H_{1} \leq \mathrm{Z}(G)
$$

where

$$
U_{0}^{*}=U^{*} \cap H=H_{1} \leq \mathrm{Z}(G)
$$

and set $S^{*}=H_{0} U^{*}$. Now, working with $U^{*}, U_{0}^{*} \leq \mathrm{Z}(G)$ and $S^{*}=H_{0} U^{*}$ (instead of U, U_{0} and S), we get with the same arguments as above that $|G: K|=p$ and that G^{\prime} covers U^{*} / U_{0}^{*}. We write again U and U_{0} instead of U^{*} and U_{0}^{*}, respectively, so that we may always assume that $U_{0}=U \cap H \leq \mathrm{Z}(G)$.
(ii1) Assume that $S=H_{0} U$ is abelian so that $S \cong \mathrm{E}_{p^{3}}$ and $S \unlhd G$. Suppose in addition that $H \cong \mathrm{M}_{p^{n}}, n \geq 3$, (where in case $p=2$ we have $n \geq 4)$. Then we have $L^{\prime}=H^{\prime}=U_{0} \leq \mathrm{Z}(G)$ and $U \leq G^{\prime}$. Let $\langle a\rangle$ be a cyclic subgroup of index p in H so that $\langle a\rangle$ covers H / H_{0} (and L / S) and $\langle a\rangle \cap H_{0}=U_{0}=\langle z\rangle$. Let $t \in H_{0}-U_{0}$ so that we may set $[a, t]=z$. Suppose, by way of contradiction, that $U \not \leq \mathrm{Z}(L)$. In that case, $\left|L: \mathrm{C}_{L}(U)\right|=p$ and so $\mathrm{C}_{L}(U)=\left\langle a^{p}\right\rangle S$. We may choose an element $u \in U-U_{0}$ so that $[a, u]=z^{-1}$. Then we get $[a, u t]=z^{-1} z=1$ so that we have

$$
\mathrm{Z}(L)=\left\langle a^{p}\right\rangle \times\langle u t\rangle \text { and } \mathrm{E}_{p^{2}} \cong \Omega_{1}(\mathrm{Z}(L))=\langle u t, z\rangle \unlhd G
$$

But we know that $\mathrm{C}_{p} \cong G / K$ acts transitively on p maximal subgroups of S which contain $U_{0} \leq \mathrm{Z}(G)$ and which are distinct from U. Since $\langle u t, z\rangle \neq U$, we have a contradiction. Thus we have proved that $U \leq \mathrm{Z}(L)$ and so $U=$ $\Omega_{1}(\mathrm{Z}(L))$.

Now assume that H is abelian of type $\left(p^{s}, p\right), s \geq 2$. Suppose, by way of contradiction, that L is nonabelian. In that case we have $L^{\prime}=U_{0} \leq \mathrm{Z}(G)$ and $\mathrm{C}_{L}(H)=H$. By Lemma 1.1 in [1], we get

$$
|L|=p|\mathrm{Z}(L)|\left|L^{\prime}\right| \text { and so }|L: \mathrm{Z}(L)|=p^{2}
$$

Since $\mathrm{Z}(L)<H$, it follows that $\mathrm{Z}(L)$ is a maximal subgroup of H. If $\mathrm{Z}(L) \geq$ H_{0}, then $H_{0}=\Omega_{1}(\mathrm{Z}(L))$, which implies that $H_{0} \unlhd G$, a contradiction. It follows that $\mathrm{Z}(L)$ is a cyclic subgroup of index p in H and so $\mathrm{Z}(L)$ covers H / H_{0} and L / S. Hence we get that $L=\mathrm{Z}(L) S$ is abelian, a contradiction. We have proved that L is abelian of type $\left(p^{s}, p, p\right)$. Then we get $\mho_{1}(L)=\mho_{1}(H)$ and $\mho_{1}(H)$ is cyclic of order $\geq p$. Let H_{1} be the subgroup of order p in $\mho_{1}(H)$ so that $H_{1} \leq \mathrm{Z}(G)$ and $H_{1} \leq H_{0}$. If $H_{1} \neq U_{0}$, then $H_{0}=H_{1} \times U_{0} \leq \mathrm{Z}(G)$, contrary to $\mathrm{N}_{G}\left(H_{0}\right)=K$. Hence we have $H_{1}=U_{0}$ and so $\mho_{1}(L)=\mho_{1}(H) \geq$ U_{0}.
(ii2) Assume that $S=H_{0} U$ is nonabelian. If $p=2$, then $S \cong \mathrm{D}_{8}$. But U and H_{0} are the only two four-subgroups in S and since $U \unlhd G$, it follows that $H_{0} \unlhd G$, a contradiction. Hence we have $p>2$ and $S \cong \mathrm{~S}\left(p^{3}\right)$ (the nonabelian group of order p^{3} and exponent p) with $S^{\prime}=\mathrm{Z}(S)=U_{0}$. We
know that $U \leq G^{\prime}$. On the other hand, G / U is Dedekindian and so abelian which implies that $G^{\prime} \leq U$ and therefore we have $G^{\prime}=U<S \unlhd G$. Since $U=G^{\prime} \not \leq \mathrm{Z}(S)$, it follows that G is of class 3. Also, U is a unique normal abelian subgroup of type (p, p) in G. Indeed, if $V \cong \mathrm{E}_{p^{2}}, V \unlhd G$ and $V \neq U$, then the fact that G / V is abelian Dedekindian implies that $G^{\prime} \leq V \cap U<U$, a contradiction. Set $Z=\mathrm{C}_{G}(S)$ so that $Z \unlhd G$ and $Z \cap S=U_{0}$. We know that Z does not have a G-invariant abelian subgroup of type (p, p) and so Lemma 1.4 in [1] implies that $Z \cong \mathrm{C}_{p^{m}}, m \geq 1$, is cyclic and so $\Omega_{1}(Z * S)=S$. If $Z * S=G$, then $G^{\prime}=U_{0} \cong \mathrm{C}_{p}$, a contradiction. Hence we have $Z * S<G$. On the other hand, a Sylow p-subgroup of $\operatorname{Aut}(S)$ is isomorphic to $\mathrm{S}\left(p^{3}\right)$ and so $G / Z \cong \mathrm{~S}\left(p^{3}\right)$ and $|G:(Z * S)|=p$. We know that $|G| \geq p^{5}$ because $|H| \geq p^{3}$ and so $L=H U(<G)$ is of order $\geq p^{4}$. This implies that we have $m \geq 2$. Let e be an element in $G-(Z * S)$ so that e fixes U and fuses the other p maximal subgroups of S. Since $G / Z \cong \mathrm{~S}\left(p^{3}\right)$ is of exponent p, we have $e^{p} \in Z$. If $Z\langle e\rangle$ is cyclic, then we have

$$
Z\langle e\rangle=\langle e\rangle \cong \mathrm{C}_{p^{m+1}}
$$

In this case, G / S is cyclic of order $\geq p^{2}$ and $\Omega_{1}(Z * S)=S$ together with $|Z| \geq p^{2}$ implies $\Omega_{1}(G)=S$. If $Z\langle e\rangle$ is noncyclic, then $Z\langle e\rangle$ splits over Z and we may assume that $o(e)=p$. In this case $Z\langle e\rangle$ is either abelian of type $\left(p^{m}, p\right)$ or $Z\langle e\rangle \cong \mathrm{M}_{p^{m+1}}$. We have obtained the groups stated in part (b2) of our proposition.

It remains to be proved that these groups G satisfy our condition (*). Let X be any noncyclic and non-normal subgroup of order $\geq p^{3}$ in G. First assume that $|X \cap S|=p^{2}$ so that we have $X \cap S=S_{i}$ for some $i \in\{1,2, \ldots, p\}$, where $\left\{S_{1}, S_{2}, \ldots, S_{p}\right\}$ is the set of maximal subgroups of S distinct from U which are acted upon transitively by $G /(Z * S)$. Since $\Omega_{1}(Z * S)=S$, we have $\Omega_{1}(X \cap Z * S)=S_{i}$ and this implies that $X \leq Z * S$. Since $X \geq S_{i}>$ $U_{0}=(Z * S)^{\prime}$, it follows that $\mathrm{N}_{G}(X)=\mathrm{N}_{G}\left(S_{i}\right)=Z * S$ and then for each $g \in G-(Z * S)$, the intersection $X \cap X^{g}$ is cyclic.

Now assume that $|X \cap S|=p$. (If $|X \cap S|=1$, then $X \cap(Z * S)=\{1\}$ and then $|X| \leq p$, a contradiction.) In this case, $X_{0}=X \cap(Z * S)$ is cyclic of order $\geq p^{2}, X \not 又 Z * S$ and so $\left|X: X_{0}\right|=p$. On the other hand, $\mho_{1}(Z * S)=\mho_{1}(Z) \geq U_{0}$ and so $X_{0} \geq U_{0}$. We get $\mathrm{N}_{G}\left(X_{0}\right) \geq\langle Z * S, X\rangle=G$. Hence for each $g \in G$ with $X^{g} \neq X$, we see that $X \cap X^{g}=X_{0}$ is cyclic.

Finally, $Z S_{i} \cong \mathrm{C}_{p^{m}} \times \mathrm{C}_{p}, m \geq 2$, is not normal in G but $Z \unlhd G$ and so our condition $(*)$ is satisfied. Proposition 3 is completely proved.

Proposition 4.4. If $U \cong \mathrm{E}_{p^{2}}$ is a G-invariant subgroup contained in $K=\mathrm{N}_{G}(H)$ such that $U_{0}=H \cap U \leq \mathrm{Z}(G)$, then we have $G^{\prime} \leq U$. Hence G^{\prime} is elementary abelian of order $\leq p^{2}$ and so G is of class at most 3 .

Proof. Assume that G / U is nonabelian so that we have $p=2$ and G / U is Hamiltonian. Let Q / U be any ordinary quaternion subgroup in G / U and
we set

$$
Q_{0} / U=(Q / U)^{\prime}=\mathrm{Z}(Q / U)=(G / U)^{\prime}
$$

We have $\left|Q: \mathrm{C}_{Q}(U)\right| \leq 2$ and so $Q_{0}<\mathrm{C}_{Q}(U)$ and let $y \in \mathrm{C}_{Q}(U)-Q_{0}$ so that $y^{2} \in Q_{0}-U$. Hence $U\langle y\rangle$ is an abelian maximal subgroup in Q. By lemma 1.1 in [1], we have

$$
2^{5}=|Q|=2\left|Q^{\prime}\right||\mathrm{Z}(Q)|, \text { where } \mathrm{Z}(Q) \leq Q_{0} \text { and } Q_{0} \cong \mathrm{E}_{8} \text { or } Q_{0} \cong \mathrm{C}_{4} \times \mathrm{C}_{2}
$$

If $Q^{\prime}=Q_{0}$, then $\left|Q: Q^{\prime}\right|=4$ and so by a result of O. Taussky, Q is of maximal class and order 2^{5}, contrary to $U \unlhd Q$. Thus, we have $Q^{\prime}<Q_{0}$ and Q^{\prime} covers Q_{0} / Q.
(i) First suppose that $Q_{0} \cong \mathrm{E}_{8}$. We know that G / Q_{0} is elementary abelian and so in this case $\exp (G)=4$. In particular, we must have (according to Proposition 3) $H \cong \mathrm{D}_{8}$ or $\mathrm{C}_{4} \times \mathrm{C}_{2}$. Consider again an abelian maximal subgroup $U \times\langle y\rangle$ of Q, where $\langle y\rangle \cong \mathrm{C}_{4}$ and $y^{2} \in Q_{0}-U$. Since $U \times\langle y\rangle \unlhd G$, we get $y^{2} \in \mathrm{Z}(G)$. Hence y^{2} is an involution in K and since $\Omega_{1}(K) \leq L$ (see Propositions 2 and 3), we get $Q_{0}=\left\langle y^{2}\right\rangle \times U \leq L$. Set $H_{0}=Q_{0} \cap H \cong \mathrm{E}_{4}$, where $H_{0}>U_{0}$ and $\mathrm{N}_{G}\left(H_{0}\right)=K$. Now act with G / K on three subgroups of order 4 in Q_{0} which contain $U_{0} \leq \mathrm{Z}(G)$. We see that only U is normal in G and $H_{0} \neq H_{0}^{g}$ with some $g \in G-K$. But $y^{2} \in Q_{0}-U$ and $y^{2} \in \mathrm{Z}(G)$ and so $\left\langle y^{2}, U_{0}\right\rangle \unlhd G$, a contradiction.
(ii) We have proved that $Q_{0} \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$ so that all elements in $Q_{0}-U$ are of order 4 and all elements in $Q-Q_{0}$ are of order 8 . Since Q^{\prime} covers Q_{0} / U and $Q^{\prime}<Q_{0}$, we get $Q^{\prime} \cong \mathrm{C}_{4}$. On the other hand, $\Omega_{2}(Q)=Q_{0} \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$ and so Lemma 42.1 in [1] implies that Q can be defined with:

$$
Q=\left\langle a, b \mid a^{8}=b^{8}=1, a^{4}=b^{4}=z, a^{b}=a^{-1}\right\rangle
$$

where

$$
\begin{gathered}
Q^{\prime}=\left\langle a^{2}\right\rangle \cong \mathrm{C}_{4}, \mathrm{Z}(Q)=\left\langle b^{2}\right\rangle \cong \mathrm{C}_{4}, \Omega_{2}(Q)=\left\langle a^{2}, b^{2}\right\rangle=Q_{0} \cong \mathrm{C}_{4} \times \mathrm{C}_{2}, \\
\Omega_{1}(Q)=U=\left\langle z, a^{2} b^{2}\right\rangle \cong \mathrm{E}_{4}, U_{0}=\langle z\rangle
\end{gathered}
$$

and $A=\left\langle a, b^{2}\right\rangle \cong \mathrm{C}_{8} \times \mathrm{C}_{2}$ is a unique abelian maximal subgroup of Q. Also, it is easy to see that $\langle a\rangle$ is a characteristic subgroup in Q. Indeed, if $\theta \in \operatorname{Aut}(Q)$, then $A^{\theta}=A$ and so $b^{\theta} \in Q-A$. Suppose that $\langle a\rangle^{\theta} \neq\langle a\rangle$. Then we have $\langle a\rangle^{\theta}=\left\langle a b^{2}\right\rangle$ and we get

$$
\left(a b^{2}\right)^{b^{\theta}}=a^{-1} b^{-2}=a^{b^{\theta}}\left(b^{2}\right)^{b^{\theta}}=a^{-1} b^{2}
$$

and so we get $b^{4}=1$, a contradiction.
(iii) We know from Proposition 3 that G^{\prime} covers U / U_{0} and since G / Q_{0} is elementary abelian (and so $\exp (G)=8$), we have $G^{\prime} \leq Q_{0}$. But $Q^{\prime}=\left\langle a^{2}\right\rangle$ with $\left\langle a^{4}\right\rangle=\langle z\rangle=U_{0}$ and so we get $G^{\prime}=Q_{0}$. In particular, we have $G>Q$ and $|G| \geq 2^{6}$.

Since $\mathrm{C}_{Q}(U)=A=\left\langle a, b^{2}\right\rangle$ and $|Q: A|=2$, we see that $C=\mathrm{C}_{G}(U)$ covers G / Q, where $C \cap Q=A$ and $C>A$. On the other hand, C / U does not possess an ordinary quaternion subgroup and so C / U is abelian and therefore C is of class ≤ 2 with $C^{\prime} \leq U \leq \mathrm{Z}(C)$. Indeed, if $Q_{1} / U \cong \mathrm{Q}_{8}$ and $Q_{1} \leq C$, then by (ii) (since Q / U was an arbitrary ordinary quaternion subgroup in $G / U)$, we have $U \not \leq \mathrm{Z}\left(Q_{1}\right)$ which is not the case. For any $x, y \in C$, we have $\left[x^{2}, y\right]=[x, y]^{2}=1$ and so we have $\mho_{1}(C) \leq \mathrm{Z}(C)$. Since $a \in C$ and $a^{2} \in Q_{0}-U$, it follows that $Q_{0} \leq \mathrm{Z}(C)$ and so $C=\mathrm{C}_{G}(U)=\mathrm{C}_{G}\left(Q_{0}\right)$. In particular, we get $\mathrm{C}_{G}\left(b^{2}\right) \geq\langle Q, C\rangle=G$ which shows that $b^{2} \in \mathrm{Z}(G)$.
(iv) Now we show that $\mathrm{C}_{G}(Q)=\mathrm{Z}(Q)=\left\langle b^{2}\right\rangle=\mathrm{Z}(G)$. Indeed, set $R=\mathrm{C}_{G}(Q)$, where $R \cap Q=\mathrm{Z}(Q)=\left\langle b^{2}\right\rangle \leq \mathrm{Z}(G)$ and $b^{4}=z$ with $\langle z\rangle=U_{0}$. First suppose that R has a G-invariant four-subgroup U_{1}. If $U_{1}>\langle z\rangle$, then set $U_{1}=U^{*}$ and if $U_{1} \nsupseteq\langle z\rangle$, then considering $\mathrm{E}_{8} \cong U_{1} \times\langle z\rangle$, we may choose in $U_{1} \times\langle z\rangle$ a G-invariant four-subgroup U^{*} such that $\left.U^{*}\right\rangle\langle z\rangle$ and we have in any case $U^{*} \cap U=\langle z\rangle=U^{*} \cap Q$. Since $U^{*} \cap H=\langle z\rangle=U_{0} \leq \mathrm{Z}(G)$ and $\left|\left(H U^{*}\right): H\right|=2$, we have $H U^{*} \leq K=\mathrm{N}_{G}(H)$ and so $L=H U^{*}$. By Proposition 3 (using U^{*} instead of U), we get that G^{\prime} covers U^{*} / U_{0}, contrary to to the fact that $G^{\prime}=Q_{0}$. Hence R does not have a G-invariant four-subgroup. By Lemma 1.4 in [1], R is either cyclic or R is of maximal class. But $\left\langle b^{2}\right\rangle \cong \mathrm{C}_{4}$ and $\left\langle b^{2}\right\rangle \leq \mathrm{Z}(R)$ and so R must be cyclic. Assume that $R>\left\langle b^{2}\right\rangle$ which together with $\exp (G)=8$ gives $R \cong \mathrm{C}_{8}$. We may choose a generator r of R so that $r^{2}=b^{-2}$ and then $i=r b$ is an involution in $G-Q$ since $i^{2}=(r b)^{2}=r^{2} b^{2}=b^{-2} b^{2}=1$. We have

$$
a^{i}=a^{r b}=a^{b}=a^{-1} \text { and so }[a, i]=a^{-2} \notin U,
$$

contrary to the fact that G / U is Hamiltonian, where for each $x \in G$ with $x^{2} \in U$ we must have $[G, x] \leq U$.
(v) We study the automorphisms of Q induced on Q by elements of C, where $C \cap Q=A$. Now, A induces on Q the inner automorphisms given by:

$$
b^{a}=a^{-1} b a=b\left(b^{-1} a^{-1} b\right) a=b a^{2}, b^{a^{2}}=\left(b a^{2}\right)^{a}=b a^{4}=b z
$$

Let $x \in C-A$ so that x centralizes $Q_{0}=\left\langle a^{2}, b^{2}\right\rangle$ and x normalizes $\langle a\rangle$ (because $\langle a\rangle$ is characteristic in Q) which gives $a^{x}=a z^{\epsilon}$, where $\epsilon \in\{0,1\}$. Note that $b^{x}=b y$ with some $y \in A=\left\langle a, b^{2}\right\rangle$. But x normalizes (centralizes) $Q_{0}=\left\langle a^{2}, b^{2}\right\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$ and so x must also normalize $\left\langle a^{2}, b\right\rangle \cong \mathrm{M}_{16}$ and so $y \in\left\langle a^{2}, b^{2}\right\rangle$. Then we get (noting that $b^{2} \in \mathrm{Z}(G)$):

$$
b^{2}=\left(b^{2}\right)^{x}=\left(b^{x}\right)^{2}=(b y)^{2}=b y b y=b^{2}\left(b^{-1} y b\right) y=b^{2} y^{b} y
$$

and so we have $y^{b}=y^{-1}$ and this implies $y \in\left\langle a^{2}\right\rangle$.
(vi) We have proved that each element $x \in C-A$ induces on Q an automorphism given by:

$$
b^{x}=b y, \text { where } y \in\left\langle a^{2}\right\rangle \text { and } a^{x}=a z
$$

Indeed, if $\epsilon=0$, i.e., $a^{x}=a$, then x would induce on Q an inner automorphism, contrary to $\mathrm{C}_{G}(Q)=\mathrm{Z}(Q)$. Since $b^{x^{2}}=b y^{2}$ and $a^{x^{2}}=a$, we have $x^{2} \in Q$. Setting $G_{0}=\langle x\rangle Q$, where $\left|G_{0}: Q\right|=2$, we see that $G_{0}=G$ and so $G^{\prime}=Q^{\prime}=\left\langle a^{2}\right\rangle \cong \mathrm{C}_{4}$ because

$$
[b, x]=y \in\left\langle a^{2}\right\rangle \text { and }[a, x]=z=a^{4}
$$

and so $G /\left\langle a^{2}\right\rangle$ is abelian. On the other hand, we know that $G^{\prime}=Q_{0}$. This is a final contradiction and our proposition is proved.

