
GLASNIK MATEMATIČKI
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CLASSIFICATION OF FINITE p-GROUPS WITH CYCLIC

INTERSECTION OF ANY TWO DISTINCT CONJUGATE

SUBGROUPS

Zvonimir Janko

University of Heidelberg, Germany

Abstract. We give a complete classification of non-Dedekindian fi-
nite p-groups in which any two distinct conjugate subgroups have cyclic
intersection (Theorems A, B and C).

1. Introduction

The purpose of this paper is to give a complete classification of finite non-
Dedekindian p-groups (i.e., p-groups that possess non-normal subgroups) in
which any two distinct conjugate subgroups have cyclic intersection (Problem
1572 stated in [3]).

In Theorem 16.2 in [1], Theorem A and Theorem B are completely de-
termined finite non-Dedekindian p-groups all of whose non-normal subgroups
are either cyclic, abelian of type (p, p) or ordinary quaternion. Since in these
groups any two distinct conjugate subgroups have a cyclic intersection, so
these results can be considered as a good start in solving problem 1572.
Therefore, after proving Theorems A and B, we may always assume that
there is in a title group G a non-normal subgroup which is neither cyclic nor
abelian of type (p, p) nor an ordinary quaternion group and such groups will
be completely determined in Theorem C. Now we state our main results.

Theorem A. Let G be a p-group all of whose non-normal subgroups are
cyclic or abelian of type (p, p). Assume in addition that G possesses a non-
normal abelian subgroup of type (p, p). Then G is one of the following groups
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(where S(p3), p > 2, denotes the nonabelian group of order p3 and exponent
p):

(a) G ∼= D16 or SD16.
(b) G = LZ, where L ∼= S(p3), p > 2, is normal in G, Z ∼= Cp2 , L ∩ Z =

Z(L) = Z(G).
(c) G is any nonabelian group of order p4 with an elementary abelian sub-

group of index p.
(d) p = 2 and G ∼= (D8 ∗ Q8) × C2, where D8 ∩ Q8 = (D8)

′ or G ∼=
H16 ∗ Q8 with H16 ∩ Q8 = (H16)

′, where H16 is the nonmetacyclic
minimal nonabelian group of order 16.

(e) G ∼= Mps+1 × Cp, s ≥ 3.
(f) G = (Z ∗ S) × Cp, where Z ∼= Cps+1 , s ≥ 1, Z ∩ S = S′, and either

p = 2 and S ∼= D8 or p > 2 and S ∼= S(p3) or
G = Z ∗ S, where Z ∼= Cps+1 , s ≥ 1, Z ∩ S = S′, and S is the

nonmetacyclic minimal nonabelian group of order p4.
(g) G is an A2-group of order p5 from Proposition 71.4(b2) in [2] for

α = 1.
(h) G ∼= Q8 ∗Q8 ∗Q8, an extraspecial group of order 27 and type ”− ”.
(i) G = (A1∗A2)Z(G), where A1 and A2 are minimal nonabelian p-groups

and Z(G) is cyclic. In case p = 2, A1 and A2 are isomorphic to one
of D8, Q8 and M2n , n ≥ 4, where in case A1

∼= Q8 and A2
∼= D8 we

must have |Z(G)| > 2. In case p > 2, A1 and A2 are isomorphic to
one of S(p3) or Mpn , n ≥ 3.

Conversely, all the above groups satisfy the assumptions of the theorem.

Theorem B. Let G be a 2-group all of whose non-normal subgroups are
either cyclic, abelian of type (2, 2) or ordinary quaternion. Assume in addition
that G possesses a non-normal subgroup H which is isomorphic to Q8. Then
G is isomorphic to one of the following groups :

(a) G ∼= Q32 (a generalized quaternion group of order 32).
(b) G is a unique 2-group of order > 24 with the property that Ω2(G) ∼=

Q8 ×C2 and we have |G| = 25, where this group (of class 3) is defined
in part A2(a) of Theorem 49.1 in [2].

(c) G is a splitting extension of a cyclic noncentral normal subgroup of
order 4 by Q8.

(d) G = H1 ×H2, where H1
∼= H2

∼= Q8.
(e) G = 〈h0, h1〉〈g〉, where 〈h0, h1〉 ∼= Q8, Z(〈h0, h1〉) = 〈z〉 , 〈g〉 ∼= C2n ,

n ≥ 3, 〈h0, h1〉 ∩ 〈g〉 = {1}, Ω1(〈g〉) = 〈z′〉, g2 ∈ Z(G), [g, h0] = 1, and
[g, h1] = zǫz′, ǫ = 0, 1. Here we have |G| = 2n+3, n ≥ 3, G′ = Ω1(G) =
〈z, z′〉 ∼= E4, G is of class 2 and Z(G) = 〈g2〉 × 〈z〉 ∼= C2n−1 × C2.

(f) G = C ∗ Q, where C ∼= H2 = 〈a, b | a4 = b4 = 1, ab = a−1〉, Q ∼= Q8

and C ∩Q = 〈a2b2〉 = Q′.

Conversely, all the above groups satisfy the assumptions of the theorem.
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Theorem C. Let G be a p-group with a cyclic intersection of any two
distinct conjugate subgroups. Assume in addition that G has a non-normal
subgroup which is neither cyclic nor abelian of type (p, p) nor an ordinary
quaternion group. Then G is metabelian and G is either a 2-group of maximal
class and order ≥ 25 (if |G| = 25, then G ∼= D32 or SD32) or G is a p-group
of class at most 3 with G′ 6= {1} elementary abelian of order at most p2 and
G is isomorphic to one of the groups defined in Propositions 3(b2), 5, 7, 8,
9, 10, 11 and 12 stated in the section 4.Proof of theorem C.

Conversely, all these groups satisfy the assumptions of our theorem.

In this paper we shall consider only finite p-groups and our notation is
standard (see [1]).

2. Proof of Theorem A

Let G be a p-group all of whose non-normal subgroups are cyclic or abelian
of type (p, p) and we assume that G possesses a non-normal abelian subgroup
H of type (p, p). We set K = NG(H) so that we have H < K < G and
K E G. Since each subgroup X of G with X > H is normal in G, it follows
that K/H is Dedekindian and K/H has exactly one subgroup of order p. This
implies that K/H 6= {1} is either cyclic or p = 2 and K/H ∼= Q8. Let L/H
be a unique subgroup of order p in K/H so that L E G and Ω1(K) ≤ L. If
g ∈ G−K, then L = 〈H,Hg〉 and so we have Ω1(K) = L.

Suppose that K does not possess a G-invariant abelian subgroup of type
(p, p). By Lemma 1.4 in [1], we get p = 2 and K is of maximal class. But H is
a normal four-subgroup in K and so K ∼= D8. Since CG(H) = CK(H) = H ,
it follows by a result of M. Suzuki (see Proposition 1.8 in [1]) that G is also
a 2-group of maximal class. In this case H has exactly two conjugates in
K = L ∼= D8 and so |G : K| = 2 and |G| = 24. It follows that G ∼= D16 or
SD16 and we have obtained the groups stated in part (a) of our theorem.

In what follows we may assume that K possesses a G-invariant abelian
subgroup U of type (p, p). Since Ω1(K) = L, we have U ≤ L and so L = HU
with |H ∩ U | = p. If L is abelian, then L ∼= Ep3 . If L is nonabelian, then in
case p > 2 we have L ∼= S(p3) and in case p = 2 we must have L ∼= D8. But
the last case cannot happen since UEG and L has exactly two four-subgroups
which would imply that also H E G, a contradiction. Hence we have either
L ∼= Ep3 or p > 2 and L ∼= S(p3).

Suppose that p > 2 and L ∼= S(p3). In that case we have

〈z〉 = H ∩ U = L′ = Z(L) ≤ Z(G).

If CG(L) > 〈z〉, then take an element x ∈ CG(L)−〈z〉 such that xp ∈ 〈z〉 and
consider the abelian subgroup S = 〈h, z, x〉 of order p3, where h is any element
in H − 〈z〉. By our assumptions, we have S E G. But L ∩ S = H = 〈h, z〉
and so H EG, a contradiction. We have proved that CG(L) = 〈z〉. Since an
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Sp-subgroup of Aut(L) is isomorphic to S(p3), it follows that |G : L| = p and
K = L so that |G| = p4. Also note that G/〈z〉 ∼= S(p3) and G/K acting on
p+ 1 subgroups of order p2 (containing 〈z〉) fixes U and acts transitively on
p other ones. Hence U is the unique G-invariant subgroup of order p2 in L.
Set V = CG(U) so that V is an abelian normal subgroup of order p3 in G and
we have G = LV with L ∩ V = U . If V ∼= Ep3 , then we get a group stated in
part (c) of our theorem. Hence we may assume that there is an element t of
order p2 in V − U such that tp = z. We have obtained a group from part (b)
of our theorem.

From now on we may assume that L ∼= Ep3 . If |G/L| = p, then K = L is
elementary abelian of order p3 and index p and again we have obtained the
groups from part (c) of our theorem. Thus we may assume in what follows
that |G/L| > p.

In the rest of the proof we fix our notation for:

Ep2
∼= H, K = NG(H) 6= G, Ω1(K) = L, Ep2

∼= U EG,

where

L = HU, H ∩ U ∼= Cp,

and {1} 6= K/H is either cyclic or p = 2 and K/H ∼= Q8. Also we fix our
assumptions that L ∼= Ep3 and |G/L| > p.

(i) First assume that there is a central element z in G of order p which is
contained in H .

In that case we have |G : K| = p so that K > L and therefore there is an
element v ∈ K−L of order p2 with vp ∈ L−H . We may choose a G-invariant
subgroup U ≤ L of order p2 so that U ≤ Z(G). The socle Ω1(X) of any cyclic
subgroup X in G of composite order is contained in U .

Indeed, acting with G/K on p + 1 subgroups of order p2 in L which
contain 〈z〉, we see that |G : K| = p. Since |G/L| > p, we have K > L and
so there is an element v ∈ K −L of order p2, where vp ∈ L−H . Considering
〈v, z〉 ∼= Cp2 × Cp, we obtain

〈v, z〉EG and so ℧1(〈v, z〉) = 〈vp〉EG.

Then we may set Ep2
∼= U = 〈z, vp〉 ≤ Z(G). Let X be any cyclic subgroup

of composite order in G and assume that Ω1(X) 6≤ U . But then Ω1(X) ≤ K
and so Ω1(X) ≤ L. Take an element 1 6= u ∈ U ≤ Z(G) and consider the
subgroup X × 〈u〉EG so that we get Ω1(X)EG. Since Ω1(X) 6≤ U , we get
L ≤ Z(G) and so H EG, a contradiction.

(i1) Suppose that K/L is noncyclic. Then we have p = 2, K/H ∼= Q8,
|G| = 26 and K/L ∼= E4. Since ℧1(K) ≤ U ≤ Z(G), K/U is elementary
abelian. Considering the Dedekindian group G/U of order 24 which possesses
an elementary abelian subgroupK/U of index 2, it follows that G/U is abelian
and so G′ ≤ U . Any two non-commuting elements in G generate here a
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minimal nonabelian subgroup (see Lemma 65.2 in [2]). For any g, h ∈ G
we have [g2, h] = [g, h]2 = 1 and so ℧1(G) ≤ Z(G). In particular, for any
g ∈ G − K, g2 ∈ K − L is not possible and so g2 ∈ L and this implies
g2 ∈ U . Hence ℧1(G) ≤ U and exp(G) = 4. Since Z(G) ≤ K, we get
Z(G) = U . Because G/L ∼= E8, we have CG(L) > L and so CG(L) ≤ K
implies CK(L) > L. Thus there is v ∈ CK(L)−L such that v2 ∈ U −H . Let
h ∈ H −U and consider the subgroup 〈h, v〉 ∼= C2 ×C4 so that 〈h, v〉EG and

Ω1(〈h, v〉) = 〈h, v2〉EG.

If 〈h, v2〉 6≤ Z(K), then there is g ∈ G−K centralizing 〈h, v2〉, a contradiction.
We have proved that H ≤ Z(K) and so CG(L) = K.

We have Z(K) = L and so |K ′| = 2 and U = K ′× (H ∩U). Suppose that
℧1(K) = U . Then there are elements v1, v2 ∈ K − L such that z1 = v21 6=
z2 = v22 , where z1, z2 ∈ U −H . Let h ∈ H − U and g ∈ G−K. Since

〈h, v1〉 ∼= C2 × C4 and 〈h, v2〉 ∼= C2 × C4,

we have

〈h, v1〉EG and 〈h, v2〉EG and so 〈h, z1〉EG and 〈h, z2〉EG.

But this gives hg = hz1 = hz2 and z1 = z2, a contradiction.
We have proved that ℧1(K) = 〈u〉 is of order 2, where u ∈ U − H . It

follows that K/〈u〉 is elementary abelian and so ℧1(K) = K ′ = 〈u〉. Let
k1, k2 ∈ K − L be such that 〈k1, k2〉 covers K/L. Since k21 = k22 = u and
[k1, k2] = u, we get Q = 〈k1, k2〉 ∼= Q8 and K = H ×Q, L = H × 〈u〉, where
QEG.

Since G′ ≤ U is elementary abelian, it follows that G induces on Q only
inner automorphisms of Q and so we have G = Q ∗C, where C = CG(Q) and
Q ∩C = 〈u〉, K ∩C = L. Also we have Z(C) = Z(G) = U . By Lemma 1.1 in
[1] we get |C′| = 2. On the other hand, let h ∈ H − U , g ∈ C − L and v ∈ Q
with v2 = u. Since

C2 × C4
∼= 〈h, v〉EG, it follows that Ω1(〈h, v〉) = 〈h, u〉EG.

Thus we get hg = hu and so u ∈ C′. We have proved that C′ = Q′ = 〈u〉 = G′.
Let g be an element in C − L and h ∈ H − U . If g2 ∈ U − 〈u〉, then

C = 〈g, h〉 ∼= H16, where H16 denotes the nonmetacyclic minimal nonabelian
group of order 16. If g2 ∈ 〈u〉, then we have 〈g, h〉 ∼= D8 and so in this case
C = 〈g, h〉 × 〈z〉, where 〈z〉 = H ∩ U . We have obtained the groups stated in
part (d) of our theorem.

(i2) Suppose that {1} 6= K/L is cyclic so that K/H is cyclic of order
≥ p2. In this case we show that G/L is abelian.

Indeed, assume that G/L is nonabelian. Since G/L is Dedekindian, it
follows that p = 2 and G/L ∼= Q8. We also have Ω1(G) = L. Since CG(L) > L
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and CG(L) ≤ K, we get CK(L) > L. Let v ∈ CK(L) − L with o(v) = 4 so
that v2 ∈ U −H and let h ∈ H − U . Then

C2 × C4
∼= 〈h, v〉EG, and 〈h, v2〉EG.

If 〈h, v2〉 6≤ Z(K), then there is g ∈ G−K which centralizes h, a contradiction.
Hence 〈h, v2〉 ≤ Z(K) and so H ≤ Z(K) which implies that K is abelian.

Since G/U is Dedekindian and nonabelian, it follows that G/U is Hamil-
tonian. Let Q/U be a subgroup in G/U which is isomorphic to Q8 and set

Q0/U = Z(Q/U) = (Q/U)′.

Let Q1/U and Q2/U be two distinct cyclic subgroups of order 4 in Q/U so
that Q1 and Q2 are abelian and Q1 ∩ Q2 = Q0. It follows that Q0 ≤ Z(Q)
and so Q0 = Z(Q). By Lemma 1.1 in [1], |Q′| = 2 and since Q′ covers Q0/U ,
it follows that Q0 = U × Q′ ∼= E8. But then Q0 = Ω1(G) = L and so
K = CG(L) ≥ Q is nonabelian, a contradiction. We have proved that G/L is
abelian and so G/L is either cyclic of order ≥ p2 or G/L is abelian of type
(ps, p), s ≥ 1.