Proposition 4.5. Suppose that we have the case (a) of Proposition 3, where $H \cong \mathrm{D}_{8}$. Then K / H is cyclic and we have the following possibilities:
(a)

$$
G=(\langle a\rangle \times\langle b\rangle)\langle i\rangle, \text { where }\langle a\rangle \cong\langle b\rangle \cong \mathrm{C}_{4}
$$

and i is an involution with $a^{i}=a^{-1}$ and $b^{i}=b^{-1}$ or $b^{i}=b a^{2} b^{2}$.
(b) G is a unique group of order 2^{5} and class 3 with $\Omega_{2}(G) \cong \mathrm{C}_{2} \times \mathrm{D}_{8}$ which is defined in Theorem 52.2(a) in [2] for $n=2$.
(c)

$$
G=(\langle h\rangle \times\langle g\rangle)\langle i\rangle, \text { where }\langle h\rangle \cong \mathrm{C}_{4},\langle g\rangle \cong \mathrm{C}_{2^{m}}, m \geq 3,
$$

and i is an involution with $h^{i}=h^{-1}$ and $g^{i}=g^{1+2^{m-1}}$. Here we have $|G|=2^{m+3}, G^{\prime}=\left\langle h^{2}, g^{2^{m-1}}\right\rangle \cong \mathrm{E}_{4}, G^{\prime} \leq \mathrm{Z}(G), \mathrm{Z}(G)=\left\langle h^{2}\right\rangle \times\left\langle g^{2}\right\rangle \cong$ $\mathrm{C}_{2} \times \mathrm{C}_{2^{m-1}}$. Finally, $\langle h, i\rangle \cong \mathrm{D}_{8}$ and $\langle g, i\rangle \cong \mathrm{M}_{2^{m+1}}$ are not normal in G.
(d) G is a special group of order 2^{6} given with:
$G=(H \times\langle a\rangle)\langle g\rangle$, where $H=\left\langle h, i \mid h^{4}=i^{2}=1, h^{i}=h^{-1}, h^{2}=z\right\rangle \cong \mathrm{D}_{8}$, $\langle a\rangle \cong \mathrm{C}_{4}, a^{2}=z^{\prime}, g^{2}=z z^{\prime},[g, h]=1,[g, i]=[g, a]=z^{\prime}$.
We have $G^{\prime}=\left\langle z, z^{\prime}\right\rangle \cong \mathrm{E}_{4},\langle h, i\rangle \cong \mathrm{D}_{8}$ is not normal in G but $\langle h\rangle \unlhd G$, and $\langle i, a\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4}$ is not normal in G but $\langle a\rangle \unlhd G$.
Conversely, all the above groups satisfy our assumption (*).
Proof. By Proposition 4, we have $G^{\prime}=U \cong \mathrm{E}_{4}$.
(i) First assume $K / H \cong \mathrm{Q}_{8}$ so that we have $|G|=2^{7}$. We set $C=$ $\mathrm{C}_{G}(H)=\mathrm{C}_{K}(H)$ so that we have $K=H * C$ with $U \leq C, H \cap C=U_{0}$ and $C / U_{0} \cong \mathrm{Q}_{8}$. Let C_{1} / U_{0} and C_{2} / U_{0} be two distinct cyclic subgroups of order 4 in C / U_{0} so that C_{1} and C_{2} are abelian and $C_{1} \cap C_{2}=U$. It follows that $U \leq \mathrm{Z}(C)$ and so we get $U=\mathrm{Z}(K)$ and $\left|C^{\prime}\right|=2$ and therefore we have $U=U_{0} \times C^{\prime}$, where we set $U_{0}=\langle z\rangle$ and $C^{\prime}=\left\langle z^{\prime}\right\rangle$. Also we have $C=\mathrm{C}_{G}(L)$ and $C \unlhd G, C^{\prime} \unlhd G$, which implies $U \leq \mathrm{Z}(G)$. Thus we get $U=\mathrm{Z}(G)=G^{\prime}$ and for any $x, y \in G$ we have $\left[x^{2}, y\right]=[x, y]^{2}=1$ and therefore $\mho_{1}(G) \leq \mathrm{Z}(G)$ and so $U=\Phi(G)$, which shows that G is special. Set $H=\left\langle h, t \mid h^{4}=t^{2}=1, h^{t}=h^{-1}\right\rangle \cong \mathrm{D}_{8}$ and we have $\langle h\rangle \unlhd G$ (Proposition 3(a)).
(i1) Suppose that C splits over U_{0} and so we have in this case $C=\langle z\rangle \times C_{0}$, where $C_{0}=\left\langle c_{1}, c_{2}\right\rangle \cong \mathrm{Q}_{8}$ and $C_{0}^{\prime}=\left\langle z^{\prime}\right\rangle$. Since $\langle t\rangle \times C_{0}$ has no cyclic subgroup of index 2, Proposition 1 implies that $\langle t\rangle \times C_{0} \unlhd G$. But then we have

$$
C_{0}=C \cap\left(\langle t\rangle \times C_{0}\right) \unlhd G
$$

and each element in G induces on C_{0} an inner automorphism (otherwise, a cyclic subgroup of order 4 in C_{0} would be contained in G^{\prime}, contrary to Proposition 4). This implies

$$
G=C_{0} * G_{0},
$$

where

$$
G_{0}=\mathrm{C}_{G}\left(C_{0}\right), C_{0} \cap G_{0}=\left\langle z^{\prime}\right\rangle=\mathrm{Z}\left(C_{0}\right), G_{0} \cap K=L, K=H \times C_{0},
$$

and G_{0} is special of order 2^{5} with $\mathrm{Z}\left(G_{0}\right)=U$. Since $\langle h\rangle \unlhd G$ and $h^{t}=h^{-1}$, there is $g \in G_{0}-L$ such that $[g, h]=1$. But $\langle t\rangle U \unlhd G$ and H is not normal in G, and so we get $t^{g}=t u$ with $u \in\left\{z^{\prime}, z z^{\prime}\right\}$. However, if $t^{g}=t z z^{\prime}$, then we replace g with $g^{\prime}=g h$ (noting that $g^{\prime} \in G_{0}-L$ and g^{\prime} also centralizes h) and get

$$
t^{g^{\prime}}=\left(t z z^{\prime}\right)^{h}=(t z) z z^{\prime}=t z^{\prime}
$$

Hence writing again g instead of g^{\prime}, we may assume from the start that $t^{g}=t z^{\prime}$ and so $[t, g]=z^{\prime}$. We have $g^{2} \in U$ and so we have $g^{2} \in\left\{1, z^{\prime}, z z^{\prime}, z\right\}$.

If $g^{2}=1$, then $[g, t]=z^{\prime}$ gives that $\langle g, t\rangle \cong \mathrm{D}_{8}$ with $\langle g, t\rangle^{\prime}=\left\langle z^{\prime}\right\rangle$, where the unique cyclic subgroup $\langle g t\rangle$ of order 4 in $\langle g, t\rangle$ must be normal in G. Indeed, if $\langle g, t\rangle \unlhd G$, then $\langle g t\rangle \unlhd G$, and if $\langle g, t\rangle$ is not normal in G, then Proposition 3(a) implies that $\langle g t\rangle \unlhd G$. However, $[g t, h]=z$ but $(g t)^{2}=[g, t]=z^{\prime} \neq z$ and so $\langle g t\rangle$ is not normal in G, a contradiction. This kind of argument we shall use here several times.

If $g^{2}=z^{\prime}$, then $c_{1}^{2}=z^{\prime}$ together with $\left[g, c_{1}\right]=1$ implies that $g c_{1}$ is an involution. In that case, $\left[t, g c_{1}\right]=z^{\prime}$ shows that $\left\langle t, g c_{1}\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle t, g c_{1}\right\rangle^{\prime}=\left\langle z^{\prime}\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle t g c_{1}\right\rangle$ is not normal in G since $\left[t g c_{1}, h\right]=z$, a contradiction.

If $g^{2}=z z^{\prime}$, then $(g h)^{2}=z^{\prime}=c_{1}^{2}$ together with $\left[g h, c_{1}\right]=1$ implies that $g h c_{1}$ is an involution. In that case, $\left[t, g h c_{1}\right]=z^{\prime} z$ shows that $\left\langle t, g h c_{1}\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle t, g h c_{1}\right\rangle^{\prime}=\left\langle z^{\prime} z\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle t g h c_{1}\right\rangle$ is not normal in G since $\left[t g h c_{1}, g\right]=z^{\prime}$, a contradiction.

If $g^{2}=z$, then $g h$ is an involution. In this case, $[t, g h]=z^{\prime} z$ shows that $\langle t, g h\rangle \cong \mathrm{D}_{8}$ with $\langle t, g h\rangle^{\prime}=\left\langle z^{\prime} z\right\rangle$. But then $\mathrm{C}_{4} \cong\langle t g h\rangle$ is not normal in G since $[t g h, g]=z^{\prime}$, a contradiction.
(i2) We have proved that C does not split over U_{0}. Since C is twogenerator with $C^{\prime}=\left\langle z^{\prime}\right\rangle$, it follows that C is minimal nonabelian. We have $\Omega_{1}(C)=U \cong \mathrm{E}_{4}$ and so C is metacyclic. Hence we may choose generators c_{1}, c_{2} of C so that we have

$$
\mathcal{H}_{2} \cong C=\left\langle c_{1}, c_{2} \mid c_{1}^{4}=c_{2}^{4}=1, c_{1}^{c_{2}}=c_{1}^{-1}\right\rangle
$$

where $c_{1}^{2}=z^{\prime}, c_{2}^{2}=z z^{\prime}, z$ is not a square in C.
Since $\langle h\rangle \unlhd G$ and $h^{t}=h^{-1}$, it follows that $\mathrm{C}_{G}(h)$ covers G / K. Let $g \in \mathrm{C}_{G}(h)-K$ so that $[h, g]=1$ and $g^{2} \in\left\langle z, z^{\prime}\right\rangle$. Because $\langle t\rangle U \unlhd G,\langle h\rangle \unlhd G$ and H is not normal in G, it follows that $t^{g}=t u$ with $u \in U-U_{0}$. Replacing g with $g h$, if necessary, we may assume from the start that $t^{g}=t z^{\prime}$ and so we have $[g, t]=z^{\prime}$.

If g normalizes $\left\langle c_{1}\right\rangle$, then replacing g with $g^{\prime}=g c_{2}$ (if necessary), we may assume that g^{\prime} centralizes $\left\langle c_{1}\right\rangle$ (and we note that g^{\prime} acts the same way on H as g does). In this case we write again g instead of g^{\prime} and we have $\left[g, c_{1}\right]=z^{\epsilon}$ with $\epsilon=0$. If g does not normalize $\left\langle c_{1}\right\rangle$, then we have $\left[g, c_{1}\right]=z z^{\prime}$ or $\left[g, c_{1}\right]=z$. If in this case $\left[g, c_{1}\right]=z z^{\prime}$, then again replacing g with $g^{\prime}=g c_{2}$, we get

$$
\left[g^{\prime}, c_{1}\right]=\left[g c_{2}, c_{1}\right]=\left(z z^{\prime}\right) z^{\prime}=z
$$

Hence writing again g instead of g^{\prime}, we may assume from the start that $\left[g, c_{1}\right]=z^{\epsilon}$ with $\epsilon=1$. Hence we have in any case $\left[g, c_{1}\right]=z^{\epsilon}$, where $\epsilon \in\{0,1\}$.

If $g^{2}=1$, then $[g, t]=z^{\prime}$ shows that $\langle g, t\rangle \cong \mathrm{D}_{8}$ with $\langle g, t\rangle^{\prime}=\left\langle z^{\prime}\right\rangle$. But then $\mathrm{C}_{4} \cong\langle g t\rangle$ is not normal in G since $[g t, h]=z$, a contradiction.

Assume that $g^{2}=z^{\prime}$. If $\epsilon=0$, then we have $\left[g, c_{1}\right]=1$ and so $g c_{1}$ is an involution. Then $\left[t, g c_{1}\right]=z^{\prime}$ shows that $\left\langle t, g c_{1}\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle t, g c_{1}\right\rangle^{\prime}=\left\langle z^{\prime}\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle t g c_{1}\right\rangle$ is not normal in G since $\left[t g c_{1}, h\right]=z$, a contradiction. Thus we must have $\epsilon=1$ and so we get $\left[g, c_{1}\right]=z$. We compute

$$
\left(g h c_{1}\right)^{2}=z^{\prime} z \cdot z^{\prime} \cdot\left[c_{1}, g h\right]=z z=1
$$

and so $g h c_{1}$ is an involution. Then $\left[t, g h c_{1}\right]=z^{\prime} z$ shows that $\left\langle t, g h c_{1}\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle t, g h c_{1}\right\rangle^{\prime}=\left\langle z^{\prime} z\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle t g h c_{1}\right\rangle$ is not normal in G since $\left[\operatorname{tgh} c_{1}, h\right]=z$, a contradiction.

If $g^{2}=z$, then $g h$ is an involution. Then $[t, g h]=z^{\prime} z$ shows that $\langle t, g h\rangle \cong$ D_{8} with $\langle t, g h\rangle^{\prime}=\left\langle z^{\prime} z\right\rangle$. But then $\mathrm{C}_{4} \cong\langle t g h\rangle$ is not normal in G since $[t g h, g]=z^{\prime}$, a contradiction.

Suppose that $g^{2}=z z^{\prime}$. Assume in addition that $\epsilon=0$ and so $\left[g, c_{1}\right]=1$. In this case we have

$$
\left(g h c_{1}\right)^{2}=z z^{\prime} \cdot z \cdot z^{\prime}=1
$$

and so $g h c_{1}$ is an involution. Then $\left[t, g h c_{1}\right]=z^{\prime} z$ shows that $\left\langle t, g h c_{1}\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle t, g h c_{1}\right\rangle^{\prime}=\left\langle z^{\prime} z\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle t g h c_{1}\right\rangle$ is not normal in G since $\left[\operatorname{tgh} c_{1}, g\right]=z^{\prime}$, a contradiction. Hence we must have $\epsilon=1$ and so $\left[g, c_{1}\right]=z$. In this case, $g c_{1}$ is an involution since $\left(g c_{1}\right)^{2}=z z^{\prime} \cdot z^{\prime} \cdot z=1$. Then $\left[t, g c_{1}\right]=z^{\prime}$ shows that $\left\langle t, g c_{1}\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle t, g c_{1}\right\rangle^{\prime}=\left\langle z^{\prime}\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle t g c_{1}\right\rangle$ is not normal in G since $\left[\operatorname{tg} c_{1}, g\right]=z^{\prime} z$, a contradiction. We have finally proved that here $K / H \cong \mathrm{Q}_{8}$ is not possible.
(ii) Now assume that $K / H \neq\{1\}$ is cyclic. Here we have $K=H \times\langle a\rangle$ with $o(a)=2^{n}, n \geq 1$, where we set

$$
\begin{gathered}
\Omega_{1}(\langle a\rangle)=\left\langle z^{\prime}\right\rangle, U_{0}=\langle z\rangle=\mathrm{Z}(H), \\
\left\langle h, h^{\prime} \mid h^{4}=\left(h^{\prime}\right)^{2}=1,\left[h, h^{\prime}\right]=z, z^{2}=1\right\rangle \cong \mathrm{D}_{8}, U=\left\langle z, z^{\prime}\right\rangle=G^{\prime}
\end{gathered}
$$

Since $\langle h\rangle \unlhd G$ (Proposition 3(a)) and $h^{h^{\prime}}=h^{-1}$, it follows that $\mathrm{C}_{G}(h)$ covers $G / H \cong \mathrm{C}_{2}$. Let $g \in \mathrm{C}_{G}(h)-K$ so that we have $\left(h^{\prime}\right)^{g}=h^{\prime} u$ for some $u \in U-U_{0}$ (noting that $\langle h\rangle \unlhd G$ and $\left\langle U\left\langle h^{\prime}\right\rangle\right\rangle \unlhd G$ but H is not normal in G) and so replacing g with $g h$ (if necessary), we may assume from the start that $\left(h^{\prime}\right)^{g}=h^{\prime} z^{\prime}$ and so we have $\left[g, h^{\prime}\right]=z^{\prime}$.
(ii1) Assume that $K=L$ and $z^{\prime} \in \mathrm{Z}(G)$. In this case we have $\mathrm{Z}(K)=$ $\mathrm{Z}(L)=U=\mathrm{Z}(G)$ and $\mho_{1}(G) \leq \mathrm{Z}(G)$. Hence G is a special group of order 2^{5}. In particular, all elements in $G-K$ are of order ≤ 4. Suppose that there is an involution $t \in \mathrm{C}_{G}(h)-K$. Then we have $\left[h^{\prime}, t\right]=u \in U-\langle z\rangle$ and therefore $\left\langle h^{\prime}, t\right\rangle \cong \mathrm{D}_{8}$ with $\left\langle h^{\prime}, t\right\rangle^{\prime}=\langle u\rangle$. Then we must have $\mathrm{C}_{4} \cong\left\langle h^{\prime} t\right\rangle \unlhd G$. On the other hand, $\left[h^{\prime} t, h\right]=z$, a contradiction. Hence there is no involution in $\mathrm{C}_{G}(h)-K$. If $g^{2}=z$, then $h g$ is an involution in $\mathrm{C}_{G}(h)-K$, a contradiction. Hence we have

$$
g^{2} \in\left\{z^{\prime}, z z^{\prime}\right\} \text { and }\langle h, g\rangle=\langle h\rangle \times\langle g\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{4}
$$

We set $h^{\prime}=i$ so that $G=(\langle h\rangle \times\langle g\rangle)\langle i\rangle$ with $h^{i}=h^{-1}$ and $g^{i}=g z^{\prime}$. We have obtained two groups of order 2^{5} stated in part (a) of our proposition, which obviously satisfy our assumption (*).
(ii2) Assume that $K=L$ and $z^{\prime} \notin \mathrm{Z}(G)$. Then we have $\left[g, z^{\prime}\right]=z$. Suppose that there is an element $y \in G-K$ of order ≤ 4. We claim that in this case we have $y^{2} \in U$. Indeed, if y^{2} is a noncentral involution in $K=L$, then y^{2} inverts $\langle h\rangle$ and y normalizes $\langle h\rangle$ (since $\langle h\rangle \unlhd G$), a contradiction. Hence we have $y^{2} \in U$ and so $y^{2} \in\langle z\rangle$ since $\left[y, z^{\prime}\right]=z$. We get $D=\langle y, U\rangle \cong \mathrm{D}_{8}$ and $D \unlhd G$ with $\mathrm{Z}(D)=\langle z\rangle=D^{\prime}$. Since $G^{\prime}=U$ is elementary abelian, each element in G induces an inner automorphism on D. Hence we have $G=D * C$, where $C=\mathrm{C}_{G}(D)$ and $D \cap C=\langle z\rangle$. Since $|C|=2^{3}$ and $z \in \mathrm{Z}(C)$, we have $C^{\prime} \leq\langle z\rangle$. This gives that $G^{\prime}=\langle z\rangle$, contrary to Proposition 3(a). We have proved that all elements in $G-K$ are of order 8 and so $\Omega_{2}(G) \cong \mathrm{C}_{2} \times \mathrm{D}_{8}$. Since g centralizes $\langle h\rangle$, we must have $\left\langle g^{2}\right\rangle=\langle h\rangle$ and so we may assume that $g^{2}=h$. Indeed, if $\left\langle g^{2}\right\rangle=\left\langle h z^{\prime}\right\rangle$, then g would centralize h and $h z^{\prime}$ and so g would centralize z^{\prime}, a contradiction. We have obtained a unique group G of order 2^{5} and class 3 with $\Omega_{2}(G) \cong \mathrm{C}_{2} \times \mathrm{D}_{8}$ which is defined in Theorem 52.2 (a) in [2] for $n=2$ (stated in part (b) of our proposition). This group obviously satisfies our assumption (*).
(ii3) Assume that $K>L$, i.e., $o(a)=2^{n}, n \geq 2$. Then there is an element $w \in\langle a\rangle$ of order 4 so that $w^{2}=z^{\prime}$. We have

$$
\langle z, w\rangle=\langle z\rangle \times\langle w\rangle \unlhd G \text { and so } \mho_{1}(\langle z\rangle \times\langle w\rangle)=\left\langle z^{\prime}\right\rangle \unlhd G,
$$

which implies that $G^{\prime}=U \leq \mathrm{Z}(G)$. We have also $\mho_{1}(G) \leq \mathrm{Z}(G)$. Since G / L is abelian and $K / L \neq\{1\}$ is cyclic, we have here two subcases.
(ii3a) Suppose that G / L is cyclic and so if $g \in \mathrm{C}_{G}(h)-K$, then $\langle g\rangle$ covers $G / L,\left[h^{\prime}, g\right]=z^{\prime}$ with $\left\langle z^{\prime}\right\rangle=\Omega_{1}\left(\left\langle g^{2}\right\rangle\right)$ and $o(g)=2^{m}, m \geq 3$. Hence we have $\left\langle g, h^{\prime}\right\rangle \cong \mathrm{M}_{2^{m+1}}$. Setting $h^{\prime}=i$, we get

$$
G=(\langle h\rangle \times\langle g\rangle)\langle i\rangle
$$

where

$$
\langle h\rangle \cong \mathrm{C}_{4},\langle g\rangle \cong \mathrm{C}_{2^{m}}, m \geq 3, h^{i}=h^{-1}, g^{i}=g^{1+2^{m-1}}
$$

We have obtained the groups stated in part (c) of our proposition. Conversely, let X be a non-normal and noncyclic subgroup of order $\geq 2^{3}$ in G. We see that $A=\langle h\rangle \times\langle g\rangle$ is an abelian maximal subgroup in G. If $X \cap A$ is noncyclic, then $X \cap A \geq\left\langle z, z^{\prime}\right\rangle=G^{\prime}$ and so $X \unlhd G$, a contradiction. Hence $X \cap A$ is cyclic and then $X \not \leq A$ so that $|X:(X \cap A)|=2$. It follows that $\mathrm{N}_{G}(X \cap A) \geq\langle A, X\rangle=G$ and so $X \cap A \unlhd G$. Thus, if $g \in G$ is such that $X^{g} \neq X$, then $X \cap X^{g}=X \cap A$ is cyclic. Finally, $\langle h, i\rangle \cong \mathrm{D}_{8}$ and $[i, g]=z^{\prime} \notin\langle h, i\rangle$ and so $\langle h, i\rangle$ is not normal in G. Hence our groups satisfy the assumption (*).
(ii3b) G / L is noncyclic abelian so that G / L splits over K / L, where $K=$ $H \times\langle a\rangle$ with $o(a)=2^{n}, n \geq 2$, and $\Omega_{1}(\langle a\rangle)=\left\langle z^{\prime}\right\rangle$. We have $G=K G_{0}$, where $K \cap G_{0}=L$ and $\left|G_{0}: L\right|=2$. Since $G^{\prime}=U=\left\langle z, z^{\prime}\right\rangle \leq \mathrm{Z}(G)$ and $\left.\mho_{1}(G) \leq \mathrm{Z}(G)\right)$, we have that G_{0} is one of two groups defined in part (a) of this proposition, where there is $g \in G_{0}-L$ such that $\langle g, h\rangle=\langle g\rangle \times\langle h\rangle$, $\left[h^{\prime}, g\right]=z^{\prime}$ and $g^{2}=z^{\epsilon} z^{\prime}$ with $\epsilon=0,1$.

Suppose that $\epsilon=0$ so that $g^{2}=z^{\prime}$ and so h^{\prime} inverts each element in $\langle g, h\rangle$. Consider the subgroup $H_{1}=\left\langle h^{\prime}, g\right\rangle \cong \mathrm{D}_{8}$ with $\mathrm{Z}\left(\left\langle h^{\prime}, g\right\rangle\right)=\left\langle z^{\prime}\right\rangle$. If $H_{1} \unlhd G$, then $\langle g\rangle \unlhd G$ and if H_{1} is not normal in G, then Proposition 3(a) shows that also $\langle g\rangle \unlhd G$. Hence in any case we have $\langle g\rangle \unlhd G$. Since $\langle a\rangle$ centralizes h^{\prime}, it follows that $\langle a\rangle \times\langle z\rangle$ normalizes H_{1}. On the other hand, $\left[h, h^{\prime}\right]=z$ and so $\langle h\rangle$ does not normalize H_{1} a so we get

$$
\mathrm{N}_{G}\left(H_{1}\right)=H_{1}(\langle a\rangle \times\langle z\rangle)
$$

If w is an element of order 4 in $\langle a\rangle$, then we have $w^{2}=z^{\prime}$ and so $\left(H_{1}\langle w\rangle\right) / H_{1}$ and $\left(H_{1}\langle z\rangle\right) / H_{1}$ are two distinct subgroups of order 2 in $\mathrm{N}_{G}\left(H_{1}\right) / H_{1}$, contrary to Proposition 2. We have proved that we must have $\epsilon=1$ and so $g^{2}=z z^{\prime}$.

Assume that there is an element $w \in\langle a\rangle$ of order 4 such that $w^{2}=z^{\prime}$ and $[w, g]=1$. Then we have

$$
(w g)^{2}=w^{2} g^{2}=z^{\prime} \cdot z z^{\prime}=z,[w g, h]=1
$$

and so $h w g$ is an involution. From $\left[h^{\prime}, h w g\right]=z z^{\prime}$ follows that

$$
\left\langle h^{\prime}, h w g\right\rangle \cong \mathrm{D}_{8} \text { with } \mathrm{Z}\left(\left\langle h^{\prime}, h w g\right\rangle\right)=\left\langle z z^{\prime}\right\rangle
$$

But then $\mathrm{C}_{4} \cong\left\langle h^{\prime} h w g\right\rangle$ is not normal in G since $\left[h^{\prime} h w g, h\right]=z$, a contradiction. We have proved that there is no such an element $w \in\langle a\rangle$. This implies

$$
n=2, o(a)=4, \exp (G)=4, a^{2}=z^{\prime},[a, g] \neq 1, \mathrm{Z}(G)=U=G^{\prime}=\Phi(G)
$$

and so G is special of order 2^{6}. It remains to determine $[a, g] \neq 1$.
Suppose that $[a, g]=z$. Then we get $(a g)^{2}=z^{\prime} \cdot z z^{\prime} \cdot z=1$ and so $a g$ is an involution. Since $\left[h^{\prime}, a g\right]=z^{\prime}$, we have $\left\langle h^{\prime}, a g\right\rangle \cong \mathrm{D}_{8}$ with $\mathrm{Z}\left(\left\langle h^{\prime}, a g\right\rangle\right)=\left\langle z^{\prime}\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle h^{\prime} a g\right\rangle$ is not normal in G since $\left[h^{\prime} a g, h\right]=z$, a contradiction.

Suppose that $[a, g]=z z^{\prime}$. Then we get $\left(g a h^{\prime}\right)^{2}=z z^{\prime} \cdot z^{\prime} \cdot z z^{\prime} \cdot z^{\prime}=1$ and so $g a h^{\prime}$ is an involution. Since $\left[g a h^{\prime}, h^{\prime}\right]=z^{\prime}$, we have $\left\langle g a h^{\prime}, h^{\prime}\right\rangle \cong$ D_{8} with $\mathrm{Z}\left(\left\langle g a h^{\prime}, h^{\prime}\right\rangle\right)=\left\langle z^{\prime}\right\rangle$. But then $\mathrm{C}_{4} \cong\left\langle g a h^{\prime} h^{\prime}\right\rangle=\langle g a\rangle$ is not normal in G since $[g a, g]=z z^{\prime}$, a contradiction.