(i2a) Assume that G/L is cyclic. Let g ∈ G −K so that 〈g〉 covers G/L
and let 〈t〉 = Ω1(〈g〉) be the socle of 〈g〉, where t ∈ U − H and o(g) = ps,

s ≥ 3. We may set t = gp
s−1

and so 〈gp〉 covers K/H ∼= Cps−1 . Also set

v = gp
s−2

so that 〈v〉 ∼= Cp2 and vp = t.
Since 〈g〉 stabilizes the chain L > U > {1}, it follows that 〈gp〉 centralizes

L and so K is abelian. Consider the abelian subgroup 〈h, v〉 ∼= Cp × Cp2 ,
where h is any element in H − U . Since 〈h, v〉EG, we get

Ω1(〈h, v〉) = 〈h, t〉EG.

Thus we get hg = hti for some i 6≡ 0 (mod p) and so G′ ≥ 〈t〉. On the other
hand,

Z(G) = CK(g) = 〈gp, U〉 and so |G : Z(G)| = p2.

By Lemma 1.1 in [1], we get

|G| = p|Z(G)||G′| and so |G′| = p and G′ = 〈t〉.

We have 〈g, h〉 ∼= Mps+1 and if we set 〈z〉 = H ∩ U , then

G = 〈z〉 × 〈g, h〉 ∼= Cp ×Mps+1 .

We have obtained the groups stated in part (e) of our theorem.

(i2b) Assume that G/L is abelian of type (ps, p), s ≥ 1, and K is abelian.
Let v ∈ K − L be such that 〈v〉 covers K/L ∼= Cps , s ≥ 1. Then t = vp

s

∈
U −H so that

K/H ∼= Cps+1 and K = H × 〈v〉 ∼= Ep2 × Cps+1 .
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Since G/L is abelian of type (ps, p), there is an element w ∈ G−K such that
wp ∈ L and so wp ∈ U . Let h ∈ H − U and consider the abelian subgroup

〈h, v〉 ∼= Cp × Cps+1 , s ≥ 1.

Since 〈h, v〉EG, we get 〈h, t〉EG and so hw = ht (where we replace h with a
suitable power hj , j 6≡ 0 (mod p), if necessary). In particular, we get G′ ≥ 〈t〉.

Suppose that G/U is nonabelian so that p = 2 and G/U is Hamiltonian.
But G/L is abelian and so

(G/U)′ = ℧1(G/U) = L/U.

Hence there is an element m ∈ G such that m2 ∈ L−U , a contradiction. We
have proved that G/U is abelian and so 〈t〉 ≤ G′ ≤ U ≤ Z(G) and therefore
G is of class 2 with an elementary abelian commutator subgroup.

Note that

Cp × Cps+1
∼= 〈h, v〉EG and so [h,w] ∈ 〈h, v〉 ∩ U = 〈t〉,

which implies that 〈v〉EG and therefore p−1 other cyclic maximal subgroups
of 〈h, v〉 are also normal in G.

In case 〈v〉 6≤ Z(G) we get vw = vtj for some integer j 6≡ 0 (mod p). Solve
the congruence ij ≡ −1 (mod p), where i 6≡ 0 (mod p). Then we compute:

(vih)w = (vw)ihw = (vtj)iht = vit−1ht = vih,

where 〈vih〉 ∼= Cps+1 is also a cyclic maximal subgroup in 〈h, v〉 and 〈vih〉 ≤

Z(G). Thus replacing 〈v〉 with 〈vih〉, we may assume from the start that
〈v〉 ≤ Z(G). We get

Z(G) = CK(w) = 〈v〉U and so |G : Z(G)| = p2.

By Lemma 1.1 in [1] we get

|G| = p|Z(G)||G′| and so |G′| = p and G′ = 〈t〉.

First suppose that wp ∈ U − 〈t〉. Then S = 〈h,w〉 is the nonmetacyclic
minimal nonabelian group of order p4. If we set Z = 〈v〉, then we get

G = Z ∗ S, where Z ∼= Cps+1 and Z ∩ S = S′.

Assume that wp ∈ 〈t〉 and set 〈z〉 = U∩H . Then S = 〈h,w〉 is isomorphic
to D8 in case p = 2 and to S(p3) or Mp3 in case p > 2. Setting again
Z = 〈v〉 ∼= Cps+1 we have Z ≤ Z(G) , S ∩ Z = S′ and G = 〈z〉 × (S ∗ Z).
However, in case p > 2 and S ∼= Mp3 , we have S∗Z = S1∗Z, where S1

∼= S(p3)
for a suitable subgroup S1 in S ∗ Z. We have obtained all groups stated in
part (f) of our theorem.

(i2c) Assume that G/L is abelian of type (ps, p), s ≥ 1, and K is non-
abelian. We have K/L ∼= Cps , s ≥ 1. Let v ∈ K − L be such that 〈v〉 covers

K/L. Then 1 6= t = vp
s

∈ U −H so that K/H ∼= Cps+1 . Acting with K on L,
we see that K stabilizes the chain L > U > {1}. Hence if s > 1, then there is
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an element v0 of order p2 in K which centralizes L and vp0 ∈ U −H . For an
element h ∈ H − U we consider

Cp × Cp2
∼= 〈h, v0〉EG and so Ep2

∼= 〈h, vp0〉EG.

If 〈h, vp0〉 6≤ Z(K), then there is an element g ∈ G − K which centralizes h,
a contradiction. Thus we must have 〈h, vp0〉 ≤ Z(K) and this implies that K
is abelian, a contradiction. We have proved that s = 1 and so t = vp and
|G| = p5. Since CL(v) = U = Z(K), Lemma 1.1 in [1] gives that |K ′| = p.
On the other hand, K ′ ≤ H and since K ′ ≤ Z(G), we get K ′ = H ∩ U . For
any h ∈ H −U , we have 〈[h, v]〉 = K ′ and so K is the nonmetacyclic minimal
nonabelian group of order p4 and Φ(K) = U . Because G/L ∼= Ep2 , we have
exp(G) = p2 and so for any x ∈ G − L, we have xp ∈ U and ℧1(G) ≤ U .
For p = 2, G/U is elementary abelian. For p > 2, the fact that G/U is
Dedekindian implies that G/U is abelian and so again G/U is elementary
abelian. We have proved that Φ(G) = U and so G′ ≤ U and d(G) = 3. Since
Z(G) ≤ K, we also get Z(G) = U . If G′ = K ′, then H EG, a contradiction.
Thus, G′ = U and so G is special.

By Lemma 146.7 in [4], G has exactly one abelian maximal subgroup
A and for each subgroup Xi of order p in G′ (i = 1, 2, . . . , p + 1) there are
exactly p pairwise distinct maximal subgroups Lij (j = 1, 2, . . . , p) of G such
that L′

ij = Xi.

Suppose that G possesses a nonabelian subgroup S of order p3 so that S is
minimal nonabelian and SEG. But then Ep2

∼= G′ ≤ S and since G′ = Z(G),
we get that S is abelian, a contradiction. Hence G is an A2-group since each
subgroup of index p2 in G is abelian and K is a minimal nonabelian maximal
subgroup in G. If there is an element g ∈ G−K of order p, then 〈g, h〉 (with
h ∈ H−U) is minimal nonabelian of order p3, a contradiction. We have proved
that Ep3

∼= L = Ω1(G) and so a unique abelian maximal subgroup A of G is of
type (p2, p2). Indeed, A contains U = Φ(G) and |K ∩A| = p3. If L ≤ A, then
there is an element g ∈ G−K which centralizes L, a contradiction. Hence we
have A ∩ L = U = Ω1(A) which shows that A ∼= Cp2 × Cp2 .

By the results of §71 in [2], it follows that G is one of A2-groups from
Theorem 71.4(b2) in [2] with α = 1. We have obtained the groups from part
(g) of our theorem.

(ii) We assume that whenever H is a non-normal abelian subgroup of
type (p, p) in G, then H ∩ Z(G) = {1}. Let z be a central element of G
which is contained in L − H so that we have L = Ω1(K) = 〈z〉 × H ∼= Ep3

and L ∩ Z(G) = 〈z〉. For any 1 6= h ∈ H , we have 〈h, z〉 E G and therefore
H ∩〈h, z〉 = 〈h〉EK. Thus, H ≤ Z(K) and CG(L) = K. It follows that G/K
acts faithfully on L and stabilizes the chain L > 〈z〉 > {1} and [H,G] = 〈z〉.
Thus {1} 6= G/K is elementary abelian of order ≤ p2. However, if |G/K| = p,
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then there is an element g ∈ G −K centralizing an element 1 6= h ∈ H and
so h ∈ Z(G), a contradiction. We have proved that we have G/K ∼= Ep2 .

Let X be any cyclic subgroup of composite order in G. Since Ω1(X) ≤ K,
we have Ω1(X) ≤ L = Ω1(K). Suppose that Ω1(X) 6= 〈z〉. In this case we
have

X × 〈z〉EG and so Ω1(X)EG.

This is a contradiction since L ∩ Z(G) = 〈z〉. We have proved that the socle
of each cyclic subgroup of composite order in G is equal 〈z〉 ≤ G′.

We have Z(G) ≤ K and so we have

Z(G) ∩ L = Z(G) ∩ Ω1(K) = 〈z〉.

This implies that Z(G) is cyclic and we also have |G : Z(G)| ≥ p4.

(ii1) First assume that K/H ∼= Q8. In this case we have |G| = 27. Let Ki

be any of the three maximal subgroups of K containing H so that Ki/H ∼= C4

and therefore each Ki is abelian. Hence |K ′| = 2 and so K ′ EG and K ′ ≤ L
implies that K ′ = 〈z〉. Let v1, v2 ∈ K − L be such that 〈v1, v2〉 covers K/L.
Because v21 = v22 = z and [v1, v2] = z, we get Q = 〈v1, v2〉 ∼= Q8 so that
K = H × Q and Q E G. For each Ki (i = 1, 2, 3) we have Ki E G and so
Ki∩QEG. Thus G induces on Q only inner automorphisms of Q which gives
G = Q ∗ M with Q ∩ M = 〈z〉 = Q′ and M ∩ K = L, where M = CG(Q)
covers G/K. We have ℧1(M) ≤ 〈z〉 and so Q/〈z〉 is elementary abelian. We
get G′ = Φ(G) = Z(G) = 〈z〉 and so G is extraspecial of order 27. Since
M ′ = Φ(M) = Z(M) = 〈z〉, it follows that M is extraspecial of order 25

containing an elementary abelian subgroup L of order 8 and so M ∼= Q8×Q8

and G ∼= Q8×Q8×Q8. We have obtained the group stated in part (h) of our
theorem.

(ii2) Assume that K/H is cyclic. Then K = H × 〈v〉 is abelian, where
〈v〉 ∼= Cps , s ≥ 1, and 〈v〉 ≥ 〈z〉 ≤ G′ ∩ Z(G).

(ii2a) First suppose that G′ = 〈z〉. Then each cyclic subgroup of compos-
ite order is normal in G. Let x, y ∈ G so that we have [xp, y] = [x, y]p = 1 and
therefore ℧1(G) ≤ Z(G). Hence we have Φ(G) = G′

℧1(G) ≤ Z(G) and we
know that Z(G) is cyclic. Hence Φ(G) is also cyclic and G′ = Ω1(Φ(G)). Since
vp ∈ Z(G), we have |G : Z(G)| = p4 or p5. If M is any minimal nonabelian
subgroup in G, then either M ∼= S(p3) or Z(M) = Φ(M) = ℧1(M) and so in
this case M has a cyclic subgroup of index p. This gives:

If p = 2, then M ∈ {D8,Q8,M2n , n ≥ 4}.

If p > 2, then M ∈ {S(p3),Mpn , n ≥ 3}.

Let A1 be any minimal nonabelian subgroup in G. Then we have G =
A1 ∗ C, where C = CG(A1) with A1 ∩ C = Z(A1). If C is abelian, then
C = Z(G) and |G : Z(G)| = p2, a contradiction. Thus, C is nonabelian and
Z(C) = Z(G), where |C : Z(C)| = p2 or p3. Let A2 be a minimal nonabelian
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subgroup in C. Then we have C = A2∗C
∗, where C∗ = CC(A2) and A2∩C

∗ =
Z(A2). Note that Z(C∗) = Z(C) and so if C∗ were nonabelian, then we get
|C∗ : Z(C∗)| ≥ p2 and so |C : Z(C)| ≥ p4, a contradiction. Hence C∗ is
abelian and so C∗ = Z(C) = Z(G). We have proved that G = A1 ∗ A2Z(G),
where Z(G) is cyclic. Finally, if p = 2 and A1

∼= Q8 and A2
∼= D8, then

we must have |Z(G)| > 2. Indeed, if we have in this case |Z(G)| = 2, then
G ∼= Q8 ∗D8 and this group does not possess an elementary abelian subgroup
of order 8. We have obtained the groups in part (i) of our theorem.

(ii2b) Finally assume that G′ > 〈z〉. Set H = 〈h1, h2〉 and we know that
〈h1, z〉EG, 〈h2, z〉EG and both G/〈h1, z〉 and G/〈h2, z〉 are Dedekindian. If
both G/〈h1, z〉 and G/〈h2, z〉 were abelian, then we get G′ ≤ 〈h1, z〉∩〈h2, z〉 =
〈z〉, contrary to our assumption. Hence we must have p = 2 and we may
assume that G/〈h1, z〉 is Hamiltonian.

Let Q/〈h1, z〉 be an ordinary quaternion subgroup in G/〈h1, z〉 and set

C/〈h1, z〉 = (Q/〈h1, z〉)
′

so that Q′ covers C/〈h1, z〉. Since G/K ∼= E4, we have G′ ≤ K and we
know that K is abelian. It follows that C = 〈h1, z〉Q

′ ≤ K and so C is
abelian of order 8. For each x ∈ Q − C we have x2 ∈ C − 〈h1, z〉. On
the other hand, the socle of each cyclic subgroup of composite order in G is
equal 〈z〉 and so o(x2) = 4 and therefore C is abelian of type (4, 2). We get
Ω1(Q) = 〈h1, z〉, Ω2(Q) = C, and all elements in Q − C are of order 8. Also
we have Q ∩ L = 〈h1, z〉. If Q′ = C, then |Q : Q′| = 4 and a well known
result of O. Taussky would imply that Q is of maximal class (and order 25),
contrary to the fact that Ω1(Q) = 〈h1, z〉 ∼= E4. On the other hand, Q′ must
cover C/〈h1, z〉 and so we have Q′ ∼= C4.

By Lemma 42.1 in [1], we have

Q = 〈a, b | a8 = b8 = 1, a4 = b4 = z, ab = a−1〉,

where Q′ = 〈a2〉, Z(Q) = 〈b2〉, Ω2(Q) = 〈a2, b2〉, and Ω1(Q) = 〈z, a2b2〉.
Since Z(Q) = 〈b2〉, we have CQ(b) = 〈b〉 and so C〈h1,z〉(b) = 〈z〉. On the

other hand, b2 ∈ K > L and therefore b2 centralizes L and so b induces an
involutory automorphism on L ∼= E8. Hence CL(b) ∼= E4 and so there exists
an involution e ∈ H − 〈h1〉 such that [e, b] = 1.

We have

C2 × C8
∼= 〈e, b〉EG, where Ω1(〈e, b〉) = 〈e, z〉.

On the other hand,

ba = a−1ba = b(b−1a−1b)a = ba2,

which shows that a2 ∈ 〈e, b〉. But then 〈e, b〉 contains 〈e, z, a2b2〉 ∼= E8,
contrary to

Ω1(〈e, b〉) = 〈e, z〉 ∼= E4.
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We have proved that the case G′ > 〈z〉 cannot occur.

It remains to be proved the converse that all groups G stated in our
theorem satisfy the assumptions of that theorem. In fact, we have to prove
that each noncyclic subgroup of order ≥ p3 is normal in G and that G has a
non-normal abelian subgroup of type (p, p).

If G ∼= D16 or G ∼= SD16, a four-subgroup in G is not normal in G.
Let G be a p-group in part (b) of our theorem. Then we have L′ < G′ < L,

where G′ ∼= Ep2 . For an element l ∈ L−G′, set H = 〈L′, l〉 ∼= Ep2 . If H EG,
then |G/H | = p2 implies that G′ ≤ H , a contradiction. Hence H is not
normal in G.

Let E be an elementary abelian maximal subgroup in a nonabelian p-
groupG of order p4 (from part (c) of our theorem). Then we have 1 6= G′ < E.
Let Ep2

∼= H be any subgroup of order p2 in E which does not contain G′. If
H E G, then |G/H | = p2 implies that G′ ≤ H , a contradiction. Hence H is
not normal in G.

Let G be a 2-group of order 26 from part (d) of our theorem. Note that
Z(G) ∼= E4 implies that G has no abelian maximal subgroup. Indeed, if G
would have an abelian maximal subgroup, then we may use Lemma 1.1 in [1]
and we get

|G| = 26 = 2|G′||Z(G)| = 23|G′| and |G′| = 23,

which contradicts the fact that |G′| = 2. Let S be a noncyclic subgroup of
order ≥ 23 and assume that S is not normal in G. Then G′ 6≤ S and so S
is noncyclic abelian. If |S| = 24, then S × G′ would be an abelian maximal
subgroup of G, a contradiction. Assume that |S| = 23. Since G has no
elementary abelian subgroups of order 24, we get that S is abelian of type
(4, 2). In case G ∼= (D8 ∗Q8)×C2, we have ℧1(G) = G′ and so ( since G′ 6≤ S
) we must be in case

H16 ∗Q8
∼= G = D∗Q, where D ∼= H16, Q ∼= Q8 and D∩Q = D′ = 〈z〉 = Q′,

and z is not a square of any element in D. Since all elements in G−D are of
order 4, we have Ω1(S) ≤ D and so

E8
∼= Ω1(D) = Ω1(S)×D′ = Ω1(S)× 〈z〉.

We have

CD(Ω1(S)) = Ω1(S)× 〈z〉 = Ω1(D) and CG(Ω1(S)) = Ω1(D) ∗Q,

where ℧1(CG(Ω1(S))) = 〈z〉.

But S ≤ CG(Ω1(S)) and so G′ = 〈z〉 ≤ S, a contradiction. It is easy to see
that G possesses a non-normal abelian subgroup H ∼= E4. Set H = 〈t, u〉,
where t is a noncentral involution in G and u is a central involution in G such
that 〈u〉 6= G′. Then we have G′ 6≤ H . If H E G, then there is g ∈ G such
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that [g, t] 6= 1 and so G′ = 〈[g, t]〉 ≤ H , a contradiction. Hence H = 〈t, u〉 is
not normal in G.

Let G = M × 〈t〉, where M ∼= Mps+1 , s ≥ 3, and 〈t〉 ∼= Cp (which are
groups of part (e) of our theorem). We have Ω1(G) ∼= Ep3 , Ω2(G) is abelian of
type (p2, p, p) with ℧1(Ω2(G)) = G′ = Cp. Thus any subgroup of order ≥ p3

is normal in G. Let H be a complement of G′ in Ω1(G) so that H 6≤ Z(G)
and so H is not normal in G. Indeed, if in this case HEG, then [G,H ] 6= {1}
and [G,H ] ≤ H and so G′ ≤ H , a contradiction.

Let G be a group of part (f) of our theorem. Let X be any subgroup of G
of order ≥ p3 which is not normal in G. Then we have G′ = S′ 6≤ X and so X
is abelian of order ≥ p3 with X ∩ Z = {1}. But |G/Z| = p3 and so |X | = p3

and G = Z ×X is abelian, a contradiction. Let H = 〈t, u〉 ∼= Ep2 , where t is
a noncentral element of order p in S and u is a central element of order p in
G with 〈u〉 6= G′. Then we have G′ 6≤ H and so H is not normal in G.

Let G be a group of order p5 given in part (g) of our theorem. Then G
is special with G′ ∼= Ep2 and G is an A2-group. Let Y be any subgroup of
G of order p3 which does not contain G′. Since |G : Y | = p2 and G is an
A2-group, it follows that Y is abelian of type (p2, p). Then A = G′Y is a
unique abelian maximal subgroup of G and we know that A ∼= Cp2 × Cp2 .
But then Ep2

∼= Ω1(A) = Φ(A) = G′, a contradiction. Let H be an abelian
subgroup of order p2 contained in Ω1(G) ∼= Ep3 distinct from G′. If H E G,
then G = HA and G/H is abelian so that G′ ≤ H , a contradiction. Hence H
is not normal in G.

Let G ∼= Q8 ∗Q8 ∗Q8 be the extraspecial group of order 27 given in part
(h) of our theorem. Let X be any subgroup of order ≥ 23 and assume that
X is not normal in G. Then X ∩ G′ = {1} and so X is elementary abelian.
But then X×G′ is an elementary abelian subgroup of order ≥ 24 in G. Since
G is extraspecial of order 27 and type ” − ”, there are no such elementary
abelian subgroups in G. Hence X EG. Let H be a four-subgroup in G with
H ∩G′ = {1}. If H EG, then H ∩ Z(G) 6= {1}, a contradiction.

Finally, let G be a group stated in part (i) of our theorem. Then we have

Ω1(Z(G)) = G′, where Z(G) is cyclic.

Also note that |G : Z(G)| = p4 and so G does not possess an abelian maximal
subgroup. Indeed, if G would have an abelian maximal subgroup, then Lemma
1.1 in [1] implies that

|G| = p|G′||Z(G)|, where |G′| = p,

a contradiction. Let X be any subgroup of order ≥ p3 in G. Then we claim
that XEG. Indeed, assume that X is not normal in G. Then we have G′ 6≤ X
and so X ∩ Z(G) = {1} and therefore X is abelian of order ≥ p3. But then
Z(G)×X is an abelian subgroup of index ≤ p in G, a contradiction. It remains
to be shown that G = (A1 ∗ A2)Z(G) possesses an abelian subgroup of type
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(p, p) which is not normal in G. If A1 and A2 possess noncentral elements
a1 ∈ A1 and a2 ∈ A2 of order p, then H = 〈a1, a2〉 ∼= Ep2 and H is not normal
in G since H ∩ Z(G) = {1}. If p > 2, then

A1, A2 ∈ {S(p3), Mpn , n ≥ 3}

and in this case there are such elements a1 and a2. If p = 2, then we have

A1, A2 ∈ {D8, Q8, M2n , n ≥ 4}

and we may replace A1 and A2 with suitable other minimal nonabelian sub-
groups of G so that again we find noncentral involutions a1 ∈ A1 and a2 ∈ A2.
Indeed we have:

Q8 ∗Q8 = D8 ∗D8,

Q8 ∗M2n = D8 ∗M2n , n ≥ 4,

and
(D8 ∗Q8)Z(G) = (D8 ∗D8)Z(G), where |Z(G)| > 2.

Theorem A is completely proved.

3. Proof of Theorem B

First we shall prove a series of lemmas about 2-groups G which satisfy the
assumptions of Theorem B, where H always denotes a non-normal subgroup
in G which is isomorphic to Q8. Set K = NG(H) so that H < K < G and
K EG. Let L be a unique subgroup in G which contains H as a subgroup of
index 2. We fix this notation in the sequel.

Lemma 3.1. The factor-group K/H 6= {1} is either cyclic or isomorphic
to Q8 and G/L 6= {1} is Dedekindian. We have Ω1(K) ≤ L and if K does not
possess a G-invariant four-subgroup, then G ∼= Q25 (the case (a) of Theorem
B). From now on we shall assume that K possesses a G-invariant four-
subgroup U . We have in that case L = HU with U0 = H ∩U = Z(H) ≤ Z(G)
and G/U is also Dedekindian.

Proof. Since K/H is Dedekindian and L/H is a unique subgroup of
order 2 in K/H , it follows that K/H 6= {1} is either cyclic or isomorphic to
Q8 which also implies that Ω1(K) ≤ L.

Assume that K has no G-invariant four-subgroup. By Lemma 1.4 in [1],
K is a 2-group of maximal class and then K = L is of order 24. We have
CG(H) = CK(H) < H and then Proposition 10.17 in [1] implies that G is also
of maximal class. Since KEG, we must have |G/K| = 2 and so |G| = 25. The
only possibility is G ∼= Q25 and this group obviously satisfies the assumptions
of Theorem B.

From now on we shall assume that K has a G-invariant four-subgroup U .
Since Ω1(K) ≤ L, we have U ≤ L and so L = HU with U0 = H ∩U = Z(H).
But L′ ≤ H ∩U and so we have L′ = U0 ≤ Z(G). Also, G/U is Dedekindian.
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Lemma 3.2. We have U = Z(L) ≤ G′, K = H ∗CG(H) with U ≤ CG(H)
and H ∩ CG(H) = U0. Also, G/K is elementary abelian of order 2 or 4 and
Ω1(K) = U .

Proof. Since L′ = H ′ = U0, we get L = H ∗Z, where Z ∼= C4 or E4 and
H ∩ Z = U0. However, if Z ∼= C4, then H would be a unique subgroup in L
which is isomorphic to Q8 and this gives H E G, a contradiction. Hence we
have Z ∼= E4 and so

U = Ω1(L) = Ω1(K) = Z(L).

Let H1 be any cyclic subgroup of order 4 in H . Then

H1U EG and so H1 = (H1U) ∩H EK.

Thus each element in K induces on H an inner automorphism of H and so
we get

K = H ∗ CG(H) with U ≤ CG(H) and H ∩ CG(H) = U0.

For an element x ∈ G−K, there is an element h ∈ H of order 4 such that
hx ∈ L−H . But 〈h〉U EG with h2 ∈ U0 and so hx = hu for some u ∈ U −U0.
Then we have [h, x] = u and so we get U ≤ G′.

There are exactly three maximal subgroups of L which contain U and
they all are abelian of type (4, 2). The other four maximal subgroups of L
which do not contain U are isomorphic to Q8. This gives 1 6= |G/K| ≤ 4.

For any element y ∈ H − U0 and any g ∈ G−K, we have

y2 ∈ U0, U〈y〉EG and yg = yu, where u ∈ U.

This gives

yg
2

= (yu)g = (yu)ug = (yu)uu0 = yu0 with some u0 ∈ U0.

Hence g2 ∈ K and so G/L is elementary abelian of order ≤ 4.

Lemma 3.3. If U 6≤ Z(G), then G is the group of order 25 and class 3
from part (b) of Theorem B and this group satisfies the assumptions of that
theorem.

Proof. Assume that U 6≤ Z(G). Note that K/H ∼= CG(H)/U0 is either
cyclic or isomorphic to Q8. Hence if K > L, then CG(H) = CK(H) > U and
so there is an element k of order 4 in CK(H)− U such that k2 ∈ U − U0. In
that case we have

U〈k〉 = U0 × 〈k〉 ∼= C2 × C4 EG.

But then we get 〈k2〉EG and so U ≤ Z(G), a contradiction.
We have proved that K = L. Suppose that G−K contains an element y

of order ≤ 4 which does not centralize U . Since y2 ∈ U , we get D = U〈y〉 ∼=
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D8 E G. Let V be a four-subgroup in D which is distinct from U . Because
U EG, we get also V EG and V ∩K = U0 = Z(D). But then we have

[H,V ] ≤ K ∩ V = U0 < H

and so V normalizes H , a contradiction. Hence each element in G − K of
order ≤ 4 centralizes U and since U 6≤ Z(G), there is an element x of order 8
in G −K so that we have x2 ∈ L − U and 〈x4〉 = U0. Note that 〈x〉U E G
and we have either 〈x〉U ∼= C8 × C2 or 〈x〉U ∼= M16. In any case 〈x2〉 is
characteristic in 〈x〉U and so 〈x2〉EG. Then there are exactly three maximal
subgroups of K = L which contain 〈x2〉, where two of them are isomorphic to
Q8 and 〈x2〉U ∼= C4×C2. Thus acting with G/K on four maximal subgroups
of L which are isomorphic to Q8, we get |G : K| = 2 and so |G| = 25. Since
U ≤ Z(K) (noting that K = L), each element in G −K does not centralize
U and so (by the above argument) all elements in G−K are of order 8.

We have proved that Ω2(G) = K = L ∼= C2×Q8 and so by Theorem 52.1
in [2], G is isomorphic to the group defined in part A2(a) of Theorem 49.1 in
[2]. Since Ω1(G) = G′ = U , this group obviously satisfies the assumptions of
Theorem B and we are done.

From now on we shall always suppose that U ≤ Z(G).

Lemma 3.4. The factor-group G/U is abelian and so we have G′ = U ≤
Z(G). Since for all x, y ∈ G we get [x2, y] = [x, y]2 = 1, it follows that
Φ(G) ≤ Z(G).

Proof. Assume that G/U is nonabelian so that G/U is Hamiltonian. Let
Q/U be an ordinary quaternion subgroup in G/U , where by our assumption
we have U ≤ Z(G) (see Lemma 3). Set

Q0/U = (Q/U)′ = Z(Q/U), where |Q0 : U | = 2.

Let Q1/U and Q2/U be two distinct cyclic subgroups of order 4 in Q/U
so that Q1 and Q2 are two distinct abelian maximal subgroups in Q. This
implies that |Q′| = 2. On the other hand, Q′ covers Q0/U = (Q/U)′ and so
Q0 = U × Q′ ∼= E8. For each l ∈ Q − Q0, we have l2 ∈ Q0 − U and l2 ∈ K
(since G/K is elementary abelian of order ≤ 4). But then Q0 ≤ K which
contradicts Lemma 2 which states that Ω1(K) = U .

Lemma 3.5. There are no involutions in G−K and so we have U = G′ =
Ω1(G) ≤ Z(G).

Proof. Set Z(H) = H ′ = 〈z〉 and suppose that there is an involution i
in G − K. Then H 6= Hi and i normalizes H0 = H ∩ Hi ∼= C4. It follows
that H0〈i〉 ∼= C4 ×C2 or D8 and H0〈i〉EG. If 〈z, i〉 is not normal in G, then
H0〈i〉 ∼= D8 and there is g ∈ G which induces on H0〈i〉 an outer automorphism
(which permutes two four-subgroups in H0〈i〉). But in that case we have
[(H0〈i〉), 〈g〉] = H0

∼= C4, contrary to the fact that G′ = U ∼= E4. It follows
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that we have E = 〈z, i〉EG. But then we have [H,E] ≤ K ∩ E = 〈z〉 and so
i normalizes H , a contradiction.

Lemma 3.6. The factor-group K/H is cyclic.

Proof. Assume that K/H is noncyclic so that setting Z(H) = H ′ = 〈z〉
we get

Q8
∼= K/H ∼= CG(H)/〈z〉

and therefore

Z(CG(H)) = U and Z(K) = U = Z(G).