Hence we must have $[a, g]=z^{\prime}$ and so the structure of G is uniquely determined. We set $h^{\prime}=i$ and so we get a special group G of order 2^{6} given with:

$$
G=(H \times\langle a\rangle)\langle g\rangle, \text { where } H=\left\langle h, i \mid h^{4}=i^{2}=1, h^{i}=h^{-1}, h^{2}=z\right\rangle \cong \mathrm{D}_{8}
$$

$$
\langle a\rangle \cong \mathrm{C}_{4}, a^{2}=z^{\prime}, g^{2}=z z^{\prime},[g, h]=1,[g, i]=[g, a]=z^{\prime}
$$

We have $G^{\prime}=\left\langle z, z^{\prime}\right\rangle \cong \mathrm{E}_{4},\langle h, i\rangle \cong \mathrm{D}_{8}$ is not normal in G but $\langle h\rangle \unlhd G$, and $\langle i, a\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4}$ is not normal in G but $\langle a\rangle \unlhd G$. We have obtained the group stated in part (d) of our proposition.

It remains to be proved that this group G satisfies our assumption (*). We first show that there are no involutions in $G-K$, where $K=H \times\langle a\rangle$. Indeed, suppose that $g h^{\alpha} i^{\beta} a^{\gamma}$ with $\alpha, \beta, \gamma \in\{0,1\}$ is an involution. Then we get

$$
1=\left(g h^{\alpha} i^{\beta} a^{\gamma}\right)^{2}=z z^{\prime} \cdot z^{\alpha} \cdot\left(z^{\prime}\right)^{\gamma} \cdot\left(z^{\prime}\right)^{\beta} \cdot\left(z^{\prime}\right)^{\gamma} \cdot z^{\alpha \beta}=z^{1+\alpha+\alpha \beta}\left(z^{\prime}\right)^{1+\beta}
$$

which implies $\beta=1$ and then we get $z=1$, a contradiction. We have proved that $\Omega_{1}(G)=L=H U$, where $U=\left\langle z, z^{\prime}\right\rangle$. There are exactly two conjugate classes of noncentral involutions in G with representatives i (4 conjugates) and $h i$ (4 conjugates) and we have

$$
\mathrm{C}_{G}(i)=\langle i, z\rangle \times\langle a\rangle \cong \mathrm{E}_{4} \times \mathrm{C}_{4} \text { and } \mathrm{C}_{G}(h i)=\langle h i, z\rangle \times\langle a\rangle \cong \mathrm{E}_{4} \times \mathrm{C}_{4}
$$

Let X be a noncyclic non-normal subgroup of order $\geq 2^{3}$ which contains more than one involution (so that $X \cong \mathrm{Q}_{8}$ is excluded). Then we have $G^{\prime}=U=\left\langle z, z^{\prime}\right\rangle \not \leq X$ and $|X|=2^{3}$ or 2^{4} (noting that all subgroups of order $\geq 2^{5}$ are normal in G).

First assume that $|X|=2^{4}$. In this case $X \not 又 K$ since $\Phi(K)=\left\langle z, z^{\prime}\right\rangle$ and $|K|=2^{5}$. We have $|X:(X \cap K)|=2$ and $|X \cap K|=2^{3}$. All elements in $X-K$ are of order 4 and so $\mho_{1}(X) \neq\{1\}$ and this implies that there is exactly one central involution z_{0} in G which is contained in $X \cap K$ and therefore we have $\mho_{1}(X)=\left\langle z_{0}\right\rangle$ and $\mathrm{d}(X)=3$. But $X \cap K$ must contain another involution $i^{\prime} \neq z_{0}$ which is noncentral in G and we know (by the
above) that $\mathrm{C}_{G}\left(i^{\prime}\right)=\mathrm{C}_{K}\left(i^{\prime}\right)$ is abelian. In particular, X is nonabelian and $X^{\prime}=\left\langle z_{0}\right\rangle$. Because $\mathrm{d}(X)=3, X$ is not minimal nonabelian. Let X_{0} be any minimal nonabelian subgroup in X. If $X_{0} \cong \mathrm{D}_{8}$, then (since there are no involutions in $X-K$) we have $X_{0}=X \cap K$. Since $G^{\prime} \cong \mathrm{E}_{4}$, it follows that X induces on X_{0} only inner automorphisms of X_{0} which implies that $\mathrm{C}_{X}\left(i^{\prime}\right) \not \leq K$, a contradiction. Hence each minimal nonabelian subgroup of X is isomorphic to Q_{8}. By Corollary A.17.3 in [2], we get $X=\langle t\rangle \times Q$, where t is an involution and $Q \cong \mathrm{Q}_{8}$ with $\mathrm{Z}(Q)=X^{\prime}=\left\langle z_{0}\right\rangle$. Thus t is a noncentral involution in G, contrary to the fact that $\mathrm{C}_{G}(t)$ must be abelian.

We have proved that $|X|=2^{3}$ and assume first that $X \not \leq K$. Since X contains more than one involution, it follows that $X \cap K$ contains a noncentral involution i^{\prime} of G. We know that $\mathrm{C}_{G}\left(i^{\prime}\right) \leq K$ and so X is nonabelian. But then $X \cong \mathrm{D}_{8}$ which is not possible since there are no involutions in $X-K$. We have proved that $X \leq K$.

If $X \cong \mathrm{E}_{8}$, then $X \leq L$, where $L=H \times\left\langle z^{\prime}\right\rangle$. But then $X \geq\left\langle z, z^{\prime}\right\rangle=G^{\prime}$, a contradiction. It follows that either $X \cong \mathrm{D}_{8}$ or $X \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$. First assume that $X \cong \mathrm{D}_{8}$. Because in this case $\Omega_{1}(X)=X$ and $\Omega_{1}(K)=L$, it follows that $X \leq L$. But then X is conjugate in G to $H=\langle h, i\rangle$ or to $H^{*}=\left\langle h z^{\prime}, i\right\rangle$, where both $\langle h\rangle$ and $\left\langle h z^{\prime}\right\rangle$ are normal in G.

Finally, suppose that $X \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$. Because in this case $\{1\} \neq \mho_{1}(X) \leq$ $\left\langle z, z^{\prime}\right\rangle$, it follows that X contains exactly one central involution of G and two noncentral involutions of G. Then X is conjugate in G to $X_{1}=\langle i\rangle \times\langle v\rangle$ or to $X_{2}=\langle h i\rangle \times\langle w\rangle$, where $\langle v\rangle \cong\langle w\rangle \cong \mathrm{C}_{4}$. Since

$$
X_{1} \leq \mathrm{C}_{G}(i)=\mathrm{C}_{K}(i)=\langle i, z\rangle \times\langle a\rangle
$$

we get $X_{1}=\langle i\rangle \times\langle a\rangle$ or $X_{1}=\langle i\rangle \times\langle a z\rangle$. Similarly,

$$
X_{2} \leq \mathrm{C}_{G}(h i)=\mathrm{C}_{K}(h i)=\langle h i, z\rangle \times\langle a\rangle
$$

gives $X_{2}=\langle h i\rangle \times\langle a\rangle$ or $X_{2}=\langle h i\rangle \times\langle a z\rangle$. On the other hand, we see that $\langle a\rangle \unlhd G$ and $\langle a z\rangle \unlhd G$ and we are done. Our proposition is completely proved.

Proposition 4.6. Suppose that we have the case (b1) of Proposition 3. Then H possesses exactly one G-invariant cyclic subgroup of index p.

Proof. We have $H \cong \mathrm{M}_{p^{n}}, n \geq 3$, (if $p=2$, then $n \geq 4$) or H is abelian of type $\left(p^{s}, p\right), s \geq 2$. Set $H_{0}=\Omega_{1}(H)$ and then we have

$$
H_{0} \cong \mathrm{E}_{p^{2}}, \mathrm{~N}_{G}\left(H_{0}\right)=\mathrm{N}_{G}(H)=K,|G / K|=p, U_{0}=U \cap H=\langle z\rangle \leq \mathrm{Z}(G)
$$

and let $g \in G-K$. Note that H has exactly p cyclic subgroups of index p. By Proposition 4, we have $G^{\prime} \leq U$ and so we get $[K, H] \leq H \cap U=U_{0}=\langle z\rangle$. This implies that each cyclic subgroup of index p in H is normal in K. Assume, by way of contradiction, that H does not have any G-invariant cyclic subgroup of index p. Since $H \cap H^{g}$ is a cyclic subgroup of index p in H, there is a
cyclic subgroup $\langle h\rangle$ of index p in H such that $\langle h\rangle^{g}=\langle h t\rangle$ for some element $t \in H_{0}-\langle z\rangle$. Then we get

$$
h^{g}=h t v \text { with some } v \in\left\langle(h t)^{p}\right\rangle=\left\langle h^{p}\right\rangle .
$$

In that case we get

$$
h^{-1} h^{g}=[h, g]=t v \in U \cap H=\langle z\rangle
$$

Since $v \in\left\langle h^{p}\right\rangle$ and (by Proposition 3(b1)) $\left\langle h^{p}\right\rangle \geq\langle z\rangle$, it follows that $t \in\left\langle h^{p}\right\rangle$, a contradiction. Since H is not normal in G, then clearly H possesses exactly one G-invariant cyclic subgroup of index p and we are done.

Proposition 4.7. Suppose that we have the case (b1) of Proposition 3 and assume in addition that K / H_{0} is Hamiltonian (and so $p=2$), where $H_{0}=\Omega_{1}(H) \cong \mathrm{E}_{4}$, and that G does not possess any non-normal subgroup isomorphic to D_{8}. Then G is of order 2^{7} and class 2 which has a normal subgroup K of index 2 , where

$$
K=(\langle h\rangle \times Q)\langle t\rangle \text { with }\langle h\rangle \cong \mathrm{C}_{4}, h^{2}=z, Q=\langle a, b\rangle \cong \mathrm{Q}_{8}, Q^{\prime}=\langle u\rangle,
$$

t is an involution commuting with h and a and $[b, t]=z$. There is an element $g \in G-K$ such that either
(a) $g^{2}=u z, g$ centralizes $Q,[g, h]=z,[g, t]=u$
(and here G is a special group with $G^{\prime}=\langle u, z\rangle \cong \mathrm{E}_{4}$ and $\Omega_{1}(G)=$ $\left.G^{\prime} \times\langle t\rangle \cong \mathrm{E}_{8}\right)$
or
(b) $g^{2}=h, g$ centralizes $Q,[g, t]=u z$
(and here G is of exponent 8 with $G^{\prime}=\langle u, z\rangle \cong \mathrm{E}_{4}, \mathrm{Z}(G)=$ $G^{\prime}\langle h\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}, \Omega_{1}(G)=G^{\prime} \times\langle t\rangle \cong \mathrm{E}_{8}$ and $\left.\Omega_{2}(G)=K\right)$.
Conversely, the above two groups satisfy our assumption (*).
Proof. We have

$$
\begin{aligned}
& H_{0}=\Omega_{1}(H) \cong \mathrm{E}_{4}, \quad \mathrm{~N}_{G}\left(H_{0}\right)=\mathrm{N}_{G}(H)=K,|G: K|=2 \\
& \mathrm{E}_{8} \cong S=H_{0} U \unlhd G, U \cap H_{0}=U \cap H=U_{0}=\langle z\rangle \leq \mathrm{Z}(G),
\end{aligned}
$$

and K / H_{0} is Hamiltonian. By Proposition 4, we have $G^{\prime} \leq U$ and this gives

$$
\left(K / H_{0}\right)^{\prime}=S / H_{0}=\mho_{1}\left(K / H_{0}\right)
$$

and so $\exp (K)=4$ and $H \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$. By Proposition $3(\mathrm{~b} 1), L=H U$ is abelian of type $(4,2,2), \mho_{1}(L)=\mho_{1}(H)=U_{0}=\langle z\rangle$ and so we have $S=\Omega_{1}(L)=\Omega_{1}(K)$.

Let Q / H_{0} be an ordinary quaternion subgroup of K / H_{0}. Since

$$
\left(Q / H_{0}\right)^{\prime}=\left(K / H_{0}\right)^{\prime}=S / H_{0}
$$

it follows that $S<Q$. Also, S / H_{0} is a unique subgroup of order 2 in Q / H_{0} and so we have $Q \cap H=H_{0}$ and $Q \cap L=S$. Since $Q / H_{0} \cong \mathrm{Q}_{8}$ is isomorphic
to a subgroup of K / H, Proposition 2 implies that $K / H \cong \mathrm{Q}_{8}$ and so we get $K=H Q$ with $H \cap Q=H_{0}$.

We have $\left|Q: \mathrm{C}_{Q}\left(H_{0}\right)\right| \leq 2$ and so if $a \in \mathrm{C}_{Q}\left(H_{0}\right)-S$, then $a^{2} \in S-H_{0}$ and so $A=\langle a\rangle \times H_{0} \cong \mathrm{C}_{4} \times \mathrm{E}_{4}$ (containing U) is an abelian maximal subgroup of $Q, A \unlhd G$ and we get $\mho_{1}(A)=\left\langle a^{2}\right\rangle \leq \mathrm{Z}(G)$ and $\mathrm{E}_{4} \cong\left\langle a^{2}, z\right\rangle \unlhd G$. On the other hand, G / K acts on the three maximal subgroups of S which contain $\langle z\rangle \leq \mathrm{Z}(G)$ fixing U and fusing the other two (since $\mathrm{N}_{G}\left(H_{0}\right)=K$) and so we get $\left\langle a^{2}, z\right\rangle=U$ and $U \leq \mathrm{Z}(G)$. In particular, G is of class 2 with an elementary abelian commutator subgroup of order ≤ 4 (contained in U) and this implies that $\mho_{1}(G) \leq \mathrm{Z}(G)$. Indeed, if $x, y \in G$, then we have $\left[x^{2}, y\right]=[x, y]^{2}=1$. We have $\mho_{1}(K) \leq S$ and since $S \cap \mathrm{Z}(G)=U$, we get $\mho_{1}(K) \leq U$ and so $\Phi(K)=U$. For each element $k \in K-L$, we have $k^{2} \in U-\langle z\rangle$.

By Proposition 6, H possesses exactly one cyclic subgroup $\langle h\rangle$ of index 2 which is normal in G and we have $h^{2}=z$. Note that for an element $u \in U-\langle z\rangle$, the cyclic subgroup $\langle h u\rangle \cong \mathrm{C}_{4}$ is also normal in G. But the abelian normal subgroup L possesses exactly four cyclic subgroups of order 4 and so the other two cyclic subgroups of order 4 in L (which are distinct from $\langle h\rangle$ and $\langle h u\rangle$) must be fused in G. Indeed, if $t \in H_{0}-\langle z\rangle$ and $g \in G-K$, then we have $t^{g}=t u$ for some $u \in U-\langle z\rangle$ and so we get $\langle h t\rangle^{g}=\langle h t u\rangle$.

By Proposition $4, G / U$ is abelian and so G / L is abelian and $K / L \cong \mathrm{E}_{4}$. Assume that G / L is not elementary abelian. Then there is an element $x \in$ $G-K$ such that $x^{2} \in K-L$. But then $x^{2} \in \mathrm{Z}(G)$, contrary to the fact that $K / H \cong \mathrm{Q}_{8}$. Hence we have $G / L \cong \mathrm{E}_{8}$. For any $g \in G-K$, we have $g^{2} \in L \cap \mathrm{Z}(G)$ and so either $g^{2} \in U$ or $g^{2} \in L-S$ and in the second case we have either $g^{2} \in\langle h\rangle$ or $g^{2} \in\langle h u\rangle$ with $u \in U-\langle z\rangle$. Note that $H_{1}=\langle h u, t\rangle$ is also a maximal non-normal subgroup in G with $\Omega_{1}\left(H_{1}\right)=\Omega_{1}(H)=\langle z, t\rangle$. Indeed, if H_{1} is not maximal non-normal, then let H_{1}^{*} containing H_{1} be a maximal non-normal subgroup in G. Since $\exp (G) \leq 8$ and $\exp (K)=4$, it follows that $H_{1}^{*} \cong \mathrm{C}_{8} \times \mathrm{C}_{2}$ or $H_{1}^{*} \cong \mathrm{M}_{16}$ and so $H_{1}^{*} \not \leq K$. But we have

$$
\Omega_{1}\left(H_{1}^{*}\right)=\Omega_{1}\left(H_{1}\right)=H_{0}=\langle z, t\rangle
$$

and so we get $H_{0} \unlhd G$, a contradiction. Thus, in case that we have an element $g \in G-K$ with $g^{2} \in\langle h u\rangle$, we replace H with H_{1} (and write again H instead of H_{1}) so that we may assume from the start that $g^{2} \in\langle h\rangle$ and then (by a suitable choice of a generator of $\langle g\rangle$) we have $g^{2}=h$.

Let k be any element in $K-L$ which commutes with $t \in H_{0}-\langle z\rangle$. Then we have $k^{2} \in U-\langle z\rangle$ so that $\langle k, t\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$. We claim that in that case at least one of cyclic subgroups $\langle k\rangle$ or $\langle k t\rangle$ is normal in G. If $\langle k, t\rangle \unlhd G$, then both $\langle k\rangle$ and $\langle k t\rangle$ are normal in G because $G^{\prime} \leq U$. (If there is $x \in G$ such that $k^{x}=k t$ or $k^{x}=k^{-1} t$, then we have either $t \in G^{\prime}$ or $k^{2} t \in G^{\prime}$ and so $t \in U$, a contradiction.) If $\langle k, t\rangle$ is not normal in G, then it is easy to see that $\langle k, t\rangle$ is a maximal non-normal subgroup in G. Indeed, if $\left.H^{*}\right\rangle\langle k, t\rangle$ is a maximal non-normal subgroup in G, then by Proposition $3, H^{*} \cong \mathrm{C}_{8} \times \mathrm{C}_{2}$
or $H^{*} \cong \mathrm{M}_{16}$ (noting that $\left.\exp (G) \leq 8\right)$ and so k or $k t$ is a square in H^{*} and therefore k or $k t$ is contained in $\mathrm{Z}(G)$, contrary to the fact that $K / H \cong \mathrm{Q}_{8}$. Hence $\langle k, t\rangle$ is a maximal non-normal subgroup in G and so, by Proposition 6 , one of $\langle k\rangle$ or $\langle k t\rangle$ is normal in G. Since $\langle k, t\rangle \cap\langle h\rangle=\{1\}$ and $\langle h\rangle \unlhd G$, we see that k or $k t$ commutes with h. But t commutes with h and so in any case k commutes with h. We have proved that whenever an element $k \in K-L$ commutes with $t \in H_{0}-\langle z\rangle$, then k also commutes with h.

Suppose, by way of contradiction, that $t \in \mathrm{Z}(Q)$. Let $a, b \in Q-S$ be such that $\langle a, b\rangle$ covers Q / S and set $a^{2}=u \in U-\langle z\rangle$. By the above, both a and b commute with h. We have $[a, b] \in U-\langle z\rangle$ and so $[a, b] \in\{u, u z\}$. Suppose at the moment that $[a, b]=u z$. By the previous paragraph, we know that $\langle a\rangle$ or $\langle a t\rangle$ is normal in G. On the other hand, we have

$$
a^{b}=a(u z),(a t)^{b}=(a t)(u z) \text { with } a^{2}=(a t)^{2}=u
$$

and so both $\langle a\rangle$ and $\langle a t\rangle$ are non-normal in G, a contradiction. Thus, we must have $[a, b]=u$. Considering the subgroup $\langle a h\rangle \times\langle t\rangle$, we know that one of $\langle a h\rangle$ or $\langle a h t\rangle$ must be normal in G. But we have

$$
(a h)^{2}=(a h t)^{2}=u z,(a h)^{b}=(a h) u,(a h t)^{b}=(a h t) u
$$

and so both $\langle a h\rangle$ and $\langle a h t\rangle$ are non-normal in G, a contradiction.
We have proved that $t \notin \mathrm{Z}(Q)$. Then we have $\left|Q: \mathrm{C}_{Q}(t)\right|=2$. Let $a \in \mathrm{C}_{Q}(t)-S$ and $b \in Q-\mathrm{C}_{Q}(t)$ so that

$$
\langle a, b\rangle \text { covers } Q / S,[a, b] \in U-\langle z\rangle,[a, h]=1, \quad \text { and }[b, t]=z
$$

In particular, we get $Q^{\prime}=G^{\prime}=U$ and we set $a^{2}=u \in U-\langle z\rangle$. If $[a, b]=u z$, then we replace a with $a^{\prime}=a t$ (noting that $\left[a^{\prime}, h\right]=1$ and $\left(a^{\prime}\right)^{2}=u$) and then we get $\left[a^{\prime}, b\right]=[a t, b]=u z \cdot z=u$. We write a instead a^{\prime} so that we may assume from the start that $[a, b]=u$. If $b^{2}=u z$, then we replace b with $b^{\prime}=b t$ (noting that $\left[a, b^{\prime}\right]=[a, b t]=u$ and $\left[b^{\prime}, t\right]=[b t, t]=z$) and we obtain

$$
\left(b^{\prime}\right)^{2}=(b t)^{2}=b^{2} t^{2}[t, b]=u z \cdot z=u
$$

Hence writing b instead of b^{\prime}, we may assume from the start that $b^{2}=u$. We have obtained that $Q^{*}=\langle a, b\rangle \cong \mathrm{Q}_{8}$. Since $(a t)^{b}=(a t)(u z)$ and $(a t)^{2}=u$, we see that $\langle a t\rangle$ is not normal in G. This implies that $\langle a\rangle$ is normal in G. Also note that b has four conjugates in Q and $Q \unlhd G$. Since $\left|G^{\prime}\right|=4, b$ has exactly four conjugates in G and so $\mathrm{C}_{G}(b)$ must cover G / Q. Let $g \in \mathrm{C}_{G}(b)-K$ and we know that g normalizes $\langle a\rangle$. If $a^{g}=a^{-1}=a u$, then we replace g with $g^{\prime}=g b \in G-K$ so that

$$
a^{g^{\prime}}=a^{g b}=(a u)^{b}=(a u) u=a
$$

Noting that g^{\prime} also commutes with b, we may write g instead of g^{\prime} so that we may assume from the start that $g \in G-K$ centralizes $Q^{*}=\langle a, b\rangle$. Since $t^{b}=t z$ and $t^{g}=t u^{\prime}$ with some $u^{\prime} \in U-\langle z\rangle$, it follows that the conjugate class of t in G contains four elements (and they all lie in $S-U$).

Now it is easy to see that there are no involutions contained in $G-K$ and so we have $\Omega_{1}(G)=S=G^{\prime} \times\langle t\rangle \cong \mathrm{E}_{8}$. Indeed, assume that there is an involution $i \in G-K$. Then we have $D=\langle i, t\rangle \cong \mathrm{D}_{8}$ and by our assumption we have $D \unlhd G$. Since $G^{\prime} \cong \mathrm{E}_{4}$ is elementary abelian, each element in G induces on D an inner automorphism of D. In particular, both four-subgroups in D are normal in G. But then t would have only two conjugates in G, a contradiction.

It remains to determine:

$$
g^{2}, h^{g}=h z^{\epsilon}, h^{b}=h z^{\eta}, \text { and } t^{g}=t u z^{\zeta}, \text { where } \epsilon, \eta, \zeta \in\{0,1\}
$$

Considering the subgroup $\langle a h\rangle \times\langle t\rangle$, we know (by the above) that at least one of the cyclic subgroups $\langle a h\rangle$ or $\langle a h t\rangle$ must be normal in G. Since

$$
\langle h, a, t\rangle=\langle h\rangle \times\langle a\rangle \times\langle t\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{4} \times \mathrm{C}_{2}
$$

is abelian, it is enough to consider the action of elements b and g on these cyclic subgroups. We have

$$
\begin{gathered}
(a h)^{2}=(a h t)^{2}=u z, \text { and }(a h)^{b}=(a h) u z^{\eta},(a h)^{g}=(a h) z^{\epsilon} \\
(a h t)^{b}=(a h t) u z^{\eta+1},(a h t)^{g}=(a h t) u z^{\epsilon+\zeta}
\end{gathered}
$$

If $\eta=1$, then $(a h t)^{b}=(a h t) u$ and so $\langle a h t\rangle$ is not normal in G. Then we must have $\langle a h\rangle \unlhd G$ and so we get $\epsilon=0$.

If $\eta=0$, then $(a h)^{b}=(a h) u$ and so $\langle a h\rangle$ is not normal in G. Then we must have $\langle a h t\rangle \unlhd G$ which gives $\epsilon+\zeta=1$.
(i) First assume that $g^{2} \in\{u, z, u z\}$. If $\epsilon=0$, then $h^{g}=h$ and so g centralizes $\langle h\rangle \times\langle a\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{4}$ and then there is an involution in $g\langle h, a\rangle$, a contradiction. Hence we must have $\epsilon=1$. By the above, we get $\eta=0$ and $\zeta=0$. Hence we have in this case

$$
h^{g}=h z, h^{b}=h, \text { and } t^{g}=t u
$$

If $g^{2}=u$, then $[g, a]=1$ implies that $g a$ is an involution, a contradiction. If $g^{2}=z$, then $(t b)^{2}=u z$ and

$$
(g t b)^{2}=z \cdot u z \cdot[t b, g]=u \cdot u=1
$$

so that $g t b$ is an involution, a contradiction. Hence we must have $g^{2}=u z$. The structure of G is determined as given in part (a) of our proposition. We check that there are no involutions in $G-K$. Indeed, assume that $g h^{\alpha} t^{\beta} a^{\gamma} b^{\delta} u^{\prime}$ with $u^{\prime} \in U=\mathrm{Z}(G)$ and $\alpha, \beta, \gamma, \delta \in\{0,1\}$, is an involution. Then we get

$$
1=\left(g h^{\alpha} t^{\beta} a^{\gamma} b^{\delta} u^{\prime}\right)^{2}=u^{1+\beta+\gamma+\delta+\gamma \delta} z^{1+\beta \delta}
$$

and so $\beta=\delta=1$, which gives $u=1$, a contradiction.
It remains to prove that this special group G of order 2^{7} satisfies our condition (*). Let X be a noncyclic and non-normal subgroup of order $\geq 2^{3}$ which has more than one involution. Then $|X \cap S|=4$ and $X \cap U=\left\langle u^{\prime}\right\rangle$, where u^{\prime} is a central involution and $S=\Omega_{1}(G)=U \times\langle t\rangle$. But all four
involutions in $S-U$ are conjugate in G noting that $\mathrm{C}_{G}(t)=\langle h\rangle \times\langle a\rangle \times\langle t\rangle$. Therefore we may assume that $t \in X$ and so we have $\Omega_{1}(X)=\left\langle t, u^{\prime}\right\rangle=X \cap S$. We have $X \leq \mathrm{N}_{G}\left(\left\langle t, u^{\prime}\right\rangle\right)$ and since $\Omega_{1}(X)$ contains at most two conjugates t and $t u^{\prime}$ of t, it follows that X cannot cover $G / \mathrm{C}_{G}(t)$. Therefore we have either $X \leq \mathrm{C}_{G}(t)$ or $X \not \leq \mathrm{C}_{G}(t)$ in which case we must have one of the three possibilities: $X \leq \mathrm{C}_{G}(t)\langle b\rangle$ or $X \leq \mathrm{C}_{G}(t)\langle g\rangle$ or $X \leq \mathrm{C}_{G}(t)\langle b g\rangle$.

First assume that $X \npreceq \mathrm{C}_{G}(t)$ and then we have three subcases.
(1) If $X \leq \mathrm{C}_{G}(t)\langle b\rangle$, then $t^{b}=t z$ and so $u^{\prime}=z$. If $x \in X-\mathrm{C}_{G}(t)$, then $x^{2} \in U-\langle z\rangle$, which gives $X \geq U=G^{\prime}$, a contradiction.
(2) Assume that $X \leq \mathrm{C}_{G}(t)\langle g\rangle$ and then we have $t^{g}=t u$ and so $u^{\prime}=u$. If in this case $x \in X-\mathrm{C}_{G}(t)$, then we have

$$
x=g a^{\alpha} t^{\beta} h^{\gamma} u^{\prime \prime}\left(u^{\prime \prime} \in U, \alpha, \beta, \gamma \in\{0,1\}\right) \text { and then } x^{2}=u^{1+\alpha+\beta} z
$$

which gives that $X \geq U=G^{\prime}$, a contradiction.
(3) Suppose that $X \leq \mathrm{C}_{G}(t)\langle b g\rangle$ and then we have $t^{b g}=t u z$ and so $u^{\prime}=u z$. If in this case $x \in X-\mathrm{C}_{G}(t)$, then we have
$x=b g a^{\alpha} t^{\beta} h^{\gamma} u^{\prime \prime}\left(u^{\prime \prime} \in U, \alpha, \beta, \gamma \in\{0,1\}\right)$ and then $x^{2}=u^{\beta} z^{1+\beta}$.
If $\beta=0$, then $x^{2}=z$. If $\beta=1$, then $x^{2}=u$. In any case we get $X \geq U=G^{\prime}$, a contradiction.

Now assume $X \leq \mathrm{C}_{G}(t)=(\langle h\rangle \times\langle a\rangle) \times\langle t\rangle$. Since $X \nsupseteq G^{\prime}=U$, we have
$X \in\left\{\left\langle h u^{\mu}\right\rangle \times\langle t\rangle,\left\langle a z^{\nu}\right\rangle \times\langle t\rangle,\left\langle a h z^{\sigma}\right\rangle \times\langle t\rangle\right.$, where $\left.\mu, \nu, \sigma \in\{0,1\}.\right\}$
If $X=\left\langle h u^{\mu}\right\rangle \times\langle t\rangle$, then we have $\left\langle h u^{\mu}\right\rangle \unlhd G$.
If $X=\left\langle a z^{\nu}\right\rangle \times\langle t\rangle$, then $\left\langle a z^{\nu}\right\rangle \unlhd G$.
If $X=\left\langle a h z^{\sigma}\right\rangle \times\langle t\rangle$, then $\left\langle a h z^{\sigma} t\right\rangle \unlhd G$ since

$$
\left(a h z^{\sigma} t\right)^{2}=u z,\left[a h z^{\sigma} t, b\right]=u z, \text { and }\left[a h z^{\sigma} t, g\right]=u z .
$$

We have proved that the condition (*) is satisfied because for example $\langle h\rangle \times\langle t\rangle$ is not normal in G (noting that $t^{g}=t u$).
(ii) Assume that $g^{2}=h$. In this case we have $h \in \mathrm{Z}(G)$ and this gives $\epsilon=0$ and $\eta=0$. It follows (from the above) that $\zeta=1$ and so we have $t^{g}=t u z$. The structure of G is determined as given in part (b) of our proposition. For each $k \in K$ we have $(g k)^{4}=g^{4}=z$. Thus, all elements in $G-K$ are of order 8 and so we have $\Omega_{1}(G)=S=G^{\prime} \times\langle t\rangle \cong \mathrm{E}_{8}$.

Conversely, let X be a noncyclic and non-normal subgroup of order $\geq 2^{3}$ in G which has more than one involution. Since four noncentral involutions in $S-U$ form a single conjugate class in G, it follows that we may assume $t \in X$. In addition, X contains exactly one central involution $u^{\prime} \in U$ so that we have $\Omega_{1}(X)=\left\langle t, u^{\prime}\right\rangle$.

First suppose that $X \not \leq K$ so that X contains elements of order 8 which implies that $z \in X$ and so we have $\Omega_{1}(X)=\langle t, z\rangle=H_{0}$. But then $H_{0} \unlhd G$, contrary to $t^{g}=t u z$.

We have proved that we must have $X \leq K$. Suppose that

$$
X \not \leq \mathrm{C}_{G}(t)=(\langle h\rangle \times\langle a\rangle) \times\langle t\rangle \text { and let } x \in X-\mathrm{C}_{G}(t)
$$

Then we have $t^{x}=t z$ and $x^{2} \in U-\langle z\rangle$ and so $X \geq U=\langle u, z\rangle=G^{\prime}$, a contradiction.

Thus, we must have $X \leq \mathrm{C}_{G}(t)$ and since $\langle u, z\rangle \not \leq X$, we get $X \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$. We have three subcases.

If $X=\left\langle h u^{\mu}\right\rangle \times\langle t\rangle(\mu \in\{0,1\})$, then we have $\left\langle h u^{\mu}\right\rangle \unlhd G$.
If $X=\left\langle a z^{\nu}\right\rangle \times\langle t\rangle(\nu \in\{0,1\})$, then $\left\langle a z^{\nu}\right\rangle \unlhd G$.
If $X=\left\langle a h z^{\sigma}\right\rangle \times\langle t\rangle(\sigma \in\{0,1\})$, then $\left\langle a h z^{\sigma} t\right\rangle \unlhd G$ since

$$
\left(a h z^{\sigma} t\right)^{2}=u z,\left[a h z^{\sigma} t, b\right]=u z, \text { and }\left[a h z^{\sigma} t, g\right]=u z
$$

We have proved that the condition $(*)$ is satisfied because for example $\langle h\rangle \times\langle t\rangle$ is not normal in G (noting that $t^{g}=t u z$). Our proposition is completely proved.

Proposition 4.8. Suppose that our group G has the commutator group G^{\prime} of order p. Then we have $|G: \mathrm{Z}(G)|=p^{2}, \mathrm{Z}(G)$ is of rank $2, \Omega_{1}(G) \not 又 \mathrm{Z}(G)$ and $\mathrm{Z}(G)$ possesses cyclic subgroups of order $\geq p^{2}$ which do not contain G^{\prime}.

Conversely, all these groups satisfy our condition (*).
Proof. By Propositions 2 and 3, we must be in case (b1) of Proposition 3, where H is abelian of type $\left(p^{s}, p\right), s \geq 2, L=H U$ is abelian of type (p^{s}, p, p) with $\mho_{1}(L)=\mho_{1}(H) \geq U_{0}=H \cap U=\langle z\rangle \leq \mathrm{Z}(G)$. By Proposition $3, G^{\prime}$ covers $U /\langle z\rangle$ and so we may set $G^{\prime}=\langle u\rangle$, where $u \in U-\langle z\rangle$ so that $U \leq \mathrm{Z}(G)$. We have $\mathrm{N}_{G}\left(H_{0}\right)=\mathrm{N}_{G}(H)=K$, where $H_{0}=\Omega_{1}(H) \cong \mathrm{E}_{p^{2}}$, $S=H_{0} U \cong \mathrm{E}_{p^{3}}$ and $S=\Omega_{1}(K)$. Note that $G / K \cong \mathrm{C}_{p}$ acts transitively on p subgroups of order p^{2} in S which contain $\langle z\rangle$ and which are distinct from U and so we have $\mathrm{Z}(G) \cap S=U$. Since $\mathrm{Z}(G) \leq K$, it follows that $\mathrm{Z}(G)$ is of rank 2 and $\Omega_{1}(G) \nsubseteq \mathrm{Z}(G)$. By Proposition 3, G does not possess any non-normal subgroup isomorphic to D_{8} and so by Proposition $7, K / H_{0}$ is abelian. This implies that K is abelian and so Lemma 1.1 in [1] gives at once that $|G: \mathrm{Z}(G)|=p^{2}$. By Proposition $6, H$ has exactly one G-invariant cyclic subgroup $\langle h\rangle \cong \mathrm{C}_{p^{s}}, s \geq 2$, where $\langle h\rangle \cap U=\langle z\rangle$ and so $G^{\prime} \not \leq\langle h\rangle$. But we have

$$
[G,\langle h\rangle] \leq\langle h\rangle \cap G^{\prime}=\{1\} \text { and so }\langle h\rangle \leq \mathrm{Z}(G)
$$

We have proved that $\mathrm{Z}(G)$ contains cyclic subgroups of order $\geq p^{2}$ which do not contain G^{\prime}. We have obtained the groups stated in our proposition.

Conversely, let X be any noncyclic and non-normal subgroup of order $\geq p^{3}$ in a group G described in our proposition. Since $G^{\prime} \not \leq X$, it follows that X is abelian and so X does not cover $G / \mathrm{Z}(G)$ and $X \not 又 \mathrm{Z}(G)$. We get $|X:(X \cap \mathrm{Z}(G))|=p$ and $X_{0}=X \cap \mathrm{Z}(G)$ is cyclic (since $\mathrm{E}_{p^{2}} \cong \Omega_{1}(\mathrm{Z}(G))$ contains G^{\prime}). For any $g \in G$ with $X^{g} \neq X$, we see that $X \cap X^{g}=X_{0}$ is cyclic. Let $\langle k\rangle$ be a maximal cyclic subgroup of order $\geq p^{2}$ in $\mathrm{Z}(G)$ which does not
contain G^{\prime} and let i be an element of order p in $\Omega_{1}(G)-\mathrm{Z}(G)$. Then $\langle k\rangle \times\langle i\rangle$ does not contain G^{\prime} and so $\langle k\rangle \times\langle i\rangle$ is a maximal non-normal subgroup of G of type $\left(p^{r}, p\right), r \geq 2$. Indeed, if $\langle k\rangle \times\langle i\rangle \unlhd G$, then

$$
[G,(\langle k\rangle \times\langle i\rangle)] \leq(\langle k\rangle \times\langle i\rangle) \cap G^{\prime}=\{1\}
$$

and so $i \in \mathrm{Z}(G)$, a contradiction. The maximality of the cyclic subgroup $\langle k\rangle$ in $\mathrm{Z}(G)$ also shows that $\langle k\rangle \times\langle i\rangle$ is a maximal non-normal subgroup in G and we are done.

Proposition 4.9. Suppose that we have the case (b1) of Proposition 3, where $H \cong \mathrm{M}_{p^{n}}, n \geq 3$ (if $p=2$, then $n \geq 4$), G is of class 3 and G does not have non-normal subgroups isomorphic to D_{8} or such one which lead to the case (b2) of Proposition 3. Then we have $p=2, G$ has the following subgroup of index 2:

$$
\mathrm{M}_{2^{n+1}} \cong\left\langle g, u \mid g^{2^{n}}=u^{2}=1,[g, u]=z=g^{2^{n-1}}\right\rangle, n \geq 4
$$

and $G=\langle g, u\rangle\langle t\rangle$, where t is an involution with $[g, t]=u$ and $[u, t]=1$.
We have

$$
|G|=2^{n+2}, n \geq 4
$$

with

$$
\begin{gathered}
G^{\prime}=\langle u, z\rangle \cong \mathrm{E}_{4},\left[G, G^{\prime}\right]=\langle z\rangle, \Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{8} \\
\mathrm{Z}(G)=\left\langle g^{4}\right\rangle \cong \mathrm{C}_{2^{n-2}} \text { and }\left\langle g^{2}, t\right\rangle \cong \mathrm{M}_{2^{n}}
\end{gathered}
$$

is a non-normal subgroup in G with $\left\langle g^{2}\right\rangle \unlhd G$.
Conversely, these groups satisfy the condition (*).
Proof. By Proposition $4, G^{\prime} \leq U$ and so we have $G^{\prime}=U \not \leq \mathrm{Z}(G)$. Also, Proposition 7 implies that $K / \Omega_{1}(H)$ is abelian, where $\Omega_{1}(H) \cong \mathrm{E}_{p^{2}}$ and so we have $K^{\prime}=H^{\prime}=\langle z\rangle \leq \mathrm{Z}(G)$. By Proposition $2, K / H$ is cyclic of order $\geq p$. Finally, Proposition 3 also implies that $U=\Omega_{1}(\mathrm{Z}(L))$, where $L=H U \unlhd G$. By Proposition 6, H possesses a G-invariant cyclic subgroup $\langle h\rangle$ of index p and there is an element t of order p in $H-\langle h\rangle$ so that $\langle[h, t]\rangle=\langle z\rangle$. For any $g \in G-K$, we have $t^{g}=t u^{\prime}$ for some $u^{\prime} \in U-\langle z\rangle$, where $G / K \cong \mathrm{C}_{p}$, $S=\langle t\rangle U \cong \mathrm{E}_{p^{3}}$ is normal in G and $S=\Omega_{1}(K)$. It follows that all p^{2} subgroups of order p contained in $(S-U) \cup\{1\}$ form a single conjugate class in G.

Since $K^{\prime}=H^{\prime}$, we get $\mho_{1}(K) \leq \mathrm{Z}(K)$ and $K=H * C$, where $C=\mathrm{C}_{K}(H)$ and $H \cap C=\left\langle h^{p}\right\rangle \geq\langle z\rangle$. On the other hand, $K / H \cong C /\left\langle h^{p}\right\rangle$ is cyclic and so C is abelian of rank 2 (because $\left.\Omega_{1}(C)=U\right), C=\mathrm{Z}(K)$ and $K_{1}=\langle h\rangle C$ is an abelian subgroup of index 2 in K with $\Omega_{1}\left(K_{1}\right)=U$.

No element in $U-\langle z\rangle$ is a p-th power of an element in G. Indeed, if there is $x \in G$ such that $x^{p} \in U-\langle z\rangle$, then we consider the subgroup $U\langle x\rangle \unlhd G$ of order p^{3}. Since $\langle z\rangle \leq \mathrm{Z}(G)$ and x commutes with x^{p}, it follows that $U\langle x\rangle$ is abelian of type $\left(p^{2}, p\right)$. But then we get $\mho_{1}(U\langle x\rangle)=\left\langle x^{p}\right\rangle \unlhd G$ and so $U \leq \mathrm{Z}(G)$, a contradiction.

Since $\Omega_{1}\left(K_{1}\right)=U$ and no element in $U-\langle z\rangle$ is a p-th power of an element in K_{1}, it follows that we have $K_{1}=\langle k\rangle \times\langle u\rangle$ with $u \in U-\langle z\rangle, o(k) \geq p^{n-1}$ and $\langle k\rangle \geq\langle z\rangle$. Note that $\mho_{1}\left(K_{1}\right)=\left\langle k^{p}\right\rangle \leq \mathrm{Z}(K)$ and so $\left\langle k^{p}\right\rangle \times\langle u\rangle \leq \mathrm{Z}(K)$. Suppose that $K>L$ in which case we have $o(k) \geq p^{n}$. But then we get

$$
\Omega_{n-1}\left(K_{1}\right) \leq\left\langle k^{p}\right\rangle \times\langle u\rangle \leq \mathrm{Z}(K)
$$

and since $h \in \Omega_{n-1}\left(K_{1}\right)$, we get $h \in \mathrm{Z}(K)$, a contradiction.
We have proved that we have $K=L$. Since $\langle h\rangle \unlhd G$, we get

$$
[G,\langle h\rangle] \leq\langle h\rangle \cap G^{\prime}=\langle h\rangle \cap U=\langle z\rangle \text { and so }[G,\langle h\rangle]=\langle z\rangle .
$$

It follows that $\mathrm{C}_{G}(h)$ covers G / K and $\mathrm{C}_{K}(h)=\langle h\rangle U$. Hence, if $g \in \mathrm{C}_{G}(h)-$ K, then we have $g^{p} \in\langle h\rangle U$ and note that $\left|\mathrm{C}_{G}(h):\langle h\rangle\right|=p^{2}$. Thus, if $g^{p} \in(\langle h\rangle U)-\langle h\rangle$, then $\mathrm{C}_{G}(h)$ would be abelian and $\mathrm{C}_{G}(U) \geq\left\langle\mathrm{C}_{G}(h), t\right\rangle=G$, a contradiction. We have proved that $g^{p} \in\langle h\rangle$ and this gives that either $o(g)=p^{n}$ in which case we may set $g^{p}=h$ or we may assume that $o(g)=p$.

First assume that $p>2$. Assume in addition that $g^{p}=h$. We have $[g, t]=u$ with some $u \in U-\langle z\rangle$ and $u^{g}=u z$, where $\left\langle g^{p^{n-1}}\right\rangle=\langle z\rangle \leq \mathrm{Z}(G)$. It follows that

$$
\left[g^{2}, t\right]=[g, t]^{g}[g, t]=(u z) u=u^{2} z
$$

and we claim that we have $\left[g^{i}, t\right]=u^{i} z^{\binom{i}{2}}$ for all $i \geq 2$. Indeed, we get by induction:

$$
\begin{aligned}
& =\left[g^{i} g, t\right]=\left[g^{i}, t\right]^{g}[g, t]=\left(u^{i} z^{\binom{i}{2}}\right)^{g} u=(u z)^{i} z^{\binom{i}{2}} u \\
& =u^{i+1}\left(z^{i+\binom{i}{2}}\right)=u^{i+1} z^{\binom{i+1}{2}}
\end{aligned}
$$

This gives

$$
[h, t]=\left[g^{p}, t\right]=u^{p} z^{\binom{p}{2}}=1
$$

which is a contradiction.
We may assume in case $p>2$ that $o(g)=p$, where $[g, h]=1, h^{p^{n-2}}=z$, $n \geq 3$, and $z \in \mathrm{Z}(G)$. We may choose a suitable power t^{j} in $\langle t\rangle, j \not \equiv 0(\bmod$ $p)$, so that we can set from the start that $[h, t]=z$. Then we have $[g, t]=u$ for some $u \in U-\langle z\rangle$ and we have $[g, u]=z^{i}$ with some $i \not \equiv 0(\bmod p)$. We note that

$$
H^{*}=\langle g\rangle \times\langle h\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{n-1}}, n \geq 3
$$

is a maximal non-normal subgroup in G since $\left|G: H^{*}\right|=p^{2}$ and $[g, t]=u \notin$ H^{*}. Since $\Omega_{1}\left(H^{*}\right) U=\langle g, z\rangle U \cong \mathrm{~S}\left(p^{3}\right)$, we are in case (b2) of Proposition 3 with respect to H^{*}. But this was excluded by our assumptions.

We have proved that we must have $p=2$. Assume in addition that $o(g)=2$. Then we have $\langle t, g\rangle \cong \mathrm{D}_{8}$ and $[h, t]=z \notin\langle t, g\rangle$ and so $\langle t, g\rangle$ is a non-normal subgroup isomorphic to D_{8}, contrary to our assumptions. Thus we have in this case $g^{2}=h$. Also we have

$$
o(g)=2^{n}, n \geq 4,[g, t]=u \in U-\langle z\rangle, z=g^{2^{n-1}},[g, u]=z
$$

so that

$$
\langle g, u\rangle \cong \mathrm{M}_{2^{n+1}}
$$

is of index 2 in G. Also, $\langle h, t\rangle=\left\langle g^{2}, t\right\rangle \cong \mathrm{M}_{2^{n}}$ and $\langle h, t\rangle$ is not normal in G since $[g, t]=u$. We have obtained the groups G stated in our proposition.

We check that there are no involutions in $G-K$, where $K=L=\left\langle g^{2}, t\right\rangle \times$ $\langle u\rangle$ and so we have $\Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{8}$. Indeed, suppose that $g h^{i} u^{j} t^{k}$ is an element in $G-K$, where $g^{2}=h, i$ is any integer and $j, k \in\{0,1\}$. Then we get

$$
x=\left(g h^{i} u^{j} t^{k}\right)^{2}=h^{2 i+1} u^{k} z^{j+i k} \text { and so }\langle x\rangle \geq\langle z\rangle .
$$

If $x=1$, then $k=0$ and so $h^{2 i+1} z^{j}=1$, a contradiction.
Conversely, let X be any noncyclic and non-normal subgroup in G of order $\geq 2^{3}$ containing more than one involution. Then we may assume (up to conjugacy in G) that $t \in X$ and so $\Omega_{1}(X)=\left\langle t, u^{\prime}\right\rangle$ with some involution $u^{\prime} \in U$. If $X \not \leq K$, then by the above calculation we see that X contains z and so we have $\Omega_{1}(X)=\langle t, z\rangle$. But then for an element $x \in X-K$, we have $[x, t] \in U-\langle z\rangle$ and so in this case $X \geq G^{\prime}=\langle u, z\rangle$, a contradiction. Hence we have $X \leq K$. Note that $\langle h\rangle \unlhd G$ and $\langle h u\rangle \unlhd G$. Since $|X| \geq 2^{3}$, it follows that $X \cap\langle h\rangle \neq\{1\}$ and so $z \in X$ and $\Omega_{1}(X)=\langle t, z\rangle$. Hence we have

$$
X=\langle t\rangle(X \cap\langle h\rangle) \text { or } X=\langle t\rangle(X \cap\langle h u\rangle) .
$$

But both $X \cap\langle h\rangle$ and $X \cap\langle h u\rangle$ are normal in G and we are done. Our group G satisfies the condition (*).