By Lemma 4, we have Φ(G) ≤ Z(G) and so Φ(G) = U . On the other hand,
|K| = 26 and so |G| ≥ 27 and d(G) ≥ 5. By Lemma 5, G has no normal
elementary abelian subgroup of order 8 and so by the four-generator theorem
(see Theorem 50.3 in [2]), we must have d(G) ≤ 4, a contradiction.

Proof of Theorem B. We continue with the situation which we have
reached after Lemma 6. Hence we have

U = G′ = Ω1(G) ≤ Z(G), Φ(G) ≤ Z(G),

K = H × 〈a〉 with 〈a〉 ∼= C2n , n ≥ 1, L = H × Ω1(〈a〉),

and G/K 6= {1} is elementary abelian of order ≤ 4.

(i) First assume K = L. In this case G is a special group of order 25 or
26 with

Ω1(G) = Φ(G) = Z(G) = G′ = U ∼= E4 and we set Z(H) = 〈z〉.

Let G0/K be any fixed subgroup of order 2 in G/K and let x ∈ G0−K. Then
x normalizes

H0 = 〈h0〉 = H ∩Hx ∼= C4.

If x inverts h0, then for an element h ∈ H − H0, we have hx ∈ G0 − K
and hx centralizes H0. Hence there is an element v ∈ G0 − K such that v
centralizes an element h0 ∈ H of order 4. If v2 = z, then h0v is an involution
in G −K, a contradiction. Hence we have v2 = z′ ∈ U − 〈z〉. Since H is not
normal in in G0, we have for any h1 ∈ H − 〈h0〉, [h1, v] ∈ {z′, zz′}. However,
if [h1, v] = zz′, then we get

(h1v)
2 = h2

1v
2[h1, v] = zz′(zz′) = 1,

and so h1v is an involution in G −K, a contradiction. Thus we get [h1, v] =
z′ = v2 and so 〈v〉 E G0. It follows that G0 is a splitting extension of the
cyclic noncentral normal subgroup 〈v〉 of order 4 (with v2 = z′) by H ∼= Q8.
We have obtained the group stated in part (c) of Theorem B. Note that
(h0v)

2 = zz′, 〈h0v〉 centralizes 〈h0〉 and [h1, h0v] = zz′ and so G0 is also a
splitting extension of the cyclic noncentral normal subgroup 〈h0v〉 of order 4
(with (h0v)

2 = zz′) by H ∼= Q8.
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Suppose now in addition that we have G/K ∼= E4. If a cyclic subgroup 〈h〉
of order 4 in H is normal in G, then acting with G/K on four quaternion sub-
groups in K = L, we see that G interchanges two quaternion subgroups which
contain 〈h〉 and so G interchanges also the other two quaternion subgroups
in K. But this implies that |G/K| = 2, a contradiction. Hence if Gi/K are
three subgroups of order 2 in G/K, i = 1, 2, 3, then each Gi normalizes ex-
actly one of the three cyclic subgroups of order 4 in H . This implies that that
there is an element w ∈ G−G0 such that w centralizes h1 (from the previous
paragraph), w2 = z′ and [h0, w] = z′ so that K〈w〉 is a splitting extension
of the cyclic noncentral normal subgroup 〈w〉 of order 4 (with w2 = z′) by
H ∼= Q8. We have

[h0, vw] = z′, [h1, vw] = z′, [h0h1, vw] = 1,

and so H normalizes 〈vw〉 with H ∩ 〈vw〉 = {1}. By the above, we must have
(vw)2 = z′ and so we have

z′ = (vw)2 = v2w2[v, w] = z′z′[v, w] = [v, w],

which implies that 〈v, w〉 ∼= Q8 with Z(〈v, w〉) = 〈z′〉. But H normalizes both
〈v〉 and 〈w〉 and soH1 = 〈v, w〉EG. The structure ofG is uniquely determined.
We verify that we have also H2 = 〈h1w, h0v〉 ∼= Q8 with Z(〈h1w, h0v〉) = 〈zz′〉
and [H1, H2] = {1}. Since H1 ∩ H2 = {1}, we have obtained the group
G = H1 ×H2 from part (d) of Theorem B.

Finally, in both cases of groups G in parts (c) and (d) of Theorem B,
we have Ω1(G) = G′ ∼= E4 and so if X is any subgroup in G of order ≥ 23

and if X contains only one involution, then X ∼= Q8 and if X contains more
than one involution, then X ≥ G′ and so X E G. Thus in both cases the
assumptions of Theorem B are satisfied.

(ii) Now assume that K > L and so |CG(H) : U | ≥ 2. Since G/L is
abelian, G/K is elementary abelian of order 2 or 4, and K/L is cyclic of order
≥ 2, we have to consider two subcases.

(ii1) G/K has a subgroup G0/K of order 2 such that G0/L is cyclic of
order ≥ 4 and either G = G0 or G = G0G1 with G0∩G1 = L and |G1 : L| = 2.
We set Z(H) = 〈z〉. Let g be an arbitrary element in G0−K so that 〈g〉 covers
G0/L. Since g2 ∈ Z(G), we have g2 ∈ CG(H). Because K/H is cyclic but
U ≤ CG(H) is noncyclic and CG(H)/〈z〉 ∼=K/H, we get CG(H) = 〈z〉 × 〈g2〉
with o(g2) ≥ 4 and so o(g) ≥ 8. Let 〈z′〉 = Ω1(〈g〉) be the socle of 〈g〉, where
U = 〈z, z′〉. We have

H0 = 〈h0〉 = H ∩Hg ∼= C4

is 〈g〉-invariant and so H0EG0. But h1 ∈ H −H0 inverts 〈h0〉 and so CG(h0)
covers G0/K. Therefore we may choose g ∈ CG(h0) − K so that we may
assume [g, h0] = 1. But H is not normal in G0 and so [h1, g] ∈ {z′, zz′}
and we may set [h1, g] = zǫz′, where ǫ = 0, 1. We have obtained the groups
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from part (e) of Theorem B which obviously satisfy the assumptions of that
theorem.

Continuing with this case, we assume that G = G0G1 with G0 ∩ G1 =
L = HU and |G1 : L| = 2. The group G1 is isomorphic to a group in part
(c) of Theorem B and so there is an element v ∈ G1 − L of order 4 such that
v2 = z′ and H normalizes but does not centralize 〈v〉 (see arguments in (i)).
On the other hand, g2 ∈ Z(G) and o(g2) ≥ 4 and so there is an element w of
order 4 in 〈g2〉. But then vw is an involution in G −K, contrary to Lemma
5.

(ii2) G = KG∗, where K ∩ G∗ = L and G∗/L is elementary abelian of
order 2 or 4. Also we have K = H × 〈a〉, where o(a) ≥ 4. Also we set
Z(H) = 〈z〉 and Ω1(〈a〉) = 〈z′〉 so that U = 〈z, z′〉. In any case, we have in
G∗ − L an element v of order 4 such that v2 = z′ and H normalizes but does
not centralize 〈v〉. We have Z(G) ≤ CG(H) = U〈a〉. If Z(G) > U , then there
is an element w of order 4 in 〈a〉 with w2 = z′ and [v, w] = 1. But then vw is
an involution in G−K, contrary to Lemma 5.

We have proved that Ω1(G) = Z(G) = U and so, in particular, o(a) = 4
and a 6∈ Z(G). This also gives that exp(G) = 4 (because ℧1(G) ≤ Z(G)).
Hence G is a special group of order 26 or 27. But G has no normal elementary
abelian subgroup of order 8 and so by the four-generator theorem we must
have d(G) ≤ 4. Since Φ(G) = U , we must have |G| = 26 and |G∗ : L| = 2.
We may set H = 〈h0, h1〉 so that [h0, v] = 1 and [h1, v] = z′. Set [a, v] = u,
where 1 6= u ∈ U . We compute:

(va)2 = v2a2u = z′z′u = u 6= 1,

(v(ah0))
2 = z′(zz′)u = uz and so u 6= z,

(v(ah1))
2 = z′(zz′)uz′ = u(zz′) and so u 6= zz′.

It follows that u = z′ and so [a, v] = z′ and Q = 〈a, v〉 ∼= Q8 which is
normalized but not centralized by H and Q∩H = {1}. The structure of G is
uniquely determined.

Set C = 〈h0, h1a〉. Since h2
0 = z, (h1a)

2 = zz′ and [h0, h1a] = z, we have
that C ∼= H2 and C ∩Q = 〈z′〉, where z′ is not a square in C. Also we have
[C,Q] = {1} and therefore we have obtained the group in part (f) of Theorem
B, which obviously satisfies the assumptions of that theorem, Our result is
completely proved.

4. Proof of Theorem C

This theorem will be proved with a series of Propositions 1 to 12.

Proposition 4.1. Let G be a p-group with a cyclic intersection of any
two distinct conjugate subgroups. Then each non-normal subgroup X in G
possesses a cyclic subgroup of index p.
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Proof. Let H be a maximal non-normal subgroup of G containing X .
Let L > H be such that |L : H | = p so that we have L E G. Since H is not
normal in G, there is g ∈ G−L such that Hg 6= H . Hence we have L = HHg

and |H : (H ∩Hg)| = p. By our assumption, H ∩Hg is cyclic and so H has a
cyclic subgroup of index p. Since X ≤ H , it follows that X also has a cyclic
subgroup of index p.

In the rest of the paper we assume:
(∗) G is a p-group with cyclic intersection of any two distinct conjugate

subgroups. Assume in addition that G has a maximal non-normal subgroup
H which is neither cyclic nor abelian of type (p, p) nor an ordinary quaternion
group. We set K = NG(H) so that H < K < G and K EG and let L/H be
a unique subgroup of order p in K/H , where L E G. This notation will be
fixed in the sequel.

Proposition 4.2. We have that K/H 6= {1} is either cyclic or p = 2
and K/H ∼= Q8. Also we have Ω1(K) ≤ L.

If K does not possess a G-invariant subgroup isomorphic to Ep2 , then G
is a 2-group of maximal class and order ≥ 25 and if |G| = 25, then G ∼= D32

or SD32 and all these groups satisfy our assumption (∗).
From now on we always assume that K has a G-invariant subgroup U

isomorphic to Ep2 and then we have L = HU with U0 = H ∩ U ∼= Cp and
G/U is Dedekindian.

Proof. Suppose that K/H has two distinct subgroupsK1/H and K2/H
of order p. Then K1 EG, K2 EG and so K1 ∩K2 = H EG, a contradiction.
Hence L/H is a unique subgroup of order p in K/H and so K/H is either
cyclic or generalized quaternion. On the other hand, K/H is Dedekindian
and so K/H 6= {1} is either cyclic or p = 2 and K/H ∼= Q8. In any case, we
have Ω1(K) ≤ L.

Assume that K does not have a G-invariant abelian subgroup of type
(p, p). By Lemma 1.1 in [1], we have p = 2 and K is a 2-group of maximal
class and order ≥ 24. In that case K/H ∼= Q8 cannot happen and so K/H
is cyclic. It follows that K ′ ≤ H and K/K ′ ∼= E4 and so K = L and K ′ is a
cyclic subgroup of index 2 in H and K ′EG. Since H has only two conjugates
in G, we have |G : K| = 2 and so |G| ≥ 25. Since H is not normal in G, we
have G′ > K ′ and so |G : G′| = 4. By a well known result of O. Taussky, G
is a 2-group of maximal class and order ≥ 25. However, Q32 does not satisfy
(∗) and so if |G| = 25, then G ∼= D32 or SD32 .

Conversely, let G be a 2-group of maximal class and order ≥ 25. Let Z be
a unique cyclic subgroup of index 2 in G. Let H be any non-normal subgroup
in G so that we have H 6≤ Z and set H0 = H ∩ Z E G with |H : H0| = 2.
Hence if g ∈ G is such that Hg 6= H , then we have H ∩Hg = H0 is cyclic.

In the sequel we shall always assume that K possesses a G-invariant
abelian subgroup U of type (p, p). Since Ω1(K) ≤ L, we have U ≤ L. On
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the other hand, G/U is Dedekindian and so U 6≤ H . We get L = HU with
U0 = H ∩ U ∼= Cp.

Proposition 4.3. Assuming that G is not a 2-group of maximal class,
then it follows that |G : K| = p and we may choose a G-invariant abelian
subgroup U of type (p, p) in L so that Cp

∼= U0 = H ∩ U ≤ Z(G). Also, G′

covers U/U0 and we have one of the following possibilities.

(a) We have

p = 2, H ∼= D8, Z(L) = U ≤ G′ and K = H ∗ CG(H) with

U ≤ CG(H) and H ∩ CG(H) = U0.

Also, the unique cyclic subgroup of order 4 in H is normal in G.
(b) We have H ∼= Mpn , n ≥ 3, ( if p = 2, then n ≥ 4 ) or H is abelian of

type (ps, p), s ≥ 2. Set H0 = Ω1(H) and then H0
∼= Ep2 , NG(H0) = K

and K/H0 is Dedekindian. There are two subcases:
(b1) If S = H0U is abelian, then SEG is elementary abelian of order

p3 and either H ∼= Mpn , n ≥ 3, ( if p = 2. then n ≥ 4 ) and in
this case we have U = Ω1(Z(L)) , L

′ = U0, and U ≤ G′,
or H is abelian of type (ps, p), s ≥ 2, and in this case L is
abelian of type (ps, p, p) with ℧1(L) = ℧1(H) ≥ U0.

(b2) If S = H0U is nonabelian, then p > 2, S ∼= S(p3) E G (the
nonabelian group of order p3 and exponent p) with Z(S) = U0.
We have

G = (Z ∗ S)〈e〉, where Cpm ∼= Z = CG(S)EG, m ≥ 2, S ∼= S(p3)EG,

Z ∩ S = Z(S) = U0, Z〈e〉 = 〈e〉 ∼= Cpm+1 or o(e) = p and Z〈e〉

is either abelian of type (pm, p) or Z〈e〉 ∼= Mpm+1 , where in any
case e induces on S an outer automorphism of order p (normal-
izing U and fusing the other p maximal subgroups of S). We
have Ep2

∼= G′ = U < S and G is a group of class 3. We have
Ω1(Z ∗ S) = S and if Z〈e〉 = 〈e〉 ∼= Cpm+1 , then Ω1(G) = S.
Conversely, groups G defined in (b2) satisfy our assumption (∗).

Proof. By Proposition 1, H possesses a cyclic subgroup of index p.
(i) First assume that H is a 2-group of maximal class. In that case

U0 = U ∩H = Z(H). If |H | > 23, then we have H/U0
∼= L/U ∼= D2n , n ≥ 3,

contrary to the fact that G/U is Dedekindian. It follows that H ∼= D8 and
because |L/U | = 4, we get L′ ≤ H ∩ U = U0 and so L′ = U0 ≤ Z(G). Then
we have L = H ∗ Z, where Z = CL(H), Z ∩H = U0 and Z ∼= C4 or E4.

Let 〈h〉 be a unique cyclic subgroup of order 4 in H and let x ∈ G−K so
that Hx 6= H . Since H ∩Hx is cyclic, we get H ∩Hx = 〈h〉 for all x ∈ G−K.
This gives 〈h〉 E G. But L/〈h〉 ∼= E4 and so L contains exactly two distinct
conjugates of H in G and this implies |G : K| = 2. Let t be an involution
in H − 〈h〉. Because U〈t〉 E G and H is not normal in G, we get for an



CLASSIFICATION OF FINITE p-GROUPS 121

x ∈ G − K, tx 6∈ H and therefore we have tx = tu with some u ∈ U − U0.
Hence [t, x] = u ∈ G′, which implies that G′ covers U/U0 and so in this case
U ≤ G′.