Proposition 4.10. Suppose that we have the case (b1) of Proposition 3, where $H \cong \mathrm{M}_{p^{3}}, p>2$, and G is of class 2 . Then we have the following possibilities:
(a) G is a splitting extension of a cyclic normal subgroup $\langle g\rangle \cong \mathrm{C}_{p^{m}}$, $m \geq 3$, by

$$
\mathrm{M}_{p^{3}} \cong\left\langle h, t \mid h^{p^{2}}=t^{p}=1,[h, t]=h^{p}=z\right\rangle
$$

where $[g, h]=1$ and $[g, t]=u$ with $\langle u\rangle=\Omega_{1}(\langle g\rangle)$.
We have

$$
|G|=p^{m+3}, m \geq 3, \mathrm{E}_{p^{2}} \cong G^{\prime}=\langle u, z\rangle, \mathrm{Z}(G)=\left\langle g^{p}\right\rangle \times\langle z\rangle \cong \mathrm{C}_{p^{m-1}} \times \mathrm{C}_{p}
$$

$\langle g, h\rangle \cong \mathrm{C}_{p^{m}} \times \mathrm{C}_{p^{2}}$ is a unique abelian maximal subgroup of G,

$$
\Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

and

$$
\langle h, t\rangle \cong \mathrm{M}_{p^{3}} \text { and }\langle g, t\rangle \cong \mathrm{M}_{p^{m+1}}
$$

are non-normal subgroups in G with $\langle h\rangle \unlhd G$ and $\langle g\rangle \unlhd G$.
(b) $G=(\langle g\rangle \times\langle h\rangle)\langle t\rangle$, where $\langle g\rangle \cong\langle h\rangle \cong \mathrm{C}_{p^{2}}, g^{p}=u, h^{p}=z, t$ centralizes $\langle u, z\rangle$,

$$
[h, t]=z,[g, t]=u^{i} z^{j}, i \not \equiv 0(\bmod p)
$$

Here G is a special group of order p^{5} with

$$
\mathrm{E}_{p^{2}} \cong G^{\prime}=\langle u, z\rangle, \Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

and $\langle h, t\rangle \cong \mathrm{M}_{p^{3}}$ is non-normal in G with $\langle h\rangle \unlhd G$.
Conversely, all groups in (a) and (b) satisfy our assumption (*).
Proof. By Proposition 6, H possesses a G-invariant cyclic subgroup $\langle h\rangle \cong \mathrm{C}_{p^{2}}$ and then we may set:

$$
H=\left\langle h, t \mid h^{p^{2}}=t^{p}=1,[h, t]=h^{p}=z\right\rangle
$$

Since $K /\langle t, z\rangle$ is abelian, we have $K^{\prime}=H^{\prime}=\langle z\rangle$ and so $K=H * C$ with $H \cap C=\langle z\rangle$, where $C=\mathrm{C}_{K}(H)$. Also, $K / H \cong C /\langle z\rangle$ is cyclic of order $\geq p$ and so C and $C_{1}=\langle h\rangle C$ are abelian, where $\Omega_{1}\left(C_{1}\right)=U=G^{\prime} \leq \mathrm{Z}(G)$ and $\mho_{1}(G) \leq \mathrm{Z}(G)$.

Since $[G,\langle h\rangle]=\langle z\rangle$, we have $G=\langle t\rangle \mathrm{C}_{G}(h)$. Set $S=U \times\langle t\rangle \cong \mathrm{E}_{p^{3}}$ and because $\left|G: \mathrm{C}_{G}(t)\right|=p^{2}$, all p^{2} subgroups of order p in $(S-U) \cup\{1\}$ form a single conjugate class in G. We have $\Omega_{1}(K)=S$ and we have in fact $\Omega_{1}(G)=S$. Indeed, if g is an element of order p in $G-K$, then we have

$$
\langle g, t\rangle \cong \mathrm{S}\left(p^{3}\right) \text { with } u^{\prime}=[g, t] \in U-\langle z\rangle
$$

Because $\langle g, t\rangle \cap K=\left\langle t, u^{\prime}\right\rangle \cong \mathrm{E}_{p^{2}}$, we have $z \notin\langle g, t\rangle$. But $[h, t]=z$ and so $\langle g, t\rangle$ is not normal in G, contrary to Proposition 1.
(i) First assume that G / L is cyclic of order $\geq p^{2}$, where $L=H U$. Let $g \in \mathrm{C}_{G}(h)-K$ so that $\langle g\rangle$ covers G / L and $\left\langle g^{p}\right\rangle \leq \mathrm{Z}(G)$ covers K / H (which is cyclic of order $\geq p^{2}$). Hence we have $\Omega_{1}\langle g\rangle=\langle u\rangle$, where $o(g)=p^{m}, m \geq 3$, $u \in U-\langle z\rangle$ and $[g, t]=u z^{i}$ for some integer $i(\bmod p)$. We replace g with $g^{\prime}=h^{-i} g \in \mathrm{C}_{G}(h)-K$ so that we have

$$
\left[g^{\prime}, t\right]=\left[h^{-i} g, t\right]=z^{-i}\left(u z^{i}\right)=u, \text { where }\left(g^{\prime}\right)^{p^{m-1}}=\left(h^{-i} g\right)^{p^{m-1}}=g^{p^{m-1}}
$$

with $\left\langle g^{p^{m-1}}\right\rangle=\langle u\rangle$. Thus, we may assume from the start that $[g, t]=u$ and so $\langle g, t\rangle \cong \mathrm{M}_{p^{m+1}}$ with $\langle g\rangle \unlhd G$. But $[h, t]=z=h^{p}$ and so $z \notin\langle g, t\rangle$ and therefore $\langle g, t\rangle$ is a maximal non-normal subgroup in G. Our group G is a splitting extension of $\langle g\rangle$ by $\langle h, t\rangle$ and so we have obtained the groups stated in part (a) of our proposition. We check that

$$
\Omega_{1}(G)=S=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

Indeed, let $1 \neq t^{\prime} \in\langle t\rangle$ and suppose that $x=t^{\prime} g^{r} h^{s}(r, s$ are any integers) is an element of order p in $G-\langle g, h\rangle$. Then we have

$$
\left.\left.1=\left(t^{\prime}\left(g^{r} h^{s}\right)\right)^{p}=\left(t^{\prime}\right)^{p} g^{p r} h^{p s}\left[g^{r} h^{s}, t^{\prime}\right]\right]^{p} \begin{array}{c}
p \\
2
\end{array}\right)=g^{p r} h^{p s}
$$

Hence $r \equiv 0\left(\bmod p^{m-1}\right), s \equiv 0(\bmod p)$ and so we get $x \in S$.

Conversely, let X be a noncyclic and non-normal subgroup of order $\geq p^{3}$ in G. We may assume (up to conjugacy in G) that $t \in X$ and so $\Omega_{1}(X)=$ $\left\langle t, u^{\prime}\right\rangle \cong \mathrm{E}_{p^{2}}$, where u^{\prime} is an element of order p in U. Set $X_{0}=X \cap\langle g, h\rangle$ so that X_{0} is cyclic and $\mathrm{N}_{G}\left(X_{0}\right) \geq\langle g, h\rangle\langle t\rangle=G$. Our condition $(*)$ is satisfied.
(ii) Assume that either $K=L$ or $K>L$ but G / L is noncyclic so that G / K splits over K / L. In any case we have $G=K G_{0}$ with $K \cap G_{0}=L$ and $\left|G_{0}: L\right|=p$. We have $\mathrm{C}_{G_{0}}(h)=(\langle h\rangle U)\langle g\rangle$ for some $g \in G_{0}-K$. Since there are no elements of order p in $G_{0}-K$, we have $o(g) \geq p^{2}$ and so $g^{p} \in \mathrm{Z}(G) \cap L$ implies that $1 \neq g^{p} \in U$. If $g^{p} \in\langle z\rangle$, then $\langle g, h\rangle$ would contain elements of order p in $G_{0}-K$, a contradiction. Hence we must have $g^{p}=u \in U-\langle z\rangle$.

Suppose that $K>L$. Then there is an element $a \in C-U$ of order p^{2} so that $a^{p}=u^{\prime} \in U-\langle z\rangle$. Considering the subgroup $\langle h\rangle \times\langle g\rangle \cong \mathrm{C}_{p^{2}} \times \mathrm{C}_{p^{2}}$, each element in $\mho_{1}(\langle g, h\rangle)=\langle u, z\rangle$ is a p-th power of an element in $\langle g, h\rangle$. Thus, there is $y \in\langle g, h\rangle-K$ such that $y^{p}=\left(u^{\prime}\right)^{-1}$. But then we get:

$$
(a y)^{p}=a^{p} y^{p}[y, a]^{\binom{p}{2}}=u^{\prime}\left(u^{\prime}\right)^{-1}=1
$$

and so $a y$ is an element of order p in $G-K$, a contradiction. Hence we have $K=L$. In this case we have $[g, t]=u^{i} z^{j}$ with $i \not \equiv 0(\bmod p)$ and so we have obtained a special group of order p^{5} stated in part (b) of our proposition. We check that

$$
\Omega_{1}(G)=S=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

Indeed, let $1 \neq t^{\prime} \in\langle t\rangle$ and suppose that $x=t^{\prime} g^{r} h^{s}$ (r, s are any integers) is an element of order p in $G-\langle g, h\rangle$. Then we have

$$
\left.1=\left(t^{\prime}\left(g^{r} h^{s}\right)\right)^{p}=\left(t^{\prime}\right)^{p} g^{p r} h^{p s}\left[g^{r} h^{s}, t^{\prime}\right]^{p} \begin{array}{c}
p \\
2
\end{array}\right)=g^{p r} h^{p s}
$$

Hence $r \equiv 0(\bmod p), s \equiv 0(\bmod p)$ and so we get $x \in S$.
Conversely, let X be a noncyclic and non-normal subgroup of order p^{3} in G. We may assume (up to conjugacy in G) that $t \in X$ and so $\Omega_{1}(X)=$ $\left\langle t, u^{\prime}\right\rangle \cong \mathrm{E}_{p^{2}}$, where u^{\prime} is an element of order p in U. Set $X_{0}=X \cap\langle g, h\rangle$ so that X_{0} is cyclic of order p^{2} and $\mathrm{N}_{G}\left(X_{0}\right) \geq\langle g, h\rangle\langle t\rangle=G$. Our assumption $(*)$ is satisfied.

Proposition 4.11. Suppose that we have the case (b1) of Proposition 3, where $H \cong \mathrm{M}_{p^{n}}, n \geq 4$, is a non-normal subgroup of maximal possible order in G (which is isomorphic to some $\mathrm{M}_{p^{m}}, m \geq 4$), G is of class 2 and assume that G does not have non-normal subgroups isomorphic to D_{8} or $\mathrm{M}_{p^{3}}$ with $p>2$. Then we have the following possibilities:
(a) $G=(\langle h\rangle \times\langle g\rangle)\langle t\rangle$, where

$$
\langle h\rangle \cong \mathrm{C}_{p^{n-1}}, n \geq 4,\langle g\rangle \cong \mathrm{C}_{p^{m}}, m \geq 3,\langle t\rangle \cong \mathrm{C}_{p}
$$

$[h, t]=z$ with $\langle z\rangle=\Omega_{1}(\langle h\rangle),[g, t]=z^{i} u$ with $\langle u\rangle=\Omega_{1}(\langle g\rangle), i$ integer, and t centralizes $\langle u, z\rangle$.

Here we have $|G|=p^{m+n}, m \geq 3, n \geq 4$,

$$
\mathrm{E}_{p^{2}} \cong G^{\prime}=\langle u, z\rangle \leq \mathrm{Z}(G), \Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

$\langle g, h\rangle \cong \mathrm{C}_{p^{m}} \times \mathrm{C}_{p^{n-1}}$ is a unique abelian maximal subgroup of G and $\langle h, t\rangle \cong \mathrm{M}_{p^{n}}$ is non-normal in G with $\langle h\rangle \unlhd G$.
(b) $G=(\langle k\rangle \times\langle g\rangle)\langle t\rangle$, where

$$
\begin{gathered}
\langle g\rangle \cong \mathrm{C}_{p^{n}}, n \geq 4,\langle k\rangle \cong \mathrm{C}_{p^{m}}, 2 \leq m \leq n-2,\langle t\rangle \cong \mathrm{C}_{p}, \\
{[k, t]=z \text { with }\langle z\rangle=\Omega_{1}(\langle g\rangle),[g, t]=u \text { with }\langle u\rangle=\Omega_{1}(\langle k\rangle),}
\end{gathered}
$$ and t centralizes $\langle u, z\rangle$.

Here we have $|G|=p^{m+n+1}, n \geq 4,2 \leq m \leq n-2$,

$$
\mathrm{E}_{p^{2}} \cong G^{\prime}=\langle u, z\rangle \leq \mathrm{Z}(G), \Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

$\langle g, k\rangle \cong \mathrm{C}_{p^{n}} \times \mathrm{C}_{p^{m}}$ is a unique abelian maximal subgroup of G and $\left\langle k g^{p}, t\right\rangle \cong \mathrm{M}_{p^{n}}$ is non-normal in G with $\left\langle k g^{p}\right\rangle \unlhd G$.
Conversely, all groups in (a) and (b) satisfy our assumption (*).
Proof. By Proposition $4, G^{\prime} \leq U$ and so $G^{\prime}=U \leq \mathrm{Z}(G)$ and $\mho_{1}(G) \leq$ $\mathrm{Z}(G)$. Also, Proposition 7 implies that $K / \Omega_{1}(H)$ is abelian and so K / H is cyclic (by Proposition 2), where $\Omega_{1}(H) \cong \mathrm{E}_{p^{2}}$ and therefore we have $K^{\prime}=$ $H^{\prime}=\langle z\rangle \leq \mathrm{Z}(G)$. By Proposition $2, K / H$ is cyclic of order $\geq p$. Finally, Proposition 3 also implies that $U=\Omega_{1}(\mathrm{Z}(L))$, where $L=H U \unlhd G$. By Proposition 6, H possesses a G-invariant cyclic subgroup $\langle h\rangle$ of index p and there is an element t of order p in $H-\langle h\rangle$ so that $\langle[h, t]\rangle=\langle z\rangle$. For any $g \in G-K$, we have $t^{g}=t u^{\prime}$ for some $u^{\prime} \in U-\langle z\rangle$, where $G / K \cong \mathrm{C}_{p}$, $S=\langle t\rangle U \cong \mathrm{E}_{p^{3}}$ is normal in G and $S=\Omega_{1}(K)$. It follows that all p^{2} subgroups of order p contained in $(S-U) \cup\{1\}$ form a single conjugate class in G.

Since $K^{\prime}=H^{\prime}$, we get $K=H * C$, where $C=\mathrm{C}_{K}(H)$ and $H \cap C=$ $\left\langle h^{p}\right\rangle \geq\langle z\rangle$. On the other hand, $K / H \cong C /\left\langle h^{p}\right\rangle$ is cyclic and so C is abelian of rank 2 (because $\left.\Omega_{1}(C)=U\right), C=\mathrm{Z}(K)$ and $K_{1}=\langle h\rangle C$ is an abelian subgroup of index 2 in K with $\Omega_{1}\left(K_{1}\right)=U$. Since $\langle h\rangle \unlhd G$, we get

$$
[G,\langle h\rangle] \leq\langle h\rangle \cap G^{\prime}=\langle h\rangle \cap U=\langle z\rangle \text { and so }[G,\langle h\rangle]=\langle z\rangle
$$

It follows that $G=\langle t\rangle \mathrm{C}_{G}(h)$.
It is easy to see that there are no elements of order p in $G-K$. Indeed, suppose that there is an element i of order p in $G-K$. Since $[i, t]=u \in U-\langle z\rangle$, we get that $D=\langle i, t\rangle$ is isomorphic to D_{8} in case $p=2$ and D is isomorphic to $\mathrm{S}\left(p^{3}\right)$ in case $p>2$. On the other hand, $D \cap K=\langle t, u\rangle \cong \mathrm{E}_{p^{2}}$ and we have $[h, t]=z$, where $\langle z\rangle=\Omega_{1}(\langle h\rangle)$. Hence D is not normal in G. But the case $D \cong \mathrm{D}_{8}$ is excluded by our assumptions and the case case $D \cong \mathrm{~S}\left(p^{3}\right)$ is not possible by Proposition 1.

First we consider the case, where G / L (being abelian as a factor-group of the abelian group $G / U)$ is not cyclic of order $\geq p^{2}$. Hence we have either
$G / L \cong \mathrm{C}_{p}$ (i.e., $K=L$) or G / L is abelian of type $\left(p^{r}, p\right), r \geq 1$ (noting that K / H is cyclic and so K / L is cyclic). In any case, G / L splits over K / L and so G has a normal subgroup G_{0} such that $G=K G_{0}$ with $K \cap G_{0}=L$ and $\left|G_{0}: L\right|=p$. Since $\left[G_{0},\langle h\rangle\right]=\langle z\rangle$, it follows that $\mathrm{C}_{G_{0}}(h)$ covers G_{0} / L, where $\mathrm{C}_{L}(h)=\langle h\rangle U$ and so $\mathrm{C}_{G_{0}}(h)$ is abelian of rank 2 with $\Omega_{1}\left(\mathrm{C}_{G_{0}}(h)\right)=U$ (noting that there are no elements of order p in $G_{0}-L$). If $\mathrm{C}_{G_{0}}(h)$ is abelian of type $\left(p^{n}, p\right)$, then there is an element $g_{1} \in \mathrm{C}_{G_{0}}(h)-(\langle h\rangle U)$ such that $\left(g_{1}\right)^{p}=h u^{i}(0 \leq i \leq p-1)$, where $u \in U-\langle z\rangle$. But then $\left(g_{1}\right)^{p}=h u^{i} \in \mathrm{Z}(G)$ and so $h \in \mathrm{Z}(G)$, a contradiction. Hence $\mathrm{C}_{G_{0}}(h)$ is of type (p^{n-1}, p^{2}) and therefore there is an element $g \in \mathrm{C}_{G_{0}}(h)-K$ such that $g^{p}=u \in U-\langle z\rangle$. We may assume that $[t, g]=u z^{i}(0 \leq i \leq p-1)$ (by replacing t with a suitable power $\neq 1$ of t, if necessary) and then we choose an element $h^{\prime} \in\left\langle h^{p}\right\rangle$ such that $\left(h^{\prime}\right)^{p}=z^{i}$ (noting that $o(h)=p^{n-1} \geq p^{3}$). Then we take the element $g^{\prime}=h^{\prime} g \in G_{0}-K$ and compute:

$$
\left(g^{\prime}\right)^{p}=\left(h^{\prime}\right)^{p} g^{p}=u z^{i} \text { and }\left[t, g^{\prime}\right]=\left[t, h^{\prime} g\right]=[t, g]=u z^{i} .
$$

Hence, in case $p=2$ we have $\left\langle g^{\prime}, t\right\rangle \cong \mathrm{D}_{8}$ and then $g^{\prime} t$ is an involution in $G_{0}-K$, a contradiction. If $p>2$, then $\left\langle g^{\prime}, t\right\rangle \cong \mathrm{M}_{p^{3}}$. But we have

$$
\left\langle g^{\prime}, t\right\rangle \cap K=\left\langle\left(g^{\prime}\right)^{p}, t\right\rangle \cong \mathrm{E}_{p^{2}} \text { and } 1 \neq[h, t] \in\langle z\rangle \notin\left\langle g^{\prime}, t\right\rangle .
$$

Thus, $\left\langle g^{\prime}, t\right\rangle$ is a non-normal subgroup in G isomorphic to $\mathrm{M}_{p^{3}}, p>2$, which was excluded by our assumptions.

We have proved that G / L must be cyclic of order $\geq p^{2}$. Let $g \in \mathrm{C}_{G}(h)-K$ so that $\langle g\rangle$ covers G / L and we have $g^{p} \in \mathrm{Z}(G)$. But K / H is cyclic of order $\geq p^{2}$ and so $\left\langle g^{p}\right\rangle$ (covering K / L) covers K / H. Hence $\langle g\rangle$ covers $\mathrm{C}_{G}(h) /\langle h\rangle$ and so $A=\mathrm{C}_{G}(h)$ is abelian of rank 2 because $\Omega_{1}(A)=U$. We also have $|A /\langle h\rangle| \geq p^{3}$.
(i) First assume that A splits over $\langle h\rangle$. Then we may set $A=\langle h\rangle \times\langle g\rangle$ with $o(g)=p^{m}, m \geq 3$, and $\Omega_{1}(\langle g\rangle)=\langle u\rangle$. We have $[h, t]=z$ with $\Omega_{1}(\langle h\rangle)=\langle z\rangle$ and $[g, t]=z^{i} u$, where i is an integer $(\bmod p)$.

We have obtained the groups stated in part (a) of our proposition. Now we check that we have

$$
\Omega_{1}(G)=S=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

Indeed, let $1 \neq t^{\prime} \in\langle t\rangle$ and let $x=t^{\prime} h^{r} g^{s}(r, s$ are any integers) be an element of order p. Then we get in case $p>2$:

$$
1=\left(t^{\prime}\left(h^{r} g^{s}\right)\right)^{p}=\left(t^{\prime}\right)^{p} h^{r p} g^{s p}\left[h^{r} g^{s}, t^{\prime}\right]\binom{p}{2}=h^{r p} g^{s p}
$$

This implies

$$
r \equiv 0\left(\bmod p^{n-2}\right) \text { and } s \equiv 0\left(\bmod p^{m-1}\right) \text { and so } x \in S .
$$

Suppose that $p=2$. Then we have :

$$
1=\left(t\left(h^{r} g^{s}\right)\right)^{2}=t^{2} h^{2 r} g^{2 s}\left[h^{r} g^{s}, t\right]=h^{2 r} g^{2 s} z^{r} z^{i s} u^{s}=\left(h^{2 r} z^{r+i s}\right)\left(g^{2 s} u^{s}\right)
$$

This implies $r \equiv 0\left(\bmod 2^{n-3}\right)$ and $s \equiv 0\left(\bmod 2^{m-2}\right)$. Since $n \geq 4$ and $m \geq 3$, this gives $z^{r+i s}=u^{s}=1$ and then we get $h^{2 r} g^{2 s}=1$ and therefore $r \equiv 0\left(\bmod 2^{n-2}\right), s \equiv 0\left(\bmod 2^{m-1}\right)$ and $x \in S$.
(ii) Assume that A does not split over $\langle h\rangle$. Then we have for an element $g \in A-K$ the following facts:

$$
A=\langle h\rangle\langle g\rangle,\langle h\rangle \cap\langle g\rangle \geq\langle z\rangle \text { and } o(h)=p^{n-1}<o(g) .
$$

Suppose that $o(g)>p^{n}$. Then we have $o\left(g^{p}\right) \geq p^{n}$ and $g^{p} \in \mathrm{Z}(G)$. In this case we get:

$$
\left(h g^{p}\right)^{p^{n-1}}=g^{p^{n}} \geq\langle z\rangle,\left[t, h g^{p}\right]=[t, h],\langle[t, h]\rangle=\langle z\rangle,[t, g]=u^{\prime} \in U-\langle z\rangle,
$$

and this shows that $\left\langle t, h g^{p}\right\rangle \cong \mathrm{M}_{p^{r}}, r \geq n+1$, is non-normal in G, contrary to our maximality assumption.

We have proved that we must have $o(g)=p^{n}$. Also we get:

$$
|A:\langle g\rangle|=|\langle h\rangle:(\langle h\rangle \cap\langle g\rangle)|=p^{m} \text { with } m \leq n-2 \text { since }\langle h\rangle \cap\langle g\rangle \geq\langle z\rangle .
$$

If $m \leq 1$, then $A=\langle g\rangle U$ and so $\left\langle g^{p}\right\rangle U=A \cap K \leq \mathrm{Z}(G)$, contrary to $h \notin \mathrm{Z}(G)$. Hence we must have $m \geq 2$. Since $\left\langle g^{p}\right\rangle$ (of order p^{n-1}) splits in $A \cap K$, we get $A \cap K=\langle k\rangle \times\left\langle g^{p}\right\rangle$ and so we have $A=\langle k\rangle \times\langle g\rangle$ with $o(k)=p^{m}, 2 \leq m \leq n-2$. Because $[A \cap K,\langle t\rangle]=\langle z\rangle$, we have $[k, t]=z$, where $\langle z\rangle=\Omega_{1}(\langle g\rangle)$.