Assume for a moment that Z ∼= C4. In this case it is well known that
L ∼= D8 ∗ C4 contains a unique subgroup Q isomorphic to Q8 and so Q EG.
For any cyclic subgroup 〈v〉 of order 4 in Q we have U0 < 〈v〉 and U〈v〉EG.
But then

〈v〉 = (U〈v〉) ∩QEG,

and so G induces on Q only inner automorphisms of Q. We get G = Q ∗ C,
where C = CG(Q) and Q ∩ C = U0. Since Q does not centralize U , we have
U 6≤ C and so U ∩ C = U0 = Q′. On the other hand, we get

G′ = Q′C′ = U0C
′ ≤ C,

contrary to U ≤ G′. We have proved that Z ∼= E4 and Z = Z(L)EG.
Suppose that U 6= Z so that U∩Z = U0, S = UZ ∼= E8 and SEG. Acting

with an element x ∈ G−K on three subgroups of order 4 in S which contain
U0 ≤ Z(G), we see that Z EG, U EG and so also we have E4

∼= S ∩H EG.
But we know that a cyclic subgroup of order 4 in H is normal in G and so we
get H EG, a contradiction. We have proved that U = Z = Z(L).

Let t be any involution in H . Since U〈t〉EG and H EK, it follows that

(U〈t〉) ∩H = 〈t, U0〉EK.

Thus, each element in K induces on H only inner automorphisms of H . It
follows

K = H ∗ CG(H) with U ≤ CG(H) = CK(H) and H ∩ CG(H) = U0.

(ii) Now suppose that H ∼= Mpn , n ≥ 3, (where in case p = 2 we have
n ≥ 4) or H is abelian of type (ps, p), s ≥ 2. Set H0 = Ω1(H) ∼= Ep2 so
that H0 E K. It follows that NG(H0) = K and K/H0 is Dedekindian. Set
S = H0U EG. We have

L/U ∼= H/U0, where H ′ ≤ U0 ≤ Z(H), and so L′ ≤ H ∩ U = U0.

If L is nonabelian, then L′ = U0 ≤ Z(G). In that case we act with G/K
on p+1 subgroups of order p2 in S which contain U0 ≤ Z(G), where U is the
only one of them which is normal in G and all p other ones are fused with
G/K and so we get |G : K| = p. Also, if h0 ∈ H0 − U0 and x ∈ G−K, then
hx
0 = h0u with u ∈ U −U0. Hence G

′ covers U/U0 and so we have in this case
U ≤ G′.

Now assume that L is abelian so that L is of type (ps, p, p). If U0 ≤ Z(G),
then with the same arguments as above, we get |G : K| = p and G′ covers
U/U0. Now suppose that U0 6≤ Z(G). Then there is a subgroup U1 of order p
in U such that U = U0 × U1 and U1 ≤ Z(G). We have

℧1(L) = ℧1(H)EG and ℧1(H) 6= {1} is cyclic .
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Let H1 be the subgroup of order p in ℧1(H) so that we get H1 ≤ Z(G). Then
we replace U with

Ep2
∼= U∗ = U1 ×H1 ≤ Z(G),

where

U∗
0 = U∗ ∩H = H1 ≤ Z(G)

and set S∗ = H0U
∗. Now, working with U∗, U∗

0 ≤ Z(G) and S∗ = H0U
∗

(instead of U , U0 and S), we get with the same arguments as above that
|G : K| = p and that G′ covers U∗/U∗

0 . We write again U and U0 instead of U∗

and U∗
0 , respectively, so that we may always assume that U0 = U ∩H ≤ Z(G).

(ii1) Assume that S = H0U is abelian so that S ∼= Ep3 and S E G.
Suppose in addition that H ∼= Mpn , n ≥ 3, (where in case p = 2 we have
n ≥ 4). Then we have L′ = H ′ = U0 ≤ Z(G) and U ≤ G′. Let 〈a〉 be
a cyclic subgroup of index p in H so that 〈a〉 covers H/H0 (and L/S) and
〈a〉 ∩H0 = U0 = 〈z〉. Let t ∈ H0 −U0 so that we may set [a, t] = z. Suppose,
by way of contradiction, that U 6≤ Z(L). In that case, |L : CL(U)| = p and so
CL(U) = 〈ap〉S. We may choose an element u ∈ U − U0 so that [a, u] = z−1.
Then we get [a, ut] = z−1z = 1 so that we have

Z(L) = 〈ap〉 × 〈ut〉 and Ep2
∼= Ω1(Z(L)) = 〈ut, z〉EG.

But we know that Cp
∼= G/K acts transitively on p maximal subgroups of S

which contain U0 ≤ Z(G) and which are distinct from U . Since 〈ut, z〉 6= U ,
we have a contradiction. Thus we have proved that U ≤ Z(L) and so U =
Ω1(Z(L)).

Now assume that H is abelian of type (ps, p), s ≥ 2. Suppose, by way
of contradiction, that L is nonabelian. In that case we have L′ = U0 ≤ Z(G)
and CL(H) = H . By Lemma 1.1 in [1], we get

|L| = p|Z(L)||L′| and so |L : Z(L)| = p2.

Since Z(L) < H , it follows that Z(L) is a maximal subgroup of H . If Z(L) ≥
H0, then H0 = Ω1(Z(L)), which implies that H0 E G, a contradiction. It
follows that Z(L) is a cyclic subgroup of index p in H and so Z(L) covers
H/H0 and L/S. Hence we get that L = Z(L)S is abelian, a contradiction. We
have proved that L is abelian of type (ps, p, p). Then we get ℧1(L) = ℧1(H)
and ℧1(H) is cyclic of order ≥ p. Let H1 be the subgroup of order p in ℧1(H)
so that H1 ≤ Z(G) and H1 ≤ H0. If H1 6= U0, then H0 = H1 × U0 ≤ Z(G),
contrary to NG(H0) = K. Hence we have H1 = U0 and so ℧1(L) = ℧1(H) ≥
U0.

(ii2) Assume that S = H0U is nonabelian. If p = 2, then S ∼= D8. But
U and H0 are the only two four-subgroups in S and since U E G, it follows
that H0 E G, a contradiction. Hence we have p > 2 and S ∼= S(p3) (the
nonabelian group of order p3 and exponent p) with S′ = Z(S) = U0. We
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know that U ≤ G′. On the other hand, G/U is Dedekindian and so abelian
which implies that G′ ≤ U and therefore we have G′ = U < S E G. Since
U = G′ 6≤ Z(S), it follows that G is of class 3. Also, U is a unique normal
abelian subgroup of type (p, p) in G. Indeed, if V ∼= Ep2 , V EG and V 6= U ,
then the fact that G/V is abelian Dedekindian implies that G′ ≤ V ∩U < U ,
a contradiction. Set Z = CG(S) so that ZEG and Z∩S = U0. We know that
Z does not have a G-invariant abelian subgroup of type (p, p) and so Lemma
1.4 in [1] implies that Z ∼= Cpm , m ≥ 1, is cyclic and so Ω1(Z ∗ S) = S. If
Z ∗S = G, then G′ = U0

∼= Cp, a contradiction. Hence we have Z ∗S < G. On
the other hand, a Sylow p-subgroup of Aut(S) is isomorphic to S(p3) and so
G/Z ∼= S(p3) and |G : (Z ∗ S)| = p. We know that |G| ≥ p5 because |H | ≥ p3

and so L = HU(< G) is of order ≥ p4. This implies that we have m ≥ 2. Let
e be an element in G− (Z ∗S) so that e fixes U and fuses the other p maximal
subgroups of S. Since G/Z ∼= S(p3) is of exponent p, we have ep ∈ Z. If Z〈e〉
is cyclic, then we have

Z〈e〉 = 〈e〉 ∼= Cpm+1 .

In this case, G/S is cyclic of order ≥ p2 and Ω1(Z ∗ S) = S together with
|Z| ≥ p2 implies Ω1(G) = S. If Z〈e〉 is noncyclic, then Z〈e〉 splits over Z
and we may assume that o(e) = p. In this case Z〈e〉 is either abelian of type
(pm, p) or Z〈e〉 ∼= Mpm+1 . We have obtained the groups stated in part (b2) of
our proposition.

It remains to be proved that these groups G satisfy our condition (∗).
Let X be any noncyclic and non-normal subgroup of order ≥ p3 in G. First
assume that |X∩S| = p2 so that we haveX∩S = Si for some i ∈ {1, 2, . . . , p},
where {S1, S2, . . . , Sp} is the set of maximal subgroups of S distinct from U
which are acted upon transitively by G/(Z ∗ S). Since Ω1(Z ∗ S) = S, we
have Ω1(X ∩ Z ∗ S) = Si and this implies that X ≤ Z ∗ S. Since X ≥ Si >
U0 = (Z ∗ S)′, it follows that NG(X) = NG(Si) = Z ∗ S and then for each
g ∈ G− (Z ∗ S), the intersection X ∩Xg is cyclic.

Now assume that |X ∩ S| = p. (If |X ∩ S| = 1, then X ∩ (Z ∗ S) = {1}
and then |X | ≤ p, a contradiction.) In this case, X0 = X ∩ (Z ∗ S) is
cyclic of order ≥ p2, X 6≤ Z ∗ S and so |X : X0| = p. On the other hand,
℧1(Z ∗ S) = ℧1(Z) ≥ U0 and so X0 ≥ U0. We get NG(X0) ≥ 〈Z ∗ S,X〉 = G.
Hence for each g ∈ G with Xg 6= X , we see that X ∩Xg = X0 is cyclic.

Finally, ZSi
∼= Cpm × Cp, m ≥ 2, is not normal in G but Z E G and so

our condition (∗) is satisfied. Proposition 3 is completely proved.

Proposition 4.4. If U ∼= Ep2 is a G-invariant subgroup contained in
K = NG(H) such that U0 = H ∩ U ≤ Z(G), then we have G′ ≤ U . Hence G′

is elementary abelian of order ≤ p2 and so G is of class at most 3.

Proof. Assume that G/U is nonabelian so that we have p = 2 and G/U
is Hamiltonian. Let Q/U be any ordinary quaternion subgroup in G/U and
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we set

Q0/U = (Q/U)′ = Z(Q/U) = (G/U)′.

We have |Q : CQ(U)| ≤ 2 and so Q0 < CQ(U) and let y ∈ CQ(U)−Q0 so that
y2 ∈ Q0 − U . Hence U〈y〉 is an abelian maximal subgroup in Q. By lemma
1.1 in [1], we have

25 = |Q| = 2|Q′||Z(Q)|, where Z(Q) ≤ Q0 and Q0
∼= E8 or Q0

∼= C4 × C2.

If Q′ = Q0, then |Q : Q′| = 4 and so by a result of O. Taussky, Q is of
maximal class and order 25, contrary to U EQ. Thus, we have Q′ < Q0 and
Q′ covers Q0/Q.

(i) First suppose that Q0
∼= E8. We know that G/Q0 is elementary abelian

and so in this case exp(G) = 4. In particular, we must have (according to
Proposition 3) H ∼= D8 or C4 × C2. Consider again an abelian maximal
subgroup U × 〈y〉 of Q, where 〈y〉 ∼= C4 and y2 ∈ Q0 −U . Since U × 〈y〉EG,
we get y2 ∈ Z(G). Hence y2 is an involution in K and since Ω1(K) ≤ L (see
Propositions 2 and 3), we get Q0 = 〈y2〉 × U ≤ L. Set H0 = Q0 ∩ H ∼= E4,
where H0 > U0 and NG(H0) = K. Now act with G/K on three subgroups of
order 4 in Q0 which contain U0 ≤ Z(G). We see that only U is normal in G
and H0 6= Hg

0 with some g ∈ G−K. But y2 ∈ Q0 − U and y2 ∈ Z(G) and so
〈y2, U0〉EG, a contradiction.

(ii) We have proved that Q0
∼= C4×C2 so that all elements in Q0−U are

of order 4 and all elements in Q − Q0 are of order 8. Since Q′ covers Q0/U
and Q′ < Q0, we get Q′ ∼= C4. On the other hand, Ω2(Q) = Q0

∼= C4 × C2

and so Lemma 42.1 in [1] implies that Q can be defined with:

Q = 〈a, b | a8 = b8 = 1, a4 = b4 = z, ab = a−1〉,

where

Q′ = 〈a2〉 ∼= C4, Z(Q) = 〈b2〉 ∼= C4, Ω2(Q) = 〈a2, b2〉 = Q0
∼= C4 × C2,

Ω1(Q) = U = 〈z, a2b2〉 ∼= E4, U0 = 〈z〉,

and A = 〈a, b2〉 ∼= C8×C2 is a unique abelian maximal subgroup of Q. Also, it
is easy to see that 〈a〉 is a characteristic subgroup in Q. Indeed, if θ ∈ Aut(Q),
then Aθ = A and so bθ ∈ Q − A. Suppose that 〈a〉θ 6= 〈a〉. Then we have
〈a〉θ = 〈ab2〉 and we get

(ab2)b
θ

= a−1b−2 = ab
θ

(b2)b
θ

= a−1b2

and so we get b4 = 1, a contradiction.

(iii) We know from Proposition 3 that G′ covers U/U0 and since G/Q0 is
elementary abelian (and so exp(G) = 8), we have G′ ≤ Q0. But Q′ = 〈a2〉
with 〈a4〉 = 〈z〉 = U0 and so we get G′ = Q0. In particular, we have G > Q
and |G| ≥ 26.
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Since CQ(U) = A = 〈a, b2〉 and |Q : A| = 2, we see that C = CG(U)
covers G/Q, where C ∩Q = A and C > A. On the other hand, C/U does not
possess an ordinary quaternion subgroup and so C/U is abelian and therefore
C is of class ≤ 2 with C′ ≤ U ≤ Z(C). Indeed, if Q1/U ∼= Q8 and Q1 ≤ C,
then by (ii) (since Q/U was an arbitrary ordinary quaternion subgroup in
G/U), we have U 6≤ Z(Q1) which is not the case. For any x, y ∈ C, we
have [x2, y] = [x, y]2 = 1 and so we have ℧1(C) ≤ Z(C). Since a ∈ C and
a2 ∈ Q0 − U , it follows that Q0 ≤ Z(C) and so C = CG(U) = CG(Q0). In
particular, we get CG(b

2) ≥ 〈Q,C〉 = G which shows that b2 ∈ Z(G).

(iv) Now we show that CG(Q) = Z(Q) = 〈b2〉 = Z(G). Indeed, set
R = CG(Q), where R ∩ Q = Z(Q) = 〈b2〉 ≤ Z(G) and b4 = z with 〈z〉 = U0.
First suppose that R has a G-invariant four-subgroup U1. If U1 > 〈z〉, then
set U1 = U∗ and if U1 6≥ 〈z〉, then considering E8

∼= U1 × 〈z〉, we may choose
in U1 × 〈z〉 a G-invariant four-subgroup U∗ such that U∗ > 〈z〉 and we have
in any case U∗ ∩ U = 〈z〉 = U∗ ∩ Q. Since U∗ ∩ H = 〈z〉 = U0 ≤ Z(G)
and |(HU∗) : H | = 2, we have HU∗ ≤ K = NG(H) and so L = HU∗.
By Proposition 3 (using U∗ instead of U), we get that G′ covers U∗/U0,
contrary to to the fact that G′ = Q0. Hence R does not have a G-invariant
four-subgroup. By Lemma 1.4 in [1], R is either cyclic or R is of maximal
class. But 〈b2〉 ∼= C4 and 〈b2〉 ≤ Z(R) and so R must be cyclic. Assume that
R > 〈b2〉 which together with exp(G) = 8 gives R ∼= C8. We may choose a
generator r of R so that r2 = b−2 and then i = rb is an involution in G −Q
since i2 = (rb)2 = r2b2 = b−2b2 = 1. We have

ai = arb = ab = a−1 and so [a, i] = a−2 6∈ U,

contrary to the fact that G/U is Hamiltonian, where for each x ∈ G with
x2 ∈ U we must have [G, x] ≤ U .