Further we have $[g, t]=u z^{i}$ (i some integer) with $\langle u\rangle=\Omega_{1}(\langle k\rangle)$. We may replace g with $g^{\prime}=k^{-i} g$ so that we have:

$$
\begin{aligned}
& \left(g^{\prime}\right)^{p^{n-1}}=\left(k^{-i} g\right)^{p^{n-1}}=g^{p^{n-1}} \\
& \left\langle g^{p^{n-1}}\right\rangle=\langle z\rangle \\
& {\left[g^{\prime}, t\right]=\left[k^{-i} g, t\right]=z^{-i}\left(u z^{i}\right)=u}
\end{aligned}
$$

and so writing again g instead of g^{\prime}, we can assume from the start that $[g, t]=u$. Also we have:

$$
1 \neq\left(k g^{p}\right)^{p^{n-2}}=g^{p^{n-1}} \geq\langle z\rangle, \quad\left[k g^{p}, t\right]=z,[g, t]=u
$$

and so $\left\langle k g^{p}, t\right\rangle \cong \mathrm{M}_{p^{n}}$ is non-normal in G with $\left\langle k g^{p}\right\rangle \unlhd G$. We have obtained the groups stated in part (b) of our proposition.

Now we check that we have

$$
\Omega_{1}(G)=S=\langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}
$$

Indeed, let $1 \neq t^{\prime} \in\langle t\rangle$ and let $x=t^{\prime} k^{r} g^{s}(r, s$ are any integers) be an element of order p. Then we get in case $p>2$:

$$
\left.1=\left(t^{\prime}\left(k^{r} g^{s}\right)\right)^{p}=\left(t^{\prime}\right)^{p} k^{r p} g^{s p}\left[k^{r} g^{s}, t^{\prime}\right]^{p} \begin{array}{c}
p \\
2
\end{array}\right)=k^{r p} g^{s p}
$$

This implies

$$
r \equiv 0\left(\bmod p^{m-1}\right) \text { and } s \equiv 0\left(\bmod p^{n-1}\right) \text { and so } x \in S
$$

Suppose that $p=2$. Then we have :

$$
1=\left(t\left(k^{r} g^{s}\right)\right)^{2}=t^{2} k^{2 r} g^{2 s}\left[k^{r} g^{s}, t\right]=k^{2 r} g^{2 s} z^{r} u^{s}=\left(k^{2 r} u^{s}\right)\left(g^{2 s} z^{r}\right)
$$

This implies $s \equiv 0\left(\bmod 2^{n-2}\right)$ and so $1=k^{2 r}\left(g^{2 s} z^{r}\right)$ and $r \equiv 0\left(\bmod 2^{m-1}\right)$ which gives $g^{2 s}=1$ and $s \equiv 0\left(\bmod 2^{n-1}\right)$. Hence we get again $x \in S$.

It remains to prove in case of both groups in parts (a) and (b) of our proposition that the assumption $(*)$ is satisfied. Indeed, let A be a unique abelian maximal subgroup of G, where $t \in G-A$ (since $\Omega_{1}(A)=U=G^{\prime}$). Let X be a noncyclic and non-normal subgroup of order $\geq p^{3}$ in G which in case $p=2$ has more than one involution. Since $X \nsupseteq G^{\prime}$ and all noncentral subgroups of order p form a single conjugate class in G (with a representative $\langle t\rangle$), we may assume that $t \in X$. We set $X_{0}=X \cap A$, where X_{0} is cyclic since

$$
\Omega_{1}(X)=\left\langle t, u^{\prime}\right\rangle \text { for some } 1 \neq u^{\prime} \in G^{\prime}=\Omega_{1}(A)
$$

But then we have $\mathrm{N}_{G}\left(X_{0}\right) \geq\langle A, t\rangle=G$ and we are done. Our proposition is completely proved.

In the next proposition we collect all the remaining p-groups satisfying the condition $(*)$.

Proposition 4.12. Suppose that G is a p-group satisfying (*) which is not a 2-group of maximal class, G has no non-normal subgroups isomorphic to D_{8} or $\mathrm{M}_{p^{n}},\left|G^{\prime}\right|=p^{2}, K / \Omega_{1}(H)$ is abelian for each abelian noncyclic maximal non-normal subgroup H of order $\geq p^{3}$ in G, and G has no nonnormal abelian subgroups which lead to the case (b2) of Proposition 3. Then we have the following possibilities.
(a) G has a maximal subgroup
$\mathrm{M}_{p^{s+2}} \cong\left\langle g, u \mid g^{p^{s+1}}=u^{p}=1,[u, g]=z,\langle z\rangle=\Omega_{1}(\langle g\rangle)\right\rangle, p>2, s \geq 2$,
$G=\langle g, u\rangle\langle t\rangle$, where $o(t)=p,[g, t]=u$ and $[u, t]=1$.
These groups are actually A_{2}-groups defined in Proposition 71.3(i) in [2], where $\left\langle g^{p}, t\right\rangle \cong \mathrm{C}_{p^{s}} \times \mathrm{C}_{p}$ is non-normal in G with $\left\langle g^{p}\right\rangle \unlhd G$.
(b) G is a special group of order 2^{5} with a unique abelian maximal subgroup

$$
K=\langle h\rangle \times\langle u\rangle \times\langle t\rangle,\langle h\rangle \cong \mathrm{C}_{4}, h^{2}=z,\langle u\rangle \cong\langle t\rangle \cong \mathrm{C}_{2},
$$

and $G=K\langle g\rangle$, where $g^{2}=z,[g, h]=z,[g, u]=1,[g, t]=u$.
Here we have $G^{\prime}=\langle u, z\rangle \cong \mathrm{E}_{4}, \Omega_{1}(G)=\langle u, z, t\rangle \cong \mathrm{E}_{8}$ and $\langle h, t\rangle \cong$
$\mathrm{C}_{4} \times \mathrm{C}_{2}$ is a non-normal subgroup in G with $\langle h\rangle \unlhd G$.
(c) G has a maximal subgroup

$$
\left\langle h, g \mid h^{p^{s}}=g^{p^{r}}=1, h^{p^{s-1}}=z,[g, h]=z\right\rangle, s \geq 4,3 \leq r<s
$$

and
$G=\langle h, g\rangle\langle t\rangle$ with $t^{p}=1,[h, t]=1,[g, t]=u z^{i}, i \not \equiv 0(\bmod p)$,

$$
\langle u\rangle=\Omega_{1}(\langle g\rangle),[u, t]=1
$$

$$
\begin{aligned}
& \text { We have }|G|=p^{r+s+1}, \mathrm{E}_{p^{2}} \cong G^{\prime}=\langle u, z\rangle \leq \mathrm{Z}(G), \Omega_{1}(G)= \\
& \langle u, z, t\rangle \cong \mathrm{E}_{p^{3}}, \\
& K=\left\langle t, h, g^{p}\right\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{s}} \times \mathrm{C}_{p^{r-1}}
\end{aligned}
$$

is a unique abelian maximal subgroup in G and

$$
\langle h, t\rangle \cong \mathrm{C}_{p^{s}} \times \mathrm{C}_{p}
$$

is an abelian maximal non-normal subgroup in G with $\langle h\rangle \unlhd G$.
(d) G is a 2-group which possesses a normal subgroup $G_{0}=L\langle g\rangle$, where

$$
\begin{gathered}
L=\langle h\rangle \times\langle u\rangle \times\langle t\rangle,\langle h\rangle \cong \mathrm{C}_{4}, h^{2}=z,\langle u\rangle \cong\langle t\rangle \cong \mathrm{C}_{2}, \\
g^{2}=z,[g, h]=z,[g, u]=1,[g, t]=u,
\end{gathered}
$$

which is a special group of order 2^{5} with $G_{0}^{\prime}=\langle u, z\rangle \cong \mathrm{E}_{4}$. Then we have the following possibilities for $G=G_{0}\langle k\rangle$:
(d1) $k^{4}=u,[k, g]=1,[k, t]=z,[k, h]=z$, and here we have $|G|=2^{7}, \exp (G)=8$ and $\mathrm{Z}(G)=G^{\prime}\left\langle k^{2}\right\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$.
(d2) $k^{2}=u,[k, g]=[k, t]=[k, h]=1$, and here we have $|G|=2^{6}$, $\exp (G)=4$ and $\mathrm{Z}(G)=G^{\prime}\langle k\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$.
(d3) $k^{2}=u z,[k, g]=[k, h]=1,[k, t]=z$ and here G is a special group of order 2^{6} with $\mathrm{Z}(G)=\langle u, z\rangle \cong \mathrm{E}_{4}$.
In all three cases we have $\mathrm{E}_{4} \cong G^{\prime}=\langle u, z\rangle \leq \mathrm{Z}(G), \Omega_{1}(G)=G^{\prime} \times\langle t\rangle \cong$ E_{8} and $\langle h, t\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$ is an abelian maximal non-normal subgroup in G with $\langle h\rangle \unlhd G$.
(e) We have $G=(\langle a\rangle \times\langle b\rangle)\langle t\rangle$, where

$$
\langle a\rangle \cong \mathrm{C}_{p^{s+1}},\langle b\rangle \cong \mathrm{C}_{p^{r}},\langle t\rangle \cong \mathrm{C}_{p}, s \geq 2,2 \leq r \leq s+1,
$$

$z=a^{p^{s}}, u=b^{p^{r-1}},[b, t]=z,[a, t]=u^{i} z^{j}, i \not \equiv 0(\bmod p),[z, t]=[u, t]=1$.
If $r=s+1$, then $j \not \equiv \xi-i \xi^{-1}(\bmod p)$ for all integers $\xi \not \equiv 0(\bmod p)$.
We have here $|G|=p^{r+s+2}, G^{\prime}=\langle u, z\rangle \cong \mathrm{E}_{p^{2}}, \Omega_{1}(G)=G^{\prime} \times\langle t\rangle \cong$ $\mathrm{E}_{p^{3}}, G$ is of class 2 with

$$
\Phi(G)=\mho_{1}(G)=\mathrm{Z}(G)=\left\langle a^{p}\right\rangle \times\left\langle b^{p}\right\rangle \cong \mathrm{C}_{p^{s}} \times \mathrm{C}_{p^{r-1}}
$$

Finally, $\left\langle a^{p}\right\rangle \times\langle t\rangle \cong \mathrm{C}_{p^{s}} \times \mathrm{C}_{p}$ is a maximal non-normal subgroup of G with $\left\langle a^{p}\right\rangle \unlhd G$.
Conversely, all the above groups from (a) to (e) satisfy our condition (*).
Proof. Let G be a p-group satisfying all assumptions of this proposition. Let H be a maximal non-normal subgroup of a maximal possible order in G which is abelian of type $\left(p^{s}, p\right), s \geq 2$.

Set $U_{0}=U \cap H=\langle z\rangle \leq \mathrm{Z}(G)$ and $H_{0}=\Omega_{1}(H)=\langle t, z\rangle$ so that $S=$ $H_{0} U \cong \mathrm{E}_{p^{3}}, S=\Omega_{1}(K)=\Omega_{1}(L)$ and L is abelian with $\mho_{1}(L)=\mho_{1}(H) \geq$ U_{0}. Also, K / H_{0} is abelian and since $G^{\prime} \leq U$ (Proposition 4), we have here $G^{\prime}=U$ (see Proposition 3(b1)) because by our assumption $\left|G^{\prime}\right|=p^{2}$ and so $K^{\prime} \leq\langle z\rangle$ and G / L is abelian. By Proposition $6, H$ possesses a G-invariant
cyclic subgroup $\langle h\rangle \cong \mathrm{C}_{p^{s}}$ which contains z and so we have $H=\langle h\rangle \times\langle t\rangle$. Also, $\mathrm{N}_{G}\left(H_{0}\right)=K$ and by Proposition $2, K / H$ is cyclic of order $\geq p$. By Proposition 3, for each $g \in G-K$, we have $[g, t]=u \in U-\langle z\rangle$, where $|G / K|=p$. We shall use all these facts in the proof of this proposition.

First we prove that there are no elements of order p in $G-K$ and so we have $\Omega_{1}(G)=S=G^{\prime} \times\langle t\rangle \cong \mathrm{E}_{p^{3}}$. Indeed, let i be an element of order p in $G-K$. We have $[i, t]=u^{\prime} \in U-\langle z\rangle$ and so $\langle h, i\rangle$ is not normal in G because $\langle h, i\rangle \cap K=\langle h\rangle$. It follows that

$$
H^{*}=\langle h, i\rangle=\langle h\rangle \times\langle i\rangle
$$

is abelian and the fact that $\left|H^{*}\right|=|H|$ together with the maximality of $|H|$ implies that H^{*} is another maximal non-normal subgroup in G of type (p^{s}, p). Since $H^{*} \cap U=\langle z\rangle \leq \mathrm{Z}(G)$, it follows that $H^{*} U$ is the unique normal subgroup of G which contains H^{*} with $\left|\left(H^{*} U\right): H^{*}\right|=p$. By our assumptions, we have that $\Omega_{1}\left(H^{*}\right)=\langle z, i\rangle$ centralizes U. Thus $\mathrm{C}_{G}(U) \geq L\langle i\rangle$ and since u^{\prime} commutes with i and t, we get together with $[i, t]=u^{\prime}$ that $D=\langle i, t\rangle \cong \mathrm{D}_{8}$ if $p=2$ and $D=\langle i, t\rangle \cong \mathrm{S}\left(p^{3}\right)$ if $p>2$ and in any case we get $D^{\prime}=\mathrm{Z}(D)=\left\langle u^{\prime}\right\rangle$.

If $D \cong \mathrm{D}_{8}$, then our assumptions imply $D \unlhd G$ and if $D \cong \mathrm{~S}\left(p^{3}\right)$, then Proposition 1 gives that $D \unlhd G$. Hence in any case we have $D \unlhd G$ and so $D^{\prime}=\left\langle u^{\prime}\right\rangle \leq \mathrm{Z}(G)$. This gives that $G^{\prime}=U=\langle z\rangle \times\left\langle u^{\prime}\right\rangle \leq \mathrm{Z}(G)$ and therefore G is of class 2 with $\mho_{1}(G) \leq \mathrm{Z}(G)$. Since $D \cap G^{\prime}=\left\langle u^{\prime}\right\rangle$, it follows that no element in G induces an outer automorphism on D. We get $G=D * C$, where $C=\mathrm{C}_{G}(D)$ and $C \cap D=\left\langle u^{\prime}\right\rangle$.

Note that $\langle h\rangle U \leq C$ and $\mathrm{C}_{G}(t)=C \times\langle t\rangle$, which together with the fact that no element in $G-K$ centralizes t implies that $\mathrm{C}_{G}(t)=K$. Also, we have $\left|G: \mathrm{C}_{G}(i)\right|=p$ and so if K would be abelian, then $C=\mathrm{C}_{K}(i)$ is abelian and then $G^{\prime}=D^{\prime}=\left\langle u^{\prime}\right\rangle$ is of order p, a contradiction. Hence K is nonabelian and so $K^{\prime}=\langle z\rangle=C^{\prime}$ since $K=C \times\langle t\rangle$. If $\langle h\rangle \leq \mathrm{Z}(K)$, then $L \leq \mathrm{Z}(K)$ and so the fact that K / L is cyclic gives that K is abelian, a contradiction. Hence we get $\langle h\rangle \not \leq \mathrm{Z}(K)$ and so, in particular, we have $K>L$.

We have $K=\mathrm{C}_{K}(i) \times\langle t\rangle$ and since K / H is cyclic of order $\geq p^{2}$ and

$$
K / H \cong \mathrm{C}_{K}(i) / \mathrm{C}_{H}(i)=\mathrm{C}_{K}(i) /\langle h\rangle
$$

we may choose $k \in \mathrm{C}_{K}(i)=C$ so that $\langle k\rangle$ covers $\mathrm{C}_{K}(i) /\langle h\rangle$ and $[h, k]=z$. Since

$$
C=\mathrm{C}_{K}(i)=\langle h, k\rangle \text { with }[h, k]=z,\langle z\rangle=\langle h\rangle \cap U \text { and } U=\Omega_{1}(C) \leq \mathrm{Z}(G)
$$

and noting that $\Omega_{1}(K)=U \times\langle t\rangle \cong \mathrm{E}_{p^{3}}$, it follows that C is metacyclic minimal nonabelian without a cyclic subgroup of index p. Hence we may set

$$
C=\left\langle a, b \mid a^{p^{\alpha}}=b^{p^{\beta}}=1,[a, b]=z=a^{p^{\alpha-1}}\right\rangle
$$

where $\alpha \geq 2, \beta \geq 2$ and $b^{p^{\beta-1}}=u \in U-\langle z\rangle$. Also we know that we have $G=C *\langle i, t\rangle$ with $C \cap\langle i, t\rangle=\left\langle u^{\prime}\right\rangle, u^{\prime} \in U-\langle z\rangle$ and $D=\langle i, t\rangle \cong \mathrm{D}_{8}$ or $\mathrm{S}\left(p^{3}\right)$.

We consider the subgroup $H_{1}=\langle b\rangle \times\langle i\rangle \cong \mathrm{C}_{p^{\beta}} \times \mathrm{C}_{p}, \beta \geq 2$. Since $H_{1} \cap C=\langle b\rangle$ and $[a, b]=z \notin H_{1}$, it follows that H_{1} is non-normal in G. Suppose that H_{1} is not a maximal non-normal subgroup in G. Then there is an element $b^{\prime} \in G$ such that $b=i^{\gamma}\left(b^{\prime}\right)^{p}$, where γ is an integer $\bmod p$ and $\left(b^{\prime}\right)^{p} \in \mho_{1}(G) \leq \mathrm{Z}(G)$. Then we get

$$
[a, b]=\left[a, i^{\gamma}\left(b^{\prime}\right)^{p}\right]=[a, i]^{\gamma}=1
$$

a contradiction. Hence H_{1} is a maximal non-normal subgroup in G. By Proposition $6, H_{1}$ possesses a G-invariant subgroup $\left\langle b i^{\delta}\right\rangle$ of index p, where δ is an integer $\bmod p$ and $\Omega_{1}\left(\left\langle b i^{\delta}\right\rangle\right)=\langle u\rangle$. On the other hand, we have $\left[a, b i^{\delta}\right]=$ $[a, b]=z$, a contradiction. We have proved that there are no elements of order p in $G-K$.

Now assume that G is of class 3. In that case no element in $U-\langle z\rangle$ is a p th power of an element in G. Indeed, if there is $x \in G$ such that $x^{p} \in U-\langle z\rangle$, then we consider the subgroup $U\langle x\rangle \unlhd G$ of order p^{3}. Since $\langle z\rangle \leq \mathrm{Z}(G)$ and x commutes with x^{p}, it follows that $U\langle x\rangle$ is abelian of type $\left(p^{2}, p\right)$. But then we get $\mho_{1}(U\langle x\rangle)=\left\langle x^{p}\right\rangle$ is normal in G and so $G^{\prime}=U \leq \mathrm{Z}(G)$, a contradiction.

Note that $G / K \cong \mathrm{C}_{p}$ acts transitively on p subgroups of order p^{2} in $S=U \times\langle t\rangle$ which contain $\langle z\rangle$ and which are distinct from U. Assume for a moment that $t \notin \mathrm{Z}(K)$. Then we have $K^{\prime}=\langle z\rangle$ and $K>L$. Let $k \in K-\mathrm{C}_{K}(t)$ so that $\langle k\rangle$ covers K / H. Suppose that $\left\langle k^{\prime}\right\rangle=\Omega_{1}(\langle k\rangle) \notin U$. Then we have $k^{\prime} \in \mathrm{Z}(K)$ and if $U \not \leq \mathrm{Z}(K)$, then $\Omega_{1}(\mathrm{Z}(K))=\left\langle z, k^{\prime}\right\rangle \unlhd G$, a contradiction. Hence $U \leq \mathrm{Z}(K)$ and so $S \leq \mathrm{Z}(K)$ which implies that $t \in \mathrm{Z}(K)$, a contradiction. Thus we have $\Omega_{1}(\langle k\rangle) \leq U$ and so $\Omega_{1}(\langle k\rangle)=\langle z\rangle$ and $o(k) \geq p^{3}$. Since $\langle[k, t]\rangle=\langle z\rangle$, we have

$$
\langle k, t\rangle \cong \mathrm{M}_{p^{m}}, m \geq 4
$$

On the other hand, for an element $g \in G-K$ we have $[g, t]=u^{\prime} \in U-\langle z\rangle$ and so $\langle k, t\rangle$ is not normal in G, contrary to our assumptions. We have proved that $t \in \mathrm{Z}(K)$ and so we have $\mathrm{C}_{G}(t)=K$.

If $U \not \leq \mathrm{Z}(K)$, then $H_{0}=\Omega_{1}(\mathrm{Z}(K)) \unlhd G$, a contradiction. Hence we have $U \leq \mathrm{Z}(K)$ and so $S=\Omega_{1}(\mathrm{Z}(K))=\Omega_{1}(G)$. Let $x \in G-K$ so that we have $\mathrm{C}_{U}(x)=\langle z\rangle$ and therefore, by the above, $\mathrm{C}_{S}(x)=\langle z\rangle$. In particular, we get $p>2$ and $\Omega_{1}(\langle x\rangle)=\langle z\rangle$.

Suppose that for some $y \in K$ we have $y^{p} \in S-U$. Then we have $\langle y\rangle S \unlhd G$ and

$$
\mho_{1}(\langle y\rangle S)=\left\langle y^{p}\right\rangle \leq \mathrm{Z}(G)
$$

a contradiction. Hence for each element $x \in G$ of composite order, the socle $\Omega_{1}(\langle x\rangle)$ is equal $\langle z\rangle$.

Assume that $\langle h\rangle \nsubseteq \mathrm{Z}(K)$ so that we have $K>L$. Let $k \in K$ be such that $\langle k\rangle$ covers K / H and since $\Omega_{1}(\langle k\rangle)=\langle z\rangle$, we get $o(k) \geq p^{3}$. It follows that $\langle h, k\rangle$ is a splitting metacyclic minimal nonabelian subgroup with $\langle[h, k]\rangle=$
$\langle z\rangle$. We may set

$$
\langle h, k\rangle=\left\langle a, b \mid a^{p^{\alpha}}=b^{p^{\beta}}=1,[a, b]=z=a^{p^{\alpha-1}}\right\rangle,
$$

where $\alpha \geq 3$ and $\beta \geq 1$. By the previous paragraph, we must have $\beta=1$ and then $b \in \mathrm{Z}(K)$, a contradiction.

We have proved that $h \in \mathrm{Z}(K)$ and so $L \leq \mathrm{Z}(K)$ which together with the fact that K / L is cyclic implies that K is abelian. Hence K is abelian of rank 3 and therefore we may set

$$
K=\langle a\rangle \times\langle u\rangle \times\langle t\rangle \text { with } \Omega_{1}(\langle a\rangle)=\langle z\rangle, o(a) \geq p^{s}, \text { and }\langle z, u\rangle=U .
$$

Since $[t, g] \in U-\langle z\rangle$ for each element $g \in G-K$, we have that $\langle a\rangle \times\langle t\rangle$ is non-normal in G which together with the maximality of $|H|$ gives $o(a)=p^{s}$ and so we have $K=L$.