(v) We study the automorphisms of Q induced on Q by elements of C,
where C ∩Q = A. Now, A induces on Q the inner automorphisms given by:

ba = a−1ba = b(b−1a−1b)a = ba2, ba
2

= (ba2)a = ba4 = bz.

Let x ∈ C − A so that x centralizes Q0 = 〈a2, b2〉 and x normalizes 〈a〉
(because 〈a〉 is characteristic in Q ) which gives ax = azǫ , where ǫ ∈ {0, 1}.
Note that bx = by with some y ∈ A = 〈a, b2〉. But x normalizes (centralizes )
Q0 = 〈a2, b2〉 ∼= C4 × C2 and so x must also normalize 〈a2, b〉 ∼= M16 and so
y ∈ 〈a2, b2〉. Then we get (noting that b2 ∈ Z(G)):

b2 = (b2)x = (bx)2 = (by)2 = byby = b2(b−1yb)y = b2yby,

and so we have yb = y−1 and this implies y ∈ 〈a2〉.

(vi) We have proved that each element x ∈ C − A induces on Q an
automorphism given by:

bx = by, where y ∈ 〈a2〉 and ax = az.
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Indeed, if ǫ = 0, i.e., ax = a, then x would induce on Q an inner automor-

phism, contrary to CG(Q) = Z(Q). Since bx
2

= by2 and ax
2

= a, we have
x2 ∈ Q. Setting G0 = 〈x〉Q, where |G0 : Q| = 2, we see that G0 = G and so
G′ = Q′ = 〈a2〉 ∼= C4 because

[b, x] = y ∈ 〈a2〉 and [a, x] = z = a4

and so G/〈a2〉 is abelian. On the other hand, we know that G′ = Q0. This is
a final contradiction and our proposition is proved.

Proposition 4.5. Suppose that we have the case (a) of Proposition 3,
where H ∼= D8. Then K/H is cyclic and we have the following possibilities:

(a)

G = (〈a〉 × 〈b〉)〈i〉, where 〈a〉 ∼= 〈b〉 ∼= C4

and i is an involution with ai = a−1 and bi = b−1 or bi = ba2b2.
(b) G is a unique group of order 25 and class 3 with Ω2(G) ∼= C2 × D8

which is defined in Theorem 52.2(a) in [2] for n = 2.
(c)

G = (〈h〉 × 〈g〉)〈i〉, where 〈h〉 ∼= C4, 〈g〉 ∼= C2m , m ≥ 3,

and i is an involution with hi = h−1 and gi = g1+2m−1

. Here we have

|G| = 2m+3, G′ = 〈h2, g2
m−1

〉 ∼= E4, G
′ ≤ Z(G), Z(G) = 〈h2〉 × 〈g2〉 ∼=

C2 × C2m−1 . Finally, 〈h, i〉 ∼= D8 and 〈g, i〉 ∼= M2m+1 are not normal
in G.

(d) G is a special group of order 26 given with:

G = (H × 〈a〉)〈g〉, where H = 〈h, i | h4 = i2 = 1, hi = h−1, h2 = z〉 ∼= D8,

〈a〉 ∼= C4, a2 = z′, g2 = zz′, [g, h] = 1, [g, i] = [g, a] = z′.

We have G′ = 〈z, z′〉 ∼= E4, 〈h, i〉 ∼= D8 is not normal in G but 〈h〉EG,
and 〈i, a〉 ∼= C2 × C4 is not normal in G but 〈a〉EG.

Conversely, all the above groups satisfy our assumption (∗).

Proof. By Proposition 4, we have G′ = U ∼= E4.

(i) First assume K/H ∼= Q8 so that we have |G| = 27. We set C =
CG(H) = CK(H) so that we have K = H ∗ C with U ≤ C, H ∩ C = U0

and C/U0
∼= Q8. Let C1/U0 and C2/U0 be two distinct cyclic subgroups of

order 4 in C/U0 so that C1 and C2 are abelian and C1 ∩ C2 = U . It follows
that U ≤ Z(C) and so we get U = Z(K) and |C′| = 2 and therefore we
have U = U0 × C′, where we set U0 = 〈z〉 and C′ = 〈z′〉. Also we have
C = CG(L) and C E G, C′ E G , which implies U ≤ Z(G). Thus we get
U = Z(G) = G′ and for any x, y ∈ G we have [x2, y] = [x, y]2 = 1 and
therefore ℧1(G) ≤ Z(G) and so U = Φ(G), which shows that G is special. Set
H = 〈h, t | h4 = t2 = 1, ht = h−1〉 ∼= D8 and we have 〈h〉 E G (Proposition
3(a)).
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(i1) Suppose that C splits over U0 and so we have in this case C = 〈z〉×C0,
where C0 = 〈c1, c2〉 ∼= Q8 and C′

0 = 〈z′〉. Since 〈t〉×C0 has no cyclic subgroup
of index 2, Proposition 1 implies that 〈t〉 × C0 EG. But then we have

C0 = C ∩ (〈t〉 × C0)EG

and each element in G induces on C0 an inner automorphism (otherwise,
a cyclic subgroup of order 4 in C0 would be contained in G′, contrary to
Proposition 4). This implies

G = C0 ∗G0,

where

G0 = CG(C0), C0 ∩G0 = 〈z′〉 = Z(C0), G0 ∩K = L, K = H × C0,

and G0 is special of order 25 with Z(G0) = U . Since 〈h〉 E G and ht = h−1,
there is g ∈ G0 − L such that [g, h] = 1. But 〈t〉U EG and H is not normal
in G, and so we get tg = tu with u ∈ {z′, zz′}. However, if tg = tzz′, then
we replace g with g′ = gh (noting that g′ ∈ G0 − L and g′ also centralizes h
) and get

tg
′

= (tzz′)h = (tz)zz′ = tz′.

Hence writing again g instead of g′, we may assume from the start that tg = tz′

and so [t, g] = z′. We have g2 ∈ U and so we have g2 ∈ {1, z′, zz′, z}.
If g2 = 1, then [g, t] = z′ gives that 〈g, t〉 ∼= D8 with 〈g, t〉′ = 〈z′〉,

where the unique cyclic subgroup 〈gt〉 of order 4 in 〈g, t〉 must be normal
in G. Indeed, if 〈g, t〉 E G, then 〈gt〉 E G, and if 〈g, t〉 is not normal in
G, then Proposition 3(a) implies that 〈gt〉 E G. However, [gt, h] = z but
(gt)2 = [g, t] = z′ 6= z and so 〈gt〉 is not normal in G, a contradiction. This
kind of argument we shall use here several times.

If g2 = z′, then c21 = z′ together with [g, c1] = 1 implies that gc1 is an invo-
lution. In that case, [t, gc1] = z′ shows that 〈t, gc1〉 ∼= D8 with 〈t, gc1〉

′ = 〈z′〉.
But then C4

∼= 〈tgc1〉 is not normal in G since [tgc1, h] = z, a contradiction.
If g2 = zz′, then (gh)2 = z′ = c21 together with [gh, c1] = 1 implies that

ghc1 is an involution. In that case, [t, ghc1] = z′z shows that 〈t, ghc1〉 ∼= D8

with 〈t, ghc1〉
′ = 〈z′z〉. But then C4

∼= 〈tghc1〉 is not normal in G since
[tghc1, g] = z′, a contradiction.

If g2 = z, then gh is an involution. In this case, [t, gh] = z′z shows that
〈t, gh〉 ∼= D8 with 〈t, gh〉′ = 〈z′z〉. But then C4

∼= 〈tgh〉 is not normal in G
since [tgh, g] = z′, a contradiction.

(i2) We have proved that C does not split over U0. Since C is two-
generator with C′ = 〈z′〉, it follows that C is minimal nonabelian. We have
Ω1(C) = U ∼= E4 and so C is metacyclic. Hence we may choose generators
c1, c2 of C so that we have

H2
∼= C = 〈c1, c2 | c41 = c42 = 1, cc21 = c−1

1 〉,
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where c21 = z′, c22 = zz′, z is not a square in C.
Since 〈h〉 E G and ht = h−1, it follows that CG(h) covers G/K. Let

g ∈ CG(h)−K so that [h, g] = 1 and g2 ∈ 〈z, z′〉. Because 〈t〉U EG, 〈h〉EG
and H is not normal in G, it follows that tg = tu with u ∈ U −U0. Replacing
g with gh, if necessary, we may assume from the start that tg = tz′ and so we
have [g, t] = z′.

If g normalizes 〈c1〉, then replacing g with g′ = gc2 (if necessary), we
may assume that g′ centralizes 〈c1〉 (and we note that g′ acts the same way
on H as g does). In this case we write again g instead of g′ and we have
[g, c1] = zǫ with ǫ = 0. If g does not normalize 〈c1〉, then we have [g, c1] = zz′

or [g, c1] = z. If in this case [g, c1] = zz′, then again replacing g with g′ = gc2,
we get

[g′, c1] = [gc2, c1] = (zz′)z′ = z.

Hence writing again g instead of g′, we may assume from the start that
[g, c1] = zǫ with ǫ = 1. Hence we have in any case [g, c1] = zǫ, where
ǫ ∈ {0, 1}.

If g2 = 1, then [g, t] = z′ shows that 〈g, t〉 ∼= D8 with 〈g, t〉′ = 〈z′〉. But
then C4

∼= 〈gt〉 is not normal in G since [gt, h] = z, a contradiction.
Assume that g2 = z′. If ǫ = 0, then we have [g, c1] = 1 and so gc1 is an

involution. Then [t, gc1] = z′ shows that 〈t, gc1〉 ∼= D8 with 〈t, gc1〉
′ = 〈z′〉.

But then C4
∼= 〈tgc1〉 is not normal in G since [tgc1, h] = z, a contradiction.

Thus we must have ǫ = 1 and so we get [g, c1] = z. We compute

(ghc1)
2 = z′z · z′ · [c1, gh] = zz = 1,

and so ghc1 is an involution. Then [t, ghc1] = z′z shows that 〈t, ghc1〉 ∼= D8

with 〈t, ghc1〉
′ = 〈z′z〉. But then C4

∼= 〈tghc1〉 is not normal in G since
[tghc1, h] = z, a contradiction.

If g2 = z, then gh is an involution. Then [t, gh] = z′z shows that 〈t, gh〉 ∼=
D8 with 〈t, gh〉′ = 〈z′z〉. But then C4

∼= 〈tgh〉 is not normal in G since
[tgh, g] = z′, a contradiction.

Suppose that g2 = zz′. Assume in addition that ǫ = 0 and so [g, c1] = 1.
In this case we have

(ghc1)
2 = zz′ · z · z′ = 1

and so ghc1 is an involution. Then [t, ghc1] = z′z shows that 〈t, ghc1〉 ∼= D8

with 〈t, ghc1〉
′ = 〈z′z〉. But then C4

∼= 〈tghc1〉 is not normal in G since
[tghc1, g] = z′, a contradiction. Hence we must have ǫ = 1 and so [g, c1] = z.
In this case, gc1 is an involution since (gc1)

2 = zz′ ·z′ ·z = 1. Then [t, gc1] = z′

shows that 〈t, gc1〉 ∼= D8 with 〈t, gc1〉
′ = 〈z′〉. But then C4

∼= 〈tgc1〉 is not
normal in G since [tgc1, g] = z′z, a contradiction. We have finally proved that
here K/H ∼= Q8 is not possible.
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(ii) Now assume that K/H 6= {1} is cyclic. Here we have K = H × 〈a〉
with o(a) = 2n, n ≥ 1, where we set

Ω1(〈a〉) = 〈z′〉, U0 = 〈z〉 = Z(H),

〈h, h′ | h4 = (h′)2 = 1, [h, h′] = z, z2 = 1〉 ∼= D8, U = 〈z, z′〉 = G′.

Since 〈h〉EG (Proposition 3(a)) and hh′

= h−1, it follows that CG(h) covers
G/H ∼= C2. Let g ∈ CG(h) − K so that we have (h′)g = h′u for some
u ∈ U − U0 (noting that 〈h〉EG and 〈U〈h′〉〉EG but H is not normal in G)
and so replacing g with gh (if necessary), we may assume from the start that
(h′)g = h′z′ and so we have [g, h′] = z′.

(ii1) Assume that K = L and z′ ∈ Z(G). In this case we have Z(K) =
Z(L) = U = Z(G) and ℧1(G) ≤ Z(G). Hence G is a special group of order 25.
In particular, all elements in G−K are of order ≤ 4. Suppose that there is an
involution t ∈ CG(h) −K. Then we have [h′, t] = u ∈ U − 〈z〉 and therefore
〈h′, t〉 ∼= D8 with 〈h′, t〉′ = 〈u〉. Then we must have C4

∼= 〈h′t〉 E G. On
the other hand, [h′t, h] = z, a contradiction. Hence there is no involution in
CG(h)−K. If g2 = z, then hg is an involution in CG(h)−K, a contradiction.
Hence we have

g2 ∈ {z′, zz′} and 〈h, g〉 = 〈h〉 × 〈g〉 ∼= C4 × C4.

We set h′ = i so that G = (〈h〉× 〈g〉)〈i〉 with hi = h−1 and gi = gz′. We have
obtained two groups of order 25 stated in part (a) of our proposition, which
obviously satisfy our assumption (∗).

(ii2) Assume that K = L and z′ 6∈ Z(G). Then we have [g, z′] = z.
Suppose that there is an element y ∈ G −K of order ≤ 4. We claim that in
this case we have y2 ∈ U . Indeed, if y2 is a noncentral involution in K = L,
then y2 inverts 〈h〉 and y normalizes 〈h〉 (since 〈h〉EG), a contradiction. Hence
we have y2 ∈ U and so y2 ∈ 〈z〉 since [y, z′] = z. We get D = 〈y, U〉 ∼= D8

and D EG with Z(D) = 〈z〉 = D′. Since G′ = U is elementary abelian, each
element in G induces an inner automorphism onD. Hence we haveG = D∗C,
where C = CG(D) and D ∩ C = 〈z〉. Since |C| = 23 and z ∈ Z(C), we have
C′ ≤ 〈z〉. This gives that G′ = 〈z〉, contrary to Proposition 3(a). We have
proved that all elements in G − K are of order 8 and so Ω2(G) ∼= C2 × D8.
Since g centralizes 〈h〉, we must have 〈g2〉 = 〈h〉 and so we may assume that
g2 = h. Indeed, if 〈g2〉 = 〈hz′〉, then g would centralize h and hz′ and so
g would centralize z′, a contradiction. We have obtained a unique group G
of order 25 and class 3 with Ω2(G) ∼= C2 × D8 which is defined in Theorem
52.2(a) in [2] for n = 2 (stated in part (b) of our proposition). This group
obviously satisfies our assumption (∗).

(ii3) Assume that K > L, i.e., o(a) = 2n, n ≥ 2. Then there is an element
w ∈ 〈a〉 of order 4 so that w2 = z′. We have

〈z, w〉 = 〈z〉 × 〈w〉 EG and so ℧1(〈z〉 × 〈w〉) = 〈z′〉EG,
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which implies that G′ = U ≤ Z(G). We have also ℧1(G) ≤ Z(G). Since G/L
is abelian and K/L 6= {1} is cyclic, we have here two subcases.

(ii3a) Suppose that G/L is cyclic and so if g ∈ CG(h)−K, then 〈g〉 covers
G/L, [h′, g] = z′ with 〈z′〉 = Ω1(〈g

2〉) and o(g) = 2m, m ≥ 3. Hence we have
〈g, h′〉 ∼= M2m+1 . Setting h′ = i, we get

G = (〈h〉 × 〈g〉)〈i〉,

where

〈h〉 ∼= C4, 〈g〉 ∼= C2m , m ≥ 3, hi = h−1, gi = g1+2m−1

.

We have obtained the groups stated in part (c) of our proposition. Conversely,
let X be a non-normal and noncyclic subgroup of order ≥ 23 in G. We see that
A = 〈h〉×〈g〉 is an abelian maximal subgroup in G. If X∩A is noncyclic, then
X∩A ≥ 〈z, z′〉 = G′ and so XEG, a contradiction. Hence X∩A is cyclic and
thenX 6≤ A so that |X : (X∩A)| = 2. It follows that NG(X∩A) ≥ 〈A,X〉 = G
and so X ∩AEG. Thus, if g ∈ G is such that Xg 6= X , then X ∩Xg = X ∩A
is cyclic. Finally, 〈h, i〉 ∼= D8 and [i, g] = z′ 6∈ 〈h, i〉 and so 〈h, i〉 is not normal
in G. Hence our groups satisfy the assumption (∗).

(ii3b) G/L is noncyclic abelian so that G/L splits over K/L, where K =
H × 〈a〉 with o(a) = 2n, n ≥ 2, and Ω1(〈a〉) = 〈z′〉. We have G = KG0,
where K ∩ G0 = L and |G0 : L| = 2. Since G′ = U = 〈z, z′〉 ≤ Z(G) and
℧1(G) ≤ Z(G)), we have that G0 is one of two groups defined in part (a)
of this proposition, where there is g ∈ G0 − L such that 〈g, h〉 = 〈g〉 × 〈h〉,
[h′, g] = z′ and g2 = zǫz′ with ǫ = 0, 1.

Suppose that ǫ = 0 so that g2 = z′ and so h′ inverts each element in 〈g, h〉.
Consider the subgroup H1 = 〈h′, g〉 ∼= D8 with Z(〈h′, g〉) = 〈z′〉. If H1 E G,
then 〈g〉EG and if H1 is not normal in G, then Proposition 3(a) shows that
also 〈g〉 EG. Hence in any case we have 〈g〉EG. Since 〈a〉 centralizes h′, it
follows that 〈a〉 × 〈z〉 normalizes H1. On the other hand, [h, h′] = z and so
〈h〉 does not normalize H1 a so we get

NG(H1) = H1(〈a〉 × 〈z〉).

If w is an element of order 4 in 〈a〉, then we have w2 = z′ and so (H1〈w〉)/H1

and (H1〈z〉)/H1 are two distinct subgroups of order 2 in NG(H1)/H1, contrary
to Proposition 2. We have proved that we must have ǫ = 1 and so g2 = zz′.

Assume that there is an element w ∈ 〈a〉 of order 4 such that w2 = z′ and
[w, g] = 1. Then we have

(wg)2 = w2g2 = z′ · zz′ = z, [wg, h] = 1,

and so hwg is an involution. From [h′, hwg] = zz′ follows that

〈h′, hwg〉 ∼= D8 with Z(〈h′, hwg〉) = 〈zz′〉.
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But then C4
∼= 〈h′hwg〉 is not normal in G since [h′hwg, h] = z, a contra-

diction. We have proved that there is no such an element w ∈ 〈a〉. This
implies

n = 2, o(a) = 4, exp(G) = 4, a2 = z′, [a, g] 6= 1, Z(G) = U = G′ = Φ(G)

and so G is special of order 26. It remains to determine [a, g] 6= 1.
Suppose that [a, g] = z. Then we get (ag)2 = z′ ·zz′ ·z = 1 and so ag is an

involution. Since [h′, ag] = z′, we have 〈h′, ag〉 ∼= D8 with Z(〈h′, ag〉) = 〈z′〉.
But then C4

∼= 〈h′ag〉 is not normal in G since [h′ag, h] = z, a contradiction.
Suppose that [a, g] = zz′. Then we get (gah′)2 = zz′ · z′ · zz′ · z′ = 1

and so gah′ is an involution. Since [gah′, h′] = z′, we have 〈gah′, h′〉 ∼=
D8 with Z(〈gah′, h′〉) = 〈z′〉. But then C4

∼= 〈gah′h′〉 = 〈ga〉 is not normal in
G since [ga, g] = zz′, a contradiction.

Hence we must have [a, g] = z′ and so the structure of G is uniquely
determined. We set h′ = i and so we get a special group G of order 26 given
with:

G = (H × 〈a〉)〈g〉, where H = 〈h, i | h4 = i2 = 1, hi = h−1, h2 = z〉 ∼= D8,

〈a〉 ∼= C4, a2 = z′, g2 = zz′, [g, h] = 1, [g, i] = [g, a] = z′.

We have G′ = 〈z, z′〉 ∼= E4, 〈h, i〉 ∼= D8 is not normal in G but 〈h〉 E G, and
〈i, a〉 ∼= C2 ×C4 is not normal in G but 〈a〉EG. We have obtained the group
stated in part (d) of our proposition.

It remains to be proved that this group G satisfies our assumption (∗).
We first show that there are no involutions in G −K, where K = H × 〈a〉.
Indeed, suppose that ghαiβaγ with α, β, γ ∈ {0, 1} is an involution. Then we
get

1 = (ghαiβaγ)2 = zz′ · zα · (z′)γ · (z′)β · (z′)γ · zαβ = z1+α+αβ(z′)1+β ,

which implies β = 1 and then we get z = 1, a contradiction. We have proved
that Ω1(G) = L = HU , where U = 〈z, z′〉. There are exactly two conjugate
classes of noncentral involutions in G with representatives i (4 conjugates)
and hi (4 conjugates) and we have

CG(i) = 〈i, z〉 × 〈a〉 ∼= E4 × C4 and CG(hi) = 〈hi, z〉 × 〈a〉 ∼= E4 × C4.

Let X be a noncyclic non-normal subgroup of order ≥ 23 which contains
more than one involution (so that X ∼= Q8 is excluded). Then we have
G′ = U = 〈z, z′〉 6≤ X and |X | = 23 or 24 (noting that all subgroups of order
≥ 25 are normal in G).

First assume that |X | = 24. In this case X 6≤ K since Φ(K) = 〈z, z′〉
and |K| = 25. We have |X : (X ∩K)| = 2 and |X ∩K| = 23. All elements
in X − K are of order 4 and so ℧1(X) 6= {1} and this implies that there
is exactly one central involution z0 in G which is contained in X ∩ K and
therefore we have ℧1(X) = 〈z0〉 and d(X) = 3. But X ∩ K must contain
another involution i′ 6= z0 which is noncentral in G and we know (by the
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above) that CG(i
′) = CK(i′) is abelian. In particular, X is nonabelian and

X ′ = 〈z0〉. Because d(X) = 3, X is not minimal nonabelian. Let X0 be
any minimal nonabelian subgroup in X . If X0

∼= D8, then (since there are
no involutions in X − K) we have X0 = X ∩ K. Since G′ ∼= E4, it follows
that X induces on X0 only inner automorphisms of X0 which implies that
CX(i′) 6≤ K, a contradiction. Hence each minimal nonabelian subgroup of X
is isomorphic to Q8. By Corollary A.17.3 in [2], we get X = 〈t〉 ×Q, where t
is an involution and Q ∼= Q8 with Z(Q) = X ′ = 〈z0〉. Thus t is a noncentral
involution in G, contrary to the fact that CG(t) must be abelian.

We have proved that |X | = 23 and assume first that X 6≤ K. Since X
contains more than one involution, it follows that X∩K contains a noncentral
involution i′ of G. We know that CG(i

′) ≤ K and so X is nonabelian. But
then X ∼= D8 which is not possible since there are no involutions in X −K.
We have proved that X ≤ K.

If X ∼= E8, then X ≤ L, where L = H × 〈z′〉. But then X ≥ 〈z, z′〉 = G′,
a contradiction. It follows that either X ∼= D8 or X ∼= C4 ×C2. First assume
that X ∼= D8. Because in this case Ω1(X) = X and Ω1(K) = L, it follows
that X ≤ L. But then X is conjugate in G to H = 〈h, i〉 or to H∗ = 〈hz′, i〉,
where both 〈h〉 and 〈hz′〉 are normal in G.

Finally, suppose that X ∼= C4 ×C2. Because in this case {1} 6= ℧1(X) ≤
〈z, z′〉, it follows that X contains exactly one central involution of G and two
noncentral involutions of G. Then X is conjugate in G to X1 = 〈i〉 × 〈v〉 or
to X2 = 〈hi〉 × 〈w〉, where 〈v〉 ∼= 〈w〉 ∼= C4. Since

X1 ≤ CG(i) = CK(i) = 〈i, z〉 × 〈a〉,

we get X1 = 〈i〉 × 〈a〉 or X1 = 〈i〉 × 〈az〉. Similarly,

X2 ≤ CG(hi) = CK(hi) = 〈hi, z〉 × 〈a〉,

gives X2 = 〈hi〉 × 〈a〉 or X2 = 〈hi〉 × 〈az〉. On the other hand, we see that
〈a〉EG and 〈az〉EG and we are done. Our proposition is completely proved.

Proposition 4.6. Suppose that we have the case (b1) of Proposition 3.
Then H possesses exactly one G-invariant cyclic subgroup of index p.

Proof. We have H ∼= Mpn , n ≥ 3, ( if p = 2, then n ≥ 4 ) or H is
abelian of type (ps, p), s ≥ 2. Set H0 = Ω1(H) and then we have

H0
∼= Ep2 , NG(H0) = NG(H) = K, |G/K| = p, U0 = U ∩H = 〈z〉 ≤ Z(G),

and let g ∈ G−K. Note that H has exactly p cyclic subgroups of index p. By
Proposition 4, we haveG′ ≤ U and so we get [K,H ] ≤ H∩U = U0 = 〈z〉. This
implies that each cyclic subgroup of index p in H is normal in K. Assume, by
way of contradiction, that H does not have any G-invariant cyclic subgroup
of index p. Since H ∩ Hg is a cyclic subgroup of index p in H , there is a
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cyclic subgroup 〈h〉 of index p in H such that 〈h〉g = 〈ht〉 for some element
t ∈ H0 − 〈z〉. Then we get

hg = htv with some v ∈ 〈(ht)p〉 = 〈hp〉.

In that case we get

h−1hg = [h, g] = tv ∈ U ∩H = 〈z〉.

Since v ∈ 〈hp〉 and (by Proposition 3(b1)) 〈hp〉 ≥ 〈z〉, it follows that t ∈ 〈hp〉,
a contradiction. Since H is not normal in G, then clearly H possesses exactly
one G-invariant cyclic subgroup of index p and we are done.

Proposition 4.7. Suppose that we have the case (b1) of Proposition 3
and assume in addition that K/H0 is Hamiltonian (and so p = 2), where
H0 = Ω1(H) ∼= E4, and that G does not possess any non-normal subgroup
isomorphic to D8. Then G is of order 27 and class 2 which has a normal
subgroup K of index 2, where

K = (〈h〉 ×Q)〈t〉 with 〈h〉 ∼= C4, h2 = z, Q = 〈a, b〉 ∼= Q8, Q′ = 〈u〉,

t is an involution commuting with h and a and [b, t] = z. There is an element
g ∈ G−K such that either

(a) g2 = uz, g centralizes Q, [g, h] = z, [g, t] = u
(and here G is a special group with G′ = 〈u, z〉 ∼= E4 and Ω1(G) =

G′ × 〈t〉 ∼= E8)
or

(b) g2 = h, g centralizes Q, [g, t] = uz
(and here G is of exponent 8 with G′ = 〈u, z〉 ∼= E4, Z(G) =

G′〈h〉 ∼= C4 × C2, Ω1(G) = G′ × 〈t〉 ∼= E8 and Ω2(G) = K).

Conversely, the above two groups satisfy our assumption (∗).

Proof. We have

H0 = Ω1(H) ∼= E4, NG(H0) = NG(H) = K, |G : K| = 2,

E8
∼= S = H0U EG, U ∩H0 = U ∩H = U0 = 〈z〉 ≤ Z(G),

and K/H0 is Hamiltonian. By Proposition 4, we have G′ ≤ U and this gives

(K/H0)
′ = S/H0 = ℧1(K/H0),

and so exp(K) = 4 and H ∼= C4 × C2. By Proposition 3(b1), L = HU
is abelian of type (4, 2, 2), ℧1(L) = ℧1(H) = U0 = 〈z〉 and so we have
S = Ω1(L) = Ω1(K).

Let Q/H0 be an ordinary quaternion subgroup of K/H0. Since

(Q/H0)
′ = (K/H0)

′ = S/H0,

it follows that S < Q. Also, S/H0 is a unique subgroup of order 2 in Q/H0

and so we have Q∩H = H0 and Q∩L = S. Since Q/H0
∼= Q8 is isomorphic
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to a subgroup of K/H , Proposition 2 implies that K/H ∼= Q8 and so we get
K = HQ with H ∩Q = H0.

We have |Q : CQ(H0)| ≤ 2 and so if a ∈ CQ(H0) − S, then a2 ∈ S −H0

and so A = 〈a〉×H0
∼= C4×E4 (containing U) is an abelian maximal subgroup

of Q, A EG and we get ℧1(A) = 〈a2〉 ≤ Z(G) and E4
∼= 〈a2, z〉EG. On the

other hand, G/K acts on the three maximal subgroups of S which contain
〈z〉 ≤ Z(G) fixing U and fusing the other two (since NG(H0) = K) and so we
get 〈a2, z〉 = U and U ≤ Z(G). In particular, G is of class 2 with an elementary
abelian commutator subgroup of order ≤ 4 (contained in U) and this implies
that ℧1(G) ≤ Z(G). Indeed, if x, y ∈ G, then we have [x2, y] = [x, y]2 = 1.
We have ℧1(K) ≤ S and since S ∩ Z(G) = U , we get ℧1(K) ≤ U and so
Φ(K) = U . For each element k ∈ K − L, we have k2 ∈ U − 〈z〉.

By Proposition 6, H possesses exactly one cyclic subgroup 〈h〉 of index
2 which is normal in G and we have h2 = z. Note that for an element
u ∈ U − 〈z〉, the cyclic subgroup 〈hu〉 ∼= C4 is also normal in G. But the
abelian normal subgroup L possesses exactly four cyclic subgroups of order 4
and so the other two cyclic subgroups of order 4 in L (which are distinct from
〈h〉 and 〈hu〉) must be fused in G. Indeed, if t ∈ H0 − 〈z〉 and g ∈ G − K,
then we have tg = tu for some u ∈ U − 〈z〉 and so we get 〈ht〉g = 〈htu〉.