Let $g \in G-K$. Since $\mathrm{C}_{S}(g)=\langle z\rangle$, it follows that $\mathrm{C}_{K}(g)$ is cyclic. By Lemma 1.1 in [1], $\mathrm{C}_{K}(g)=\left\langle h^{\prime}\right\rangle$ covers K / S and so $\left\langle h^{\prime}\right\rangle \cong \mathrm{C}_{p^{s}}$ and $\left\langle h^{\prime}\right\rangle=\mathrm{Z}(G)$ so that $g^{p} \in\left\langle h^{\prime}\right\rangle$. But there are no elements of order p in $G-K$ and so $\left\langle g, h^{\prime}\right\rangle=\langle g\rangle$ is cyclic of order p^{s+1}. We may assume without loss of generality that $g^{p}=h$. Then we may set $[g, t]=u \in U-\langle z\rangle$ and $[u, g]=z$, where $\langle z\rangle=\Omega_{1}(\langle g\rangle)$. The group G has a maximal subgroup

$$
\mathrm{M}_{p^{s+2}} \cong\left\langle g, u \mid g^{p^{s+1}}=u^{p}=1, \quad[u, g]=z,\langle z\rangle=\Omega_{1}(\langle g\rangle)\right\rangle
$$

where $p>2, s \geq 2$ and $G=\langle g, u\rangle\langle t\rangle$ with $o(t)=p,[g, t]=u$ and $[u, t]=1$. We have obtained the groups stated in part (a) of our proposition. It turns out that these groups are actually A_{2}-groups which are defined in Proposition $71.3(\mathrm{i})$ in [2]. Conversely, it is easy to check that these groups satisfy our condition (*).

From now on we may assume that G is of class 2 . Since $G^{\prime}=U \cong \mathrm{E}_{p^{2}}$, we also have $\mho_{1}(G) \leq \mathrm{Z}(G)$. Also we have $\Omega_{1}(\mathrm{Z}(G))=U$ and so no element in $S-U$ is a p-th power of any element in G.
(i) Assume that $K=L$. In this case Lemma 1.1 in [1] gives that $|G / \mathrm{Z}(G)|=p^{3}$. We have $\langle h\rangle \unlhd G$ but $\langle h\rangle \not \leq \mathrm{Z}(G)$ and so we have $\mathrm{Z}(G)=U\left\langle h^{p}\right\rangle$. Hence for each $g \in G-K$, we get $1 \neq g^{p} \in U\left\langle h^{p}\right\rangle$.
(i1) First suppose that $1 \neq g^{p} \in\left\langle h^{p}\right\rangle \geq\langle z\rangle$. Since there are no elements of order p in $\langle g, h\rangle-\langle h\rangle$ and $\langle g, h\rangle$ is nonabelian (because $\langle h\rangle \not \approx \mathrm{Z}(G)$) with $\Omega_{1}(\langle g, h\rangle)=\langle z\rangle$, it follows that we have $p=2$ and $\langle g, h\rangle \cong \mathrm{Q}_{8}$. Hence $\langle h\rangle \cong \mathrm{C}_{4}, g^{2}=z,[g, h]=z$ and $[g, t]=u \in U-\langle z\rangle$. We have obtained the special group of order 2^{5} stated in part (b) of our proposition and this group satisfies our condition $(*)$.
(i1) Now we assume that $g^{p} \in\left(U\left\langle h^{p}\right\rangle\right)-\left\langle h^{p}\right\rangle$ so that we may set $g^{p}=u h^{\prime}$, where $u \in U-\langle z\rangle,\langle z\rangle=\Omega_{1}(\langle h\rangle)$ and $h^{\prime} \in\left\langle h^{p}\right\rangle$. Let h_{0} be an element in $\langle h\rangle$ such that $h_{0}^{p}=\left(h^{\prime}\right)^{-1}$. Then we replace g with $g h_{0} \in G-K$ and we compute

$$
\left(g h_{0}\right)^{p}=g^{p} h_{0}^{p}\left[h_{0}, g\right]^{\binom{p}{2}}=\left(u h^{\prime}\right)\left(h^{\prime}\right)^{-1} z^{\prime}=u z^{\prime} \in U-\langle z\rangle,
$$

where

$$
\left.\left.\left[h_{0}, g\right]\right]^{\substack{p \\ 2}}\right)=z^{\prime} \in\langle z\rangle .
$$

It follows that in this case we may choose from the start an element $g \in G-K$ so that $g^{p}=u \in U-\langle z\rangle$. Then we have $[g, t]=u z^{i}$ for some integer $i \bmod$ p (where we have replaced t with a suitable power $t^{j}(j \not \equiv 0 \bmod p)$. Let $h^{*} \in\langle h\rangle$ be such that $\left(h^{*}\right)^{p}=z^{i}$.

Assume that either $p>2$ or $p=2$ and $s \geq 3$ (where in the last case we have $\left[h^{*}, g\right]=1$). Then we consider the subgroup $\left\langle g^{\prime}, t\right\rangle$, where $g^{\prime}=g h^{*} \in$ $G-K$. We have

$$
\left(g^{\prime}\right)^{p}=g^{p}\left(h^{*}\right)^{p}\left[h^{*}, g\right]^{\binom{p}{2}}=u z^{i}=[g, t]=\left[g h^{*}, t\right]=\left[g^{\prime}, t\right],
$$

and so we get $\left\langle g^{\prime}, t\right\rangle \cong \mathrm{D}_{8}$ if $p=2$ and $\left\langle g^{\prime}, t\right\rangle \cong \mathrm{M}_{p^{3}}$ if $p>2$. On the other hand, $1 \neq\left[h, g^{\prime}\right] \in\langle z\rangle$ and so $\left\langle g^{\prime}, t\right\rangle$ is non-normal in G, contrary to our assumptions.

We have proved that we must have $p=2$ and $s=2$ so that we have $\langle h\rangle \cong \mathrm{C}_{4}$ and G is a special group of order 2^{5} with $g^{2}=u \in U-\langle z\rangle, h^{2}=z$, $[g, h]=z$ and $[g, t]=u z^{i}, i=0,1$. However, if $i=0$, then $\langle g, t\rangle \cong \mathrm{D}_{8}$ is non-normal in G, a contradiction. Thus we have $i=1$ and so $[g, t]=u z$. The structure of G is uniquely determined.

We claim that the special 2-group obtained in the previous paragraph is in fact isomorphic to the special group of order 2^{5} from part (i1) of our proof. Indeed, set $g^{\prime}=g t$ and $u^{\prime}=u z$. Then we have

$$
\begin{aligned}
& \left(g^{\prime}\right)^{2}=(g t)^{2}=u(u z)=z=h^{2}, \\
& {\left[g^{\prime}, h\right]=[g t, h]=z,} \\
& {\left[g^{\prime}, t\right]=[g t, t]=u z=u^{\prime} .}
\end{aligned}
$$

In addition we have $\left[g^{\prime}, u^{\prime}\right]=[h, t]=1$ and so writing again g, u instead of g^{\prime}, u^{\prime}, respectively, we see that we have obtained the relations for the special group of order 2^{5} defined in ($i 1$).

From now on we shall always assume that $K>L$.
(ii) Suppose that G / L is cyclic of order $\geq p^{2}$. Let $g \in G-K$ so that $\langle g\rangle$ covers G / L. But $g^{p} \in \mathrm{Z}(G)$ and $\left\langle g^{p}\right\rangle$ covers $K / L \neq\{1\}$. Since K / H is cyclic of order $\geq p^{2}$, it follows that $\left\langle g^{p}\right\rangle$ covers K / H and so $K=H\left\langle g^{p}\right\rangle$ is abelian. Since $G^{\prime}=U \cong \mathrm{E}_{p^{2}}$, Lemma 1.1 in [1] implies that $|G: \mathrm{Z}(G)|=p^{3}$. On the other hand, $\left\langle h^{p}, g^{p}\right\rangle \leq \mathrm{Z}(G)$ and $\left|K_{1}:\left\langle h^{p}, g^{p}\right\rangle\right|=p$, where $K_{1}=\left\langle h, g^{p}\right\rangle$ and $K=\langle t\rangle \times K_{1}$ is of rank 3. It follows that $\mathrm{Z}(G)=\left\langle h^{p}, g^{p}\right\rangle$. In particular, (since $U \leq \mathrm{Z}(G))$ we must have $U \leq\left\langle h^{p}, g^{p}\right\rangle$ so that $\Omega_{1}\left(K_{1}\right)=U$ and $h \notin \mathrm{Z}(G)$. We may set $[g, h]=z$. There are exactly p conjugate classes of non-central subgroups of order p in G with the representatives $\left\langle t z^{i}\right\rangle, 0 \leq i \leq p-1$. It follows (using also Proposition 6) that any abelian maximal non-normal subgroup in G of type $\left(p^{r}, p\right), r \geq 2$ is contained in $\mathrm{C}_{G}\left(t z^{i}\right)=K$.

Suppose that K_{1} is of exponent p^{r}, where $r>s$. Let k be an element of order p^{r} in K_{1} and consider the subgroup $\langle t\rangle \times\langle k\rangle$. If $\langle t\rangle \times\langle k\rangle$ is non-normal in G, then $\langle t\rangle \times\langle k\rangle$ is maximal non-normal in G of order $>|H|=p^{s}$, contrary to our assumptions. Hence we have $\langle t\rangle \times\langle k\rangle \unlhd G$. Since $[g, t] \in U-\langle z\rangle$, it follows that $\Omega_{1}(\langle k\rangle)=\langle u\rangle$ with $u \in U-\langle z\rangle$. Since $[g, h]=z$, we have $\left[g, K_{1}\right]=\langle z\rangle$ and so the fact that $k \in K_{1}$ implies that $[g, k] \in\langle z\rangle$. But we have $\Omega_{1}(\langle t, k\rangle)=\langle t, u\rangle$ and so $[g, k]=1$ and therefore $k \in \mathrm{Z}(G)$. Now consider the subgroup $\langle t\rangle \times\langle h k\rangle$, where $h k \in K_{1} o(h k)=p^{r}$ and $\Omega_{1}(\langle h k\rangle)=\langle u\rangle$. If $\langle t\rangle \times\langle h k\rangle$ is not normal in G, then $\langle t\rangle \times\langle h k\rangle$ is maximal non-normal in G of order $>|H|$, a contradiction. Hence we have $\langle t\rangle \times\langle h k\rangle \unlhd G$. But $[g, h k]=[g, h][g, k]=z$ and $z \notin \Omega_{1}(\langle t\rangle \times\langle h k\rangle)=\langle t, u\rangle$, a contradiction. We have proved that $\exp (K)=\exp \left(K_{1}\right)=p^{s}$ and therefore $o(g) \leq p^{s+1}$ and all elements in $G-K$ are of order $\leq p^{s+1}$.

There are elements of order p^{s} or p^{s+1} in $G-K$. Indeed, assume that $o(g) \leq p^{s-1}$ for some $g \in G-K$. In that case we must have $s \geq 3$ since $\Omega_{1}(G)=U \times\langle t\rangle$. Then we compute
where $\langle z\rangle=\Omega_{1}(\langle h\rangle)$ and so we get $o(g h)=p^{s}$.
If there is an element $g \in G-K$ of order p^{s+1}, then all elements in $G-K$ are of order p^{s+1}. Indeed, for any $x \in K$ and and any integer $i \not \equiv 0(\bmod$ p) we have:

$$
\left.\left(g^{i} x\right)^{p^{s}}=\left(g^{i}\right)^{p^{s}} x^{p^{s}}\left[x, g^{i}\right]\right]_{\binom{p^{s}}{2}}=\left(g^{i}\right)^{p^{s}} \neq 1
$$

(ii1) Suppose that $G-K$ contains elements of order p^{s}. Let g be an element of the minimal possible order p^{r} in $G-K$. Then we have $3 \leq r \leq s$. Indeed, $\langle g\rangle$ covers G / L (which is cyclic of order $\geq p^{2}$) and there are no elements of order p in $G-L$ and so $o(g) \geq p^{3}$.

The element $g^{p^{r-1}}$ is of order p and is contained in U. Assume that $g^{p^{r-1}}=z$, where $\langle z\rangle=\Omega_{1}(\langle h\rangle)$. Let h^{\prime} be an element in $\langle h\rangle$ such that $\left(h^{\prime}\right)^{p^{r-1}}=z^{-1}$. Then we compute (noting that $r \geq 3$):

$$
\left(h^{\prime} g\right)^{p^{r-1}}=\left(h^{\prime}\right)^{p^{r-1}} g^{p^{r-1}}\left[g, h^{\prime}\right]{\left.\stackrel{\left(p^{r-1}\right.}{2}\right)}_{p^{r}}=z^{-1} z=1
$$

and so $o\left(h^{\prime} g\right) \leq p^{r-1}$, a contradiction. We have proved that $\langle g\rangle$ splits over $\langle h\rangle$ and so we have $\Omega_{1}(\langle g\rangle)=\langle u\rangle$ with $u \in U-\langle z\rangle$.

Set $h^{p^{s-1}}=z, s \geq 3$, and then replacing g with g^{j} for some integer $j \not \equiv 0(\bmod p)$, we see that we may set $[g, h]=z$. Replacing t with t^{l} for some suitable integer $l \not \equiv 0(\bmod p)$, we may assume that $[g, t]=u z^{i}$ for some integer $i(\bmod p)$. If $[g, t]=u($ i.e.,$i \equiv 0(\bmod p))$, then we have $\langle g, t\rangle \cong \mathrm{M}_{p^{r+1}}, r \geq 3$. But $[g, h]=z \notin\langle g, t\rangle$ and so $\langle g, t\rangle$ is not normal in G, contrary to our assumptions. Hence we have $i \not \equiv 0(\bmod p)$.

Assume that $r=s$ and so $o(g)=p^{s}$. We set $g^{p^{s-1}}=u$ and then changing t with a suitable power $t^{j}, j \not \equiv 0(\bmod p)$, we may set $[g, t]=u z^{i}$ with $i \not \equiv 0$
$(\bmod p)$. Let $h^{\prime} \in\langle h\rangle$ be such that $\left(h^{\prime}\right)^{p^{s-1}}=z^{i}$. Then we have (noting that $s \geq 3)$:

$$
\left(g h^{\prime}\right)^{p^{s-1}}=u z^{i}\left[h^{\prime}, g\right]{\left.\underset{2}{p^{s-1}}\right)}_{2}^{2}=u z^{i}
$$

and since $\left[g h^{\prime}, t\right]=[g, t]=u z^{i}$, we obtain that $\left\langle g h^{\prime}, t\right\rangle \cong \mathrm{M}_{p^{s+1}}$. On the other hand, we have $1 \neq\left[g h^{\prime}, h\right] \in\langle z\rangle$ and so $\left\langle g h^{\prime}, t\right\rangle$ is non-normal in G, a contradiction. We have proved that we must have $o(g)=p^{r}$ with $3 \leq r<s$ and this gives $s \geq 4$. We have obtained the groups stated in part (c) of our proposition which obviously satisfy our condition (*).
(ii2) Suppose that all elements in $G-K$ are of order p^{s+1}.
(ii2a) First assume that there is $g \in G-K$ such that $\langle g\rangle$ splits over $\langle h\rangle$. We may choose a generator g in $\langle g\rangle$ so that $[g, h]=z=h^{p^{s-1}}, s \geq 2$. Then we set $u=g^{p^{s}} \in U-\langle z\rangle$ and we may choose a generator $t \in\langle z\rangle$ so that $[g, t]=u z^{i}$, where i is an integer $\bmod p$. Suppose that $i \equiv 0(\bmod p)$. Then we have $\langle g, t\rangle \cong \mathrm{M}_{p^{s+2}}$. But $[g, h]=z \notin\langle g, t\rangle$ and so $\langle g, t\rangle$ is not normal in G, contrary to our assumptions. Hence we have $i \not \equiv 0(\bmod p)$. Note that the socle $\Omega_{1}(\langle x\rangle)$ is equal $\langle u\rangle$ for each $x \in G-K$.

Consider the subgroup $X=\left\langle t, h^{\alpha} g^{p}\right\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{s}}$, where $g^{p} \in \mathrm{Z}(G)$ and α is any fixed integer with $\alpha \not \equiv 0(\bmod p)$. We have for every integer $j(\bmod$ p):

$$
\left(t^{j} h^{\alpha} g^{p}\right)^{p^{s-1}}=\left(h^{p^{s-1}}\right)^{\alpha} g^{p^{s}}=z^{\alpha} u
$$

and so $\left\langle t^{j} h^{\alpha} g^{p}\right\rangle \cong \mathrm{C}_{p^{s}}$ is a maximal cyclic subgroup in G since its socle is $\left\langle z^{\alpha} u\right\rangle$. We have $\Omega_{1}(X)=\left\langle t, z^{\alpha} u\right\rangle$ and

$$
\left[g, h^{\alpha} g^{p}\right]=\left[g, h^{\alpha}\right]=z^{\alpha} \notin X
$$

implies that X is not normal in G. This gives

$$
\mathrm{N}_{G}(X)=\mathrm{N}_{G}\left(\Omega_{1}(X)\right)=K
$$

We have $[g, t]=u z^{i}$ and so $z^{i} u \notin \Omega_{1}(X)=\left\langle t, z^{\alpha} u\right\rangle$. In particular, $i \not \equiv \alpha(\bmod$ $p)$ for any integer $\alpha \not \equiv 0(\bmod p)$. But this implies that we must have $i \equiv 0$ $(\bmod p)$, a contradiction.
(ii2b) We have proved that for each $g \in G-K,\langle g\rangle$ does not split over $\langle h\rangle$. Hence we have:

$$
\langle g\rangle \cap\langle h\rangle \geq\langle z\rangle, \quad\langle g, h\rangle^{\prime}=\langle z\rangle=\Omega_{1}(\langle h\rangle)
$$

and therefore

$$
\langle g\rangle \unlhd\langle g, h\rangle \text { with } p \leq|\langle g, h\rangle:\langle g\rangle| \leq p^{s-1} .
$$

Since $\left\langle g^{p}\right\rangle$ is of order $p^{s}=\exp \left(\left\langle g^{p}, h\right\rangle\right)$, it follows that $\left\langle g^{p}\right\rangle$ splits in $\left\langle g^{p}, h\right\rangle$ and so we have:

$$
\begin{gathered}
\left\langle g^{p}, h\right\rangle=\langle k\rangle \times\left\langle g^{p}\right\rangle \text { with } K=\langle t\rangle \times\left(\langle k\rangle \times\left\langle g^{p}\right\rangle\right) \text { and } \\
\langle k\rangle\langle g\rangle=\langle g, h\rangle \text { with }\langle k\rangle \cap\langle g\rangle=\{1\} .
\end{gathered}
$$

Because $\langle[k, g]\rangle=\langle z\rangle$ and $\Omega_{1}(\langle k\rangle\langle g\rangle)=U \leq \mathrm{Z}(G)$, we get $o(k)=p^{r}, 2 \leq r \leq$ $s-1$ and so $s \geq 3$. We may set $u=k^{p^{r-1}} \in U-\langle z\rangle$ and $[g, k]=z=g^{p^{s}}$. Also note that the socle $\Omega_{1}(\langle x\rangle)$ for each $x \in G-K$ is equal $\langle z\rangle$.

We may choose a suitable generator t in $\langle t\rangle$ so that $[g, t]=u z^{i}$ for some integer $i \bmod p$. Consider the subgroup $Y=\langle k\rangle \times\langle t\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{r}}, 2 \leq r \leq s-1$, which is not normal in G since $[g, k]=z \notin Y$. We have $\mathrm{N}_{G}(Y)=K$ and so $\mathrm{N}_{G}(\langle t, u\rangle)=K$, where $\langle t, u\rangle=\Omega_{1}(Y)$. We have $[g, t]=u z^{i} \notin \Omega_{1}(Y)$ and so we must have $i \not \equiv 0(\bmod p)$.

Choose an element g^{\prime} in $\left\langle g^{p}\right\rangle$ such that $o\left(g^{\prime}\right)=p^{r}$ and $\left(g^{\prime}\right)^{p^{r-1}}=z$ and note that $g^{\prime} \in \mathrm{Z}(G)$. Now we consider for each $\alpha \not \equiv 0(\bmod p)$ the subgroup $V=\left\langle k^{\alpha} g^{\prime}\right\rangle \times\langle t\rangle \cong \mathrm{C}_{p^{r}} \times \mathrm{C}_{p}$ with $\left(k^{\alpha} g^{\prime}\right)^{p^{r-1}}=u^{\alpha} z$ so that $\Omega_{1}(V)=\left\langle t, u^{\alpha} z\right\rangle$. Since $\left[g, k^{\alpha} g^{\prime}\right]=z^{\alpha} \notin \Omega_{1}(V)$, we have $\mathrm{N}_{G}(V)=K$ and so also $\mathrm{N}_{G}\left(\left\langle t, u^{\alpha} z\right\rangle\right)=$ K. Because $[g, t]=u z^{i}$, it follows that $u z^{i} \notin\left\langle u^{\alpha} z\right\rangle$ for each $\alpha \not \equiv 0(\bmod p)$. We can find an integer $j \not \equiv 0(\bmod p)$ so that $i j \equiv 1(\bmod p)$. We get

$$
\left(u z^{i}\right)^{j}=u^{j} z^{i j}=u^{j} z \notin\left\langle u^{\alpha} z\right\rangle
$$

for each $\alpha \not \equiv 0(\bmod p)$, a contradiction.
(iii) We consider the remaining case, where G / L is not cyclic and $G>L$. Since G / L is abelian and $K / L \neq\{1\}$ is cyclic, it follows that G / L splits over K / L and so we have $G=K G_{0}$ with $K \cap G_{0}=L$ and $\left|G_{0}: L\right|=p$. Also, K / H is cyclic of order $\geq p^{2}$ and we have:

$$
H=\langle h\rangle \times\langle t\rangle \cong \mathrm{C}_{p^{s}} \times \mathrm{C}_{p}, s \geq 2, \text { where } \mathrm{C}_{p^{s}} \cong\langle h\rangle \unlhd G,\langle t\rangle \cong \mathrm{C}_{p}
$$

$\Omega_{1}(H)=\langle z\rangle, G^{\prime}=U \cong \mathrm{E}_{p^{2}}, L=U H$ is abelian and $U \leq \mathrm{Z}(G)$.
(iii1) Suppose first that $\langle h\rangle \nsubseteq \mathrm{Z}\left(G_{0}\right)$ so that we have $U=G_{0}^{\prime} \cong \mathrm{E}_{p^{2}}$ and therefore by (i) we get $p=2$ and G_{0} is the uniquely determined special 2 -group of order 2^{5} (stated in part (b) of our proposition):

$$
\begin{gathered}
L=\langle h\rangle \times\langle u\rangle \times\langle t\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2} \times \mathrm{C}_{2},\langle h\rangle \cong \mathrm{C}_{4}, h^{2}=z,\langle u\rangle \cong\langle t\rangle \cong \mathrm{C}_{2}, \\
G_{0} \cong L\langle g\rangle \text { with } g^{2}=z,[g, h]=z,[g, u]=1, \text { and }[g, t]=u .
\end{gathered}
$$

Since $\mathrm{Z}\left(G_{0}\right)=U$, it follows that for each $x \in K-L$ such $x^{2} \in L$, we must have $1 \neq x^{2} \in U$. Let $k \in K-L$ be such that $\langle k\rangle$ covers the cyclic group K / H of order ≥ 4. Thus $\Omega_{1}(\langle k\rangle)=\langle u\rangle$ or $\langle u z\rangle$ and so K splits over H.

Because $\mathrm{C}_{G_{0}}(g)=U\langle g\rangle$ and so $\left|G_{0}: \mathrm{C}_{G_{0}}(g)\right|=4$, we get together with $\left|G^{\prime}\right|=4$ that $\left|G: \mathrm{C}_{G}(g)\right|=4$. But we have $G=K\langle g\rangle$ and so $\mathrm{C}_{G}(g)=$ $\mathrm{C}_{K}(g)\langle g\rangle$ which implies that $\left|K: \mathrm{C}_{K}(g)\right|=4$. On the other hand, we have $\left|H: \mathrm{C}_{H}(g)\right|=4$ and therefore $\mathrm{C}_{K}(g)$ covers K / H. It follows that we may choose our element $k \in \mathrm{C}_{K}(g)$ such that $\langle k\rangle$ covers K / H. Hence we may assume $[g, k]=1$.

Case (1). Suppose that $|K: L|>2$ so that $o(k) \geq 8$. Then there is an element k^{\prime} of order 4 in $\langle k\rangle$ such that $k^{\prime} \in \mathrm{Z}(G)$. Note that $(t g)^{2}=u z$ and so
if $\left(k^{\prime}\right)^{2}=u z$, then $k^{\prime}(t g)$ is an involution in $G-K$, a contradiction. Hence we must have in this case $\left(k^{\prime}\right)^{2}=u$. We set $o(k)=2^{n}, n \geq 3$, and then we have $k^{2^{n-1}}=u$. Assume for a moment that that $[k, h]=[k, t]=1$ which together with $[k, g]=1$ (from the previous paragraph) then implies that $k \in \mathrm{Z}(G)$. In that case we have $(g k)^{2^{n-1}}=u$ and $[g k, t]=u$ so that $\langle g k, t\rangle \cong \mathrm{M}_{2^{n+1}}$ with $n \geq 3$. But $[h, g k]=z \notin\langle g k, t\rangle$ and so $\langle g k, t\rangle$ is not normal in G, contrary to our assumptions. We have proved that $k \notin \mathrm{Z}(G)$.

Assume that $[k, t]=1$. Then we have $[k, h]=z$. Consider in this case the subgroup

$$
\langle t\rangle \times\langle k\rangle, \text { where } o(k)=2^{n}=\exp (\mathrm{G}), n \geq 3
$$

Since $[h, k]=z \notin\langle t, k\rangle$, it follows that $\langle t, k\rangle$ is a maximal non-normal subgroup in G of order $>|H|$, contrary to our assumptions. We have proved that we must have $[k, t]=z$ (noting that we have $K^{\prime} \leq\langle z\rangle$).

Now we consider the subgroup $\langle t\rangle \times\left\langle h k^{\prime}\right\rangle$, where k^{\prime} is an element of order 4 in $\langle k\rangle$ and $k^{\prime} \in \mathrm{Z}(G)$. Here we have $\Omega_{1}\left(\left\langle t, h k^{\prime}\right\rangle\right)=\langle t, u z\rangle$. Because [$g, t]=u$, it follows that $\left\langle t, h k^{\prime}\right\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{4}$ is abelian non-normal in G. By the maximality of $|H|$, it follows that $\left\langle t, h k^{\prime}\right\rangle$ is a maximal non-normal subgroup in G. Then Proposition 6 implies that either $\left\langle h k^{\prime}\right\rangle \unlhd G$ or $\left\langle t h k^{\prime}\right\rangle \unlhd G$. But $\left[h k^{\prime}, g\right]=z$ and so $\left\langle h k^{\prime}\right\rangle$ is not normal in G. Hence we must have $\left\langle t h k^{\prime}\right\rangle \unlhd G$. From $\left[t h k^{\prime}, k\right]=z[h, k]$ follows that $[h, k]=z$.

Finally assume that $n>3$ so that the subgroup $\langle t\rangle \times\left\langle k^{2}\right\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{2^{n-1}}$ is non-normal in G (since $[t, k]=z$), contrary to the maximality of $|H|$. Hence we get $n=3, o(k)=8$ and $|G|=2^{7}$. We have obtained the group stated in part (d1) of our proposition.

Case (2). Suppose that $|K: L|=2$ and $k \in \mathrm{Z}(G)$. Here we have $o(k)=4$ and $k^{2} \in\{u, u z\}$. If $k^{2}=u z$, then $(g t)^{2}=u z$ together with $[k, g t]=1$ implies that $g t k$ is an involution in $G-K$, a contradiction. Hence in this case we have $k^{2}=u$ and we have obtained the group of order 2^{6} stated in part $(d 2)$ of our proposition.

Case (3). Assume that $|K: L|=2$ and $k \notin \mathrm{Z}(G)$. We have

$$
k^{2}=u z^{\epsilon}, \epsilon \in\{0,1\},[k, t]=z^{\eta},[k, h]=z^{\delta}, \eta, \delta \in\{0,1\}
$$

and $\eta=\delta=0$ is not possible.
Then the fact that there are no involutions in $G-K$ gives a unique solution

$$
\epsilon=1, \eta=1, \delta=0
$$

and so we have obtained the special group of order 2^{6} stated in part (d3) of our proposition.

Conversely, all groups from part (d) of our proposition satisfy the condition (*).
(iii2) Suppose that $\langle h\rangle \leq \mathrm{Z}\left(G_{0}\right)$. We have for each $g \in G_{0}-L, G_{0}^{\prime}=\langle[g, t]\rangle$ with $[g, t]=u \in U-\langle z\rangle$ and $\langle z\rangle=\Omega_{1}(\langle h\rangle)$. We have

$$
\mathrm{Z}\left(G_{0}\right)=\langle h\rangle \times\langle u\rangle \cong \mathrm{C}_{p^{s}} \times \mathrm{C}_{p}, s \geq 2
$$

Since $1 \neq g^{p} \in \mathrm{Z}\left(G_{0}\right)$ and there are no elements of order p in $G-K$, it follows that $A=\mathrm{Z}\left(G_{0}\right)\langle g\rangle$ is abelian of rank 2. Hence A is either of type $\left(p^{s}, p^{2}\right)$ or $\left(p^{s+1}, p\right)$.

Suppose, by way of contradiction, that A is of type (p^{s}, p^{2}). In that case there is an element $g_{0} \in A-\mathrm{Z}\left(G_{0}\right)$ such that $g_{0}^{2}=u$, where $\langle u\rangle=G_{0}^{\prime}$. If $p=2$, then $\left\langle g_{0}, t\right\rangle \cong \mathrm{D}_{8}$ and so $g_{0} t$ is an involution in $G_{0}-K$, a contradiction. Hence we must have $p>2$ and $M=\left\langle g_{0}, t\right\rangle \cong \mathrm{M}_{p^{3}}$. By our assumptions, we have $M \unlhd G$. Note that $G^{\prime} \cap M=U \cap M=\langle u\rangle$ and set $C=\mathrm{C}_{G}(M)$ so that $C \cap M=\langle u\rangle$. If $C * M<G$, then $G / C \cong \mathrm{~S}\left(p^{3}\right)$ (which is an S_{p}-subgroup of $\operatorname{Aut}(M)$), contrary to $U=G^{\prime} \leq C$. Hence we have $G=M * C$. Since $\langle h\rangle \leq C,\langle h\rangle \unlhd G$ and t centralizes C, we have $C \leq K$ and so $K=C \times\langle t\rangle$. Because $C<K$ and $K^{\prime} \leq\langle z\rangle$, we have $C^{\prime} \leq\langle z\rangle$. If $C^{\prime}=\{1\}$, then $G^{\prime}=C^{\prime} M^{\prime}=\langle u\rangle$, a contradiction. Hence we have $C^{\prime}=\langle z\rangle$. Note that $\{1\} \neq K / L$ is cyclic, where $L=(\langle h\rangle U) \times\langle t\rangle$ and $K=C L$ with $C \cap L=\langle h\rangle U$. Thus $\{1\} \neq C /(\langle h\rangle \times\langle u\rangle)$ is cyclic. Let $c \in C$ be such that $\langle c\rangle$ covers $C /(\langle h\rangle \times\langle u\rangle)$ and so we must have $\langle[h, c]\rangle=\langle z\rangle$. Since K / H is cyclic of order $\geq p^{2},\langle c\rangle$ also covers K / H and so $\langle c\rangle$ covers $C /(H \cap C)=C /\langle h\rangle$. It follows that C is metacyclic minimal nonabelian without a cyclic subgroup of index p (noting that $\left.\mathrm{E}_{p^{2}} \cong \Omega_{1}(C)=U \leq \mathrm{Z}(G)\right)$. Hence we may set

$$
C=\langle a\rangle\langle b\rangle \text { with }\langle a\rangle>\langle z\rangle=C^{\prime},\langle a\rangle \cap\langle b\rangle=\{1\},\langle b\rangle \cong \mathrm{C}_{p^{r}}, r \geq 2
$$

and $\Omega_{1}(\langle b\rangle)=\left\langle u z^{i}\right\rangle$, where i is an integer $\bmod p$. Consider the subgroup

$$
\langle b\rangle \times\langle t\rangle \cong \mathrm{C}_{p^{r}} \times \mathrm{C}_{p}
$$

which is non-normal in G since $\langle[a, b]\rangle=\langle z\rangle$ and $z \notin\langle b, t\rangle$. We claim that $\langle b, t\rangle$ is a maximal non-normal subgroup in G. Indeed, let $X>\langle b, t\rangle$ be a maximal non-normal subgroup in G. If $X \cap C>\langle b\rangle$, then $\langle z\rangle \leq X$ and so $\left\langle z, u z^{i}\right\rangle=G^{\prime} \leq X$, a contradiction. Hence we have $X \cap C=\langle\bar{b}\rangle$. Because $G / C \cong \mathrm{E}_{p^{2}}$, it follows that X must contain an element $x \in G-(C \times\langle t\rangle)=$ $G-K$. On the other hand, $\mathrm{C}_{G}(t)=C \times\langle t\rangle=K$ and so $[x, t] \neq 1$ and X is nonabelian, contrary to our assumptions. Finally, by Proposition 6, we have $\left\langle b t^{j}\right\rangle \unlhd G$ for some integer $j \bmod p$, where $\Omega_{1}\left(\left\langle b t^{j}\right\rangle\right)=\left\langle u z^{i}\right\rangle$. On the other hand, we have

$$
\left[a, b t^{j}\right]=[a, b], \text { where }\langle[a, b]\rangle=\langle z\rangle \neq\left\langle u z^{i}\right\rangle
$$

a final contradiction.
We have proved that $A=\mathrm{Z}\left(G_{0}\right)\langle g\rangle$ is abelian of type $\left(p^{s+1}, p\right)$. It follows that all elements of order p^{s} in $\langle h\rangle U$ are central in G (noting that $U \leq \mathrm{Z}(G)$). Replacing H with $H^{*}=\langle t\rangle \times\left\langle h u^{i}\right\rangle$ for some integer $i \bmod p($ which is also a maximal non-normal abelian subgroup of type $\left.\left(p^{s}, p\right)\right)$ so that $\left\langle g^{p}\right\rangle=\left\langle h u^{i}\right\rangle$
and then working with H^{*} instead of H, we see that we may assume from the start that there is $g \in G-K$ such that $g^{p}=h$, where $\langle h\rangle \leq \mathrm{Z}(G)$ and we set $g^{p^{s}}=z$. If $t \in \mathrm{Z}(K)$, then $L \leq \mathrm{Z}(K)$ and since K / L is cyclic, K would be in that case abelian.
(iii2a) First assume that K is nonabelian, i.e., $t \notin \mathrm{Z}(K)$. Then we have $K^{\prime}=\langle z\rangle$ and so if $k \in K-L$ is such that $\langle k\rangle$ covers K / H (which is cyclic of order $\geq p^{2}$), then we may set (by choosing a suitable generator t of $\langle t\rangle$) $[k, t]=z$.

It is easy to see that $\langle k\rangle$ splits over H. Indeed, if $\langle k\rangle$ does not split over H, then $\langle k\rangle \cap H=\langle k\rangle \cap\langle h\rangle$ since $\mathrm{Z}(G) \cap L=\langle h\rangle U$ and so we have $\langle k\rangle\rangle\langle z\rangle$. It follows that $\langle k, t\rangle \cong \mathrm{M}_{p^{n+1}}$ with $n \geq 3$ since $[k, t]=z$. On the other hand, $[g, t] \in U-\langle z\rangle$ and so $[g, t] \notin\langle k, t\rangle$ which implies that $\langle k, t\rangle$ is not normal in G, contrary to our assumptions. Hence $\langle k\rangle$ splits over H and we may set $o(k)=p^{r}, r \geq 2$, and $k^{p^{r-1}}=u \in U-\langle z\rangle$.

If $o\left(k^{p}\right)>p^{s}$, then $\langle t\rangle \times\left\langle k^{p}\right\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{r-1}}$ is non-normal in G (since we have $\left.[k, t]=z \notin\left\langle t, k^{p}\right\rangle\right)$, contrary to the maximality of $|H|=p^{s+1}$. Hence we have $r \leq s+1$. We set $[g, t]=u^{i} z^{j}$ with $i \not \equiv 0(\bmod p)$.

We have here

$$
\Phi(G)=\mho_{1}(G)=\mathrm{Z}(G)=\left\langle g^{p}\right\rangle \times\left\langle k^{p}\right\rangle \text { and so }|G: \Phi(G)|=p^{3}
$$

By Lemma 146.7 in [4], G possesses a unique abelian maximal subgroup A^{*}. Because we have $\left|G: \mathrm{C}_{G}(t)\right|=p^{2}$, it follows that $t \in G-A^{*}$ and

$$
\mathrm{C}_{A^{*}}(t)=\mathrm{Z}(G)=\langle h\rangle \times\left\langle k^{p}\right\rangle, A^{*} / \mathrm{Z}(G) \cong G^{\prime}=U=\Omega_{1}\left(A^{*}\right)
$$

so that A^{*} is of rank 2 and of type $\left(p^{s+1}, p^{r}\right)$, where $s \geq 2$ and $2 \leq r \leq s+1$. Indeed, the map $a \rightarrow[a, t]\left(a \in A^{*}\right)$ is a homomorphism from A^{*} onto G^{\prime} and so $A^{*} / \mathrm{Z}(G) \cong G^{\prime}$.

Case (a): $r<s+1$. In this case we may set

$$
A^{*}=\langle a\rangle \times\langle b\rangle, \text { where }\langle a\rangle \cong \mathrm{C}_{p^{s+1}},\langle b\rangle \cong \mathrm{C}_{p^{r}}, z=a^{p^{s}}, u=b^{p^{r-1}}
$$

Take an element $a^{\prime} \in\left\langle a^{p}\right\rangle \leq \mathrm{Z}(G)$ such that $o\left(a^{\prime}\right)=p^{r}$ and $\left(a^{\prime}\right)^{p^{r-1}}=z$. Suppose that $[b, t] \notin\langle z\rangle$. Then we have $[b, t]=z^{i} u(i$ is an integer $\bmod p)$ for a suitable choice of a generator t of $\langle t\rangle$. We get

$$
\left(\left(a^{\prime}\right)^{i} b\right)^{p^{r-1}}=z^{i} u \text { and }\left[\left(a^{\prime}\right)^{i} b, t\right]=[b, t]=z^{i} u
$$

and therefore we have either $p=2, r=2$ and $\left\langle\left(a^{\prime}\right)^{i} b, t\right\rangle \cong \mathrm{D}_{8}$ or $\left\langle\left(a^{\prime}\right)^{i} b, t\right\rangle \cong$ $\mathrm{M}_{p^{r+1}}$ (where in case $p=2$, we have $r \geq 3$). But $\left|G: \mathrm{C}_{G}(t)\right|=p^{2}$ and so for some $g \in G$ we get $\langle[g, t]\rangle \neq\left\langle z^{i} u\right\rangle$ and so $\left\langle\left(a^{\prime}\right)^{i} b, t\right\rangle$ is not normal in G, contrary to our assumptions. Hence choosing a suitable generator t of $\langle t\rangle$, we must have $[b, t]=z$. Then we also get $[a, t]=u^{i} z^{j}$ with $i \not \equiv 0(\bmod p)$.

Case (b): $r=s+1$. Let $b \in A^{*}-\Phi(G)$ be such that $[b, t]=z$ and set $b^{p^{s}}=u$, where $\langle u\rangle \neq\langle z\rangle$. Let $a \in A^{*}-\Phi(G)$ be such that $a^{p^{s}}=z$ and then
we have

$$
A^{*}=\langle a\rangle \times\langle b\rangle \cong \mathrm{C}_{p^{s+1}} \times \mathrm{C}_{p^{s+1}} \text { and }[a, t]=u^{i} z^{j}, i \not \equiv 0(\bmod p)
$$

In this critical case we must also have $j \not \equiv \xi-i \xi^{-1}(\bmod p)$ for all integers $\xi \not \equiv 0 \quad(\bmod p)$. Indeed, assume that for some $\xi \not \equiv 0(\bmod p)$, we have $j \equiv \xi-i \xi^{-1}(\bmod p)$. In that case we solve the congruence $i \mu \equiv \xi(\bmod$ $p)$ with some $\mu \not \equiv 0(\bmod p)$. We compute (noting that $s \geq 2)$:

$$
\left(a^{\mu} b\right)^{p^{s}}=\left(a^{p^{s}}\right)^{\mu} b^{p^{s}}\left[b, a^{\mu}\right]_{\left(p_{2}^{s}\right)}^{\left(p^{s}\right)}=z^{\mu} u
$$

and

$$
\begin{gathered}
{\left[a^{\mu} b, t\right]=\left(u^{i} z^{j}\right)^{\mu} z=z^{1+j \mu} u^{i \mu}=z^{1+\left(\xi-i \xi^{-1}\right) \mu} u^{\xi}=} \\
z^{1+\xi \mu-\xi^{-1} i \mu} u^{\xi}=z^{1+\xi \mu-1} u^{\xi}=z^{\xi \mu} u^{\xi}=\left(z^{\mu} u\right)^{\xi} .
\end{gathered}
$$

It follows that $\left\langle a^{\mu} b, t\right\rangle \cong \mathrm{M}_{p^{s+2}}, s \geq 2$, and since $[b, t]=z \notin\left\langle a^{\mu} b, t\right\rangle$, it follows that $\left\langle a^{\mu} b, t\right\rangle$ is not normal in G, contrary to our assumptions. We have obtained the groups stated in part (e) of our proposition.

Conversely, we see that in any group G from part (e) of our proposition, for each $x \in A^{*}-\mathrm{Z}(G),\langle x\rangle$ is not normal in G and so D_{8} or $\mathrm{M}_{p^{n}}$ cannot be subgroups of G, where A^{*} is the unique abelian maximal subgroup of G. Furthermore, let X be any maximal non-normal abelian subgroup of G of order $\geq p^{3}$ which has more than one subgroup of order p. Since G has exactly one conjugacy class of noncentral subgroups of order p with the representative $\langle t\rangle$, we may assume that $t \in X$. It follows that $X=\langle t\rangle \times X_{0}$, where X_{0} is any maximal cyclic subgroup in $\mathrm{Z}(G)$. Hence our condition ($*$) holds.
(iii2b) It remains to consider the case $t \in \mathrm{Z}(K)$ so that K is abelian and $K>L$. Since $K / \mathrm{C}_{K}(g) \cong G^{\prime}$ (Lemma 1.1 in [1]), there is $k \in K-L$ such that $\langle k\rangle$ covers K / H and $[g, k]=z=g^{p^{s}}, s \geq 2$, where $[g, t] \in U-\langle z\rangle$ with $p^{r}=o(k) \geq p^{2}$. Since $K=\langle t\rangle \times\langle h, k\rangle$ and $\mathrm{Z}(G)=\left\langle h, k^{p}\right\rangle$, it follows that $U \leq\left\langle h, k^{p}\right\rangle$ because $U \leq \mathrm{Z}(G)$. Hence we have $\Omega_{1}(\langle h, k\rangle)=U=G^{\prime}$. Consider the subgroup

$$
\langle t\rangle \times\langle k\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{r}}, r \geq 2 .
$$

If $\Omega_{1}(\langle k\rangle)=\langle z\rangle$, then $[g, t] \in U-\langle z\rangle$ shows that $\langle t, k\rangle$ is not normal in G. If we have $\Omega_{1}(\langle k\rangle)=\langle u\rangle$ with $u \in U-\langle z\rangle$, then $[g, k]=z$ shows that again $\langle t, k\rangle$ is not normal in G. The maximality of $|H|$ shows that we must have $r \leq s$ and so we have $\exp (K)=p^{s}$. It follows that $\langle h\rangle$ splits in $\langle h, k\rangle$ and so we have

$$
\langle h, k\rangle=\langle h\rangle \times\left\langle k^{\prime}\right\rangle \text { with } \Omega_{1}\left(\left\langle k^{\prime}\right\rangle\right)=\langle u\rangle, u \in U-\langle z\rangle \text { and } o\left(k^{\prime}\right) \geq p^{2} .
$$

Since $[g, t] \in U-\langle z\rangle$, there is an integer $j \bmod p$ so that $\left[g, t^{j} k^{\prime}\right]=z$. Because $\Omega_{1}\left(\left\langle t^{j} k^{\prime}\right\rangle\right)=\langle u\rangle$, we may assume from the start that (replacing k with $t^{j} k^{\prime}$
and writing k again):

$$
\begin{aligned}
& K=\langle t\rangle \times\langle h\rangle \times\langle k\rangle, o(k)=p^{r}, 2 \leq r \leq s, \\
& k^{p^{r-1}}=u \in U-\langle z\rangle \text { and }[g, k]=z=g^{p^{s}}
\end{aligned}
$$

Replacing t with some other generator of $\langle t\rangle$ (if necessary), we may assume from the start that $[g, t]=u z^{i}$ for some integer $i \bmod p$.

For any integer $\alpha \not \equiv 0(\bmod p)$ and any $x \in K$, we have (noting that $s \geq 2$)

$$
\left(g^{\alpha} x\right)^{p^{s}}=z^{\alpha}\left[x, g^{\alpha}\right]_{\left(p_{2}^{s}\right)}^{2}=z^{\alpha}
$$

and so $\Omega_{1}(G)=\langle t\rangle \times U \cong \mathrm{E}_{p^{3}}$ and the socle of each cyclic subgroup of G which is not contained in K is equal $\langle z\rangle$.

Let h^{\prime} be an element of order p^{r} in $\langle h\rangle$ such that $\left(h^{\prime}\right)^{p^{r-1}}=z$. For any fixed $\alpha \not \equiv 0(\bmod p)$ we consider the subgroup

$$
\langle t\rangle \times\left\langle\left(h^{\prime}\right)^{\alpha} k\right\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{r}}, \text { where }\left(\left(h^{\prime}\right)^{\alpha} k\right)^{p^{r-1}}=z^{\alpha} u
$$

and note that $\left\langle\left(h^{\prime}\right)^{\alpha} k\right\rangle \cong \mathrm{C}_{p^{r}}, r \geq 2$, is a maximal cyclic subgroup in G with the socle $\left\langle z^{\alpha} u\right\rangle$. We have $\left[g,\left(h^{\prime}\right)^{\alpha} k\right]=z \notin\left\langle t,\left(h^{\prime}\right)^{\alpha} k\right\rangle$ so that $\left\langle t,\left(h^{\prime}\right)^{\alpha} k\right\rangle$ is a maximal non-normal subgroup in G. By Proposition 6, there is a unique integer $j(\bmod p)$ such that $\left\langle t^{j}\left(h^{\prime}\right)^{\alpha} k\right\rangle \unlhd G$. Hence we must have:

$$
\left[g, t^{j}\left(h^{\prime}\right)^{\alpha} k\right]=\left(u z^{i}\right)^{j} z=z^{1+i j} u^{j} \in\left\langle z^{\alpha} u\right\rangle
$$

which shows that $j \not \equiv 0(\bmod p)$ and we get

$$
z^{1+i j} u^{j}=z^{\alpha j} u^{j} \text { so that } 1+i j \equiv \alpha j \text { or } j(\alpha-i) \equiv 1(\bmod p)
$$

Hence for any fixed $\alpha \not \equiv 0(\bmod p)$, there must exist $j \not \equiv 0(\bmod p)$ such that $j(\alpha-i) \equiv 1(\bmod p)$ and this gives that we must have $i \equiv 0(\bmod p)$. We have obtained the relation $[g, t]=u$.

Because $[g, k]=z$ and $\langle k\rangle \cong \mathrm{C}_{p^{r}}, r \geq 2$, is a maximal cyclic subgroup in G with the socle $\langle u\rangle$, it follows that $\langle t\rangle \times\langle k\rangle \cong \mathrm{C}_{p} \times \mathrm{C}_{p^{r}}$ is a maximal non-normal subgroup in G. By Proposition 6, there is a unique integer m ($\bmod p)$ such that $\left\langle t^{m} k\right\rangle \unlhd G$. But we have

$$
\left[g, t^{m} k\right]=[g, t]^{m}[g, k]=u^{m} z
$$

a final contradiction (since $\left.\Omega_{1}\left(\left\langle t^{m} k\right\rangle\right)=\langle u\rangle\right)$. Our proposition is completely proved.

Proof of Theorem C. By inspection of all Propositions 1 to 12, we see that all possible cases have been investigated and so our theorem is proved.

References

[1] Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin-New York, 2008.
[2] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter, Berlin-New York, 2008.
[3] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 3, Walter de Gruyter, Berlin-New York, 2011.
[4] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 4, Walter de Gruyter, Berlin-New York, to appear 2014.
Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 1.3.2014.

[^0]: 2010 Mathematics Subject Classification. 20D15.
 Key words and phrases. Finite p-groups, 2-groups of maximal class, Dedekindian pgroups, ordinary quaternion group, maximal non-normal subgroups, conjugate subgroups.