By Proposition 4, G/U is abelian and so G/L is abelian and K/L ∼= E4.
Assume that G/L is not elementary abelian. Then there is an element x ∈
G − K such that x2 ∈ K − L. But then x2 ∈ Z(G), contrary to the fact
that K/H ∼= Q8. Hence we have G/L ∼= E8. For any g ∈ G − K, we have
g2 ∈ L ∩ Z(G) and so either g2 ∈ U or g2 ∈ L− S and in the second case we
have either g2 ∈ 〈h〉 or g2 ∈ 〈hu〉 with u ∈ U − 〈z〉. Note that H1 = 〈hu, t〉
is also a maximal non-normal subgroup in G with Ω1(H1) = Ω1(H) = 〈z, t〉.
Indeed, if H1 is not maximal non-normal, then let H∗

1 containing H1 be a
maximal non-normal subgroup in G. Since exp(G) ≤ 8 and exp(K) = 4, it
follows that H∗

1
∼= C8 × C2 or H∗

1
∼= M16 and so H∗

1 6≤ K. But we have

Ω1(H
∗
1 ) = Ω1(H1) = H0 = 〈z, t〉

and so we get H0EG, a contradiction. Thus, in case that we have an element
g ∈ G−K with g2 ∈ 〈hu〉, we replace H with H1 (and write again H instead
of H1) so that we may assume from the start that g2 ∈ 〈h〉 and then (by a
suitable choice of a generator of 〈g〉) we have g2 = h.

Let k be any element in K −L which commutes with t ∈ H0 −〈z〉. Then
we have k2 ∈ U − 〈z〉 so that 〈k, t〉 ∼= C4 × C2. We claim that in that case
at least one of cyclic subgroups 〈k〉 or 〈kt〉 is normal in G. If 〈k, t〉EG, then
both 〈k〉 and 〈kt〉 are normal in G because G′ ≤ U . (If there is x ∈ G such
that kx = kt or kx = k−1t, then we have either t ∈ G′ or k2t ∈ G′ and so
t ∈ U , a contradiction.) If 〈k, t〉 is not normal in G, then it is easy to see
that 〈k, t〉 is a maximal non-normal subgroup in G. Indeed, if H∗ > 〈k, t〉 is
a maximal non-normal subgroup in G, then by Proposition 3, H∗ ∼= C8 × C2
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or H∗ ∼= M16 (noting that exp(G) ≤ 8) and so k or kt is a square in H∗ and
therefore k or kt is contained in Z(G), contrary to the fact that K/H ∼= Q8.
Hence 〈k, t〉 is a maximal non-normal subgroup in G and so, by Proposition
6, one of 〈k〉 or 〈kt〉 is normal in G. Since 〈k, t〉 ∩ 〈h〉 = {1} and 〈h〉EG, we
see that k or kt commutes with h. But t commutes with h and so in any case
k commutes with h. We have proved that whenever an element k ∈ K − L
commutes with t ∈ H0 − 〈z〉, then k also commutes with h.

Suppose, by way of contradiction, that t ∈ Z(Q). Let a, b ∈ Q−S be such
that 〈a, b〉 covers Q/S and set a2 = u ∈ U − 〈z〉. By the above, both a and b
commute with h. We have [a, b] ∈ U − 〈z〉 and so [a, b] ∈ {u, uz}. Suppose at
the moment that [a, b] = uz. By the previous paragraph, we know that 〈a〉 or
〈at〉 is normal in G. On the other hand, we have

ab = a(uz), (at)b = (at)(uz) with a2 = (at)2 = u,

and so both 〈a〉 and 〈at〉 are non-normal in G, a contradiction. Thus, we
must have [a, b] = u. Considering the subgroup 〈ah〉 × 〈t〉, we know that one
of 〈ah〉 or 〈aht〉 must be normal in G. But we have

(ah)2 = (aht)2 = uz, (ah)b = (ah)u, (aht)b = (aht)u,

and so both 〈ah〉 and 〈aht〉 are non-normal in G, a contradiction.
We have proved that t 6∈ Z(Q). Then we have |Q : CQ(t)| = 2. Let

a ∈ CQ(t)− S and b ∈ Q− CQ(t) so that

〈a, b〉 covers Q/S, [a, b] ∈ U − 〈z〉, [a, h] = 1, and [b, t] = z.

In particular, we get Q′ = G′ = U and we set a2 = u ∈ U −〈z〉. If [a, b] = uz,
then we replace a with a′ = at (noting that [a′, h] = 1 and (a′)2 = u) and
then we get [a′, b] = [at, b] = uz · z = u. We write a instead a′ so that we
may assume from the start that [a, b] = u. If b2 = uz, then we replace b with
b′ = bt (noting that [a, b′] = [a, bt] = u and [b′, t] = [bt, t] = z) and we obtain

(b′)2 = (bt)2 = b2t2[t, b] = uz · z = u.

Hence writing b instead of b′, we may assume from the start that b2 = u. We
have obtained that Q∗ = 〈a, b〉 ∼= Q8. Since (at)b = (at)(uz) and (at)2 = u,
we see that 〈at〉 is not normal in G. This implies that 〈a〉 is normal in G. Also
note that b has four conjugates in Q and QEG. Since |G′| = 4, b has exactly
four conjugates in G and so CG(b) must cover G/Q. Let g ∈ CG(b)−K and
we know that g normalizes 〈a〉. If ag = a−1 = au, then we replace g with
g′ = gb ∈ G−K so that

ag
′

= agb = (au)b = (au)u = a.

Noting that g′ also commutes with b, we may write g instead of g′ so that
we may assume from the start that g ∈ G−K centralizes Q∗ = 〈a, b〉. Since
tb = tz and tg = tu′ with some u′ ∈ U − 〈z〉, it follows that the conjugate
class of t in G contains four elements (and they all lie in S − U).
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Now it is easy to see that there are no involutions contained in G − K
and so we have Ω1(G) = S = G′ × 〈t〉 ∼= E8. Indeed, assume that there is an
involution i ∈ G−K. Then we haveD = 〈i, t〉 ∼= D8 and by our assumption we
have DEG. Since G′ ∼= E4 is elementary abelian, each element in G induces
on D an inner automorphism of D. In particular, both four-subgroups in
D are normal in G. But then t would have only two conjugates in G, a
contradiction.

It remains to determine:

g2, hg = hzǫ, hb = hzη, and tg = tuzζ, where ǫ, η, ζ ∈ {0, 1}.

Considering the subgroup 〈ah〉 × 〈t〉, we know (by the above) that at least
one of the cyclic subgroups 〈ah〉 or 〈aht〉 must be normal in G. Since

〈h, a, t〉 = 〈h〉 × 〈a〉 × 〈t〉 ∼= C4 × C4 × C2

is abelian, it is enough to consider the action of elements b and g on these
cyclic subgroups. We have

(ah)2 = (aht)2 = uz, and (ah)b = (ah)uzη, (ah)g = (ah)zǫ,

(aht)b = (aht)uzη+1, (aht)g = (aht)uzǫ+ζ.

If η = 1, then (aht)b = (aht)u and so 〈aht〉 is not normal in G. Then we
must have 〈ah〉EG and so we get ǫ = 0.

If η = 0, then (ah)b = (ah)u and so 〈ah〉 is not normal in G. Then we
must have 〈aht〉EG which gives ǫ+ ζ = 1.

(i) First assume that g2 ∈ {u, z, uz}. If ǫ = 0, then hg = h and so g
centralizes 〈h〉 × 〈a〉 ∼= C4 × C4 and then there is an involution in g〈h, a〉, a
contradiction. Hence we must have ǫ = 1. By the above, we get η = 0 and
ζ = 0. Hence we have in this case

hg = hz, hb = h, and tg = tu.

If g2 = u, then [g, a] = 1 implies that ga is an involution, a contradiction. If
g2 = z, then (tb)2 = uz and

(gtb)2 = z · uz · [tb, g] = u · u = 1

so that gtb is an involution, a contradiction. Hence we must have g2 = uz.
The structure of G is determined as given in part (a) of our proposition. We
check that there are no involutions in G−K. Indeed, assume that ghαtβaγbδu′

with u′ ∈ U = Z(G) and α, β, γ, δ ∈ {0, 1}, is an involution. Then we get

1 = (ghαtβaγbδu′)2 = u1+β+γ+δ+γδz1+βδ,

and so β = δ = 1, which gives u = 1, a contradiction.
It remains to prove that this special group G of order 27 satisfies our

condition (∗). Let X be a noncyclic and non-normal subgroup of order ≥ 23

which has more than one involution. Then |X ∩ S| = 4 and X ∩ U = 〈u′〉,
where u′ is a central involution and S = Ω1(G) = U × 〈t〉. But all four
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involutions in S − U are conjugate in G noting that CG(t) = 〈h〉 × 〈a〉 × 〈t〉.
Therefore we may assume that t ∈ X and so we have Ω1(X) = 〈t, u′〉 = X∩S.
We have X ≤ NG(〈t, u

′〉) and since Ω1(X) contains at most two conjugates
t and tu′ of t, it follows that X cannot cover G/CG(t). Therefore we have
either X ≤ CG(t) or X 6≤ CG(t) in which case we must have one of the three
possibilities: X ≤ CG(t)〈b〉 or X ≤ CG(t)〈g〉 or X ≤ CG(t)〈bg〉.

First assume that X 6≤ CG(t) and then we have three subcases.
(1) If X ≤ CG(t)〈b〉, then tb = tz and so u′ = z. If x ∈ X − CG(t), then

x2 ∈ U − 〈z〉, which gives X ≥ U = G′, a contradiction.
(2) Assume that X ≤ CG(t)〈g〉 and then we have tg = tu and so u′ = u.

If in this case x ∈ X − CG(t), then we have

x = gaαtβhγu′′ (u′′ ∈ U, α, β, γ ∈ {0, 1}) and then x2 = u1+α+βz,

which gives that X ≥ U = G′, a contradiction.
(3) Suppose that X ≤ CG(t)〈bg〉 and then we have tbg = tuz and so

u′ = uz. If in this case x ∈ X − CG(t), then we have

x = bgaαtβhγu′′ (u′′ ∈ U, α, β, γ ∈ {0, 1}) and then x2 = uβz1+β.

If β = 0, then x2 = z. If β = 1, then x2 = u. In any case we get X ≥ U = G′,
a contradiction.

Now assume X ≤ CG(t) = (〈h〉 × 〈a〉)× 〈t〉 . Since X 6≥ G′ = U , we have

X ∈ {〈huµ〉 × 〈t〉, 〈azν〉 × 〈t〉, 〈ahzσ〉 × 〈t〉, where µ, ν, σ ∈ {0, 1}.}

If X = 〈huµ〉 × 〈t〉, then we have 〈huµ〉EG.
If X = 〈azν〉 × 〈t〉, then 〈azν〉EG.
If X = 〈ahzσ〉 × 〈t〉, then 〈ahzσt〉EG since

(ahzσt)2 = uz, [ahzσt, b] = uz, and [ahzσt, g] = uz.

We have proved that the condition (∗) is satisfied because for example 〈h〉×〈t〉
is not normal in G (noting that tg = tu).

(ii) Assume that g2 = h. In this case we have h ∈ Z(G) and this gives ǫ = 0
and η = 0. It follows (from the above) that ζ = 1 and so we have tg = tuz.
The structure of G is determined as given in part (b) of our proposition. For
each k ∈ K we have (gk)4 = g4 = z. Thus, all elements in G−K are of order
8 and so we have Ω1(G) = S = G′ × 〈t〉 ∼= E8.

Conversely, let X be a noncyclic and non-normal subgroup of order ≥ 23

in G which has more than one involution. Since four noncentral involutions
in S − U form a single conjugate class in G, it follows that we may assume
t ∈ X . In addition, X contains exactly one central involution u′ ∈ U so that
we have Ω1(X) = 〈t, u′〉.

First suppose that X 6≤ K so that X contains elements of order 8 which
implies that z ∈ X and so we have Ω1(X) = 〈t, z〉 = H0. But then H0 EG,
contrary to tg = tuz.
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We have proved that we must have X ≤ K. Suppose that

X 6≤ CG(t) = (〈h〉 × 〈a〉)× 〈t〉 and let x ∈ X − CG(t).

Then we have tx = tz and x2 ∈ U − 〈z〉 and so X ≥ U = 〈u, z〉 = G′, a
contradiction.

Thus, we must haveX ≤ CG(t) and since 〈u, z〉 6≤ X , we getX ∼= C4×C2.
We have three subcases.

If X = 〈huµ〉 × 〈t〉 (µ ∈ {0, 1}), then we have 〈huµ〉EG.
If X = 〈azν〉 × 〈t〉 (ν ∈ {0, 1}), then 〈azν〉EG.
If X = 〈ahzσ〉 × 〈t〉 (σ ∈ {0, 1}), then 〈ahzσt〉EG since

(ahzσt)2 = uz, [ahzσt, b] = uz, and [ahzσt, g] = uz.

We have proved that the condition (∗) is satisfied because for example 〈h〉×〈t〉
is not normal in G (noting that tg = tuz). Our proposition is completely
proved.

Proposition 4.8. Suppose that our group G has the commutator group
G′ of order p. Then we have |G : Z(G)| = p2, Z(G) is of rank 2, Ω1(G) 6≤ Z(G)
and Z(G) possesses cyclic subgroups of order ≥ p2 which do not contain G′.

Conversely, all these groups satisfy our condition (∗).

Proof. By Propositions 2 and 3, we must be in case (b1) of Proposition
3, where H is abelian of type (ps, p), s ≥ 2, L = HU is abelian of type
(ps, p, p) with ℧1(L) = ℧1(H) ≥ U0 = H ∩ U = 〈z〉 ≤ Z(G). By Proposition
3, G′ covers U/〈z〉 and so we may set G′ = 〈u〉, where u ∈ U − 〈z〉 so that
U ≤ Z(G). We have NG(H0) = NG(H) = K, where H0 = Ω1(H) ∼= Ep2 ,
S = H0U ∼= Ep3 and S = Ω1(K). Note that G/K ∼= Cp acts transitively on
p subgroups of order p2 in S which contain 〈z〉 and which are distinct from
U and so we have Z(G) ∩ S = U . Since Z(G) ≤ K, it follows that Z(G)
is of rank 2 and Ω1(G) 6≤ Z(G). By Proposition 3, G does not possess any
non-normal subgroup isomorphic to D8 and so by Proposition 7, K/H0 is
abelian. This implies that K is abelian and so Lemma 1.1 in [1] gives at once
that |G : Z(G)| = p2. By Proposition 6, H has exactly one G-invariant cyclic
subgroup 〈h〉 ∼= Cps , s ≥ 2, where 〈h〉 ∩ U = 〈z〉 and so G′ 6≤ 〈h〉. But we
have

[G, 〈h〉] ≤ 〈h〉 ∩G′ = {1} and so 〈h〉 ≤ Z(G).

We have proved that Z(G) contains cyclic subgroups of order ≥ p2 which do
not contain G′. We have obtained the groups stated in our proposition.

Conversely, let X be any noncyclic and non-normal subgroup of order
≥ p3 in a group G described in our proposition. Since G′ 6≤ X , it follows
that X is abelian and so X does not cover G/Z(G) and X 6≤ Z(G). We get
|X : (X ∩ Z(G))| = p and X0 = X ∩ Z(G) is cyclic (since Ep2

∼= Ω1(Z(G))
contains G′). For any g ∈ G with Xg 6= X , we see that X∩Xg = X0 is cyclic.
Let 〈k〉 be a maximal cyclic subgroup of order ≥ p2 in Z(G) which does not



CLASSIFICATION OF FINITE p-GROUPS 139

contain G′ and let i be an element of order p in Ω1(G)−Z(G). Then 〈k〉× 〈i〉
does not contain G′ and so 〈k〉 × 〈i〉 is a maximal non-normal subgroup of G
of type (pr, p), r ≥ 2. Indeed, if 〈k〉 × 〈i〉EG, then

[G, (〈k〉 × 〈i〉)] ≤ (〈k〉 × 〈i〉) ∩G′ = {1}

and so i ∈ Z(G), a contradiction. The maximality of the cyclic subgroup 〈k〉
in Z(G) also shows that 〈k〉× 〈i〉 is a maximal non-normal subgroup in G and
we are done.

Proposition 4.9. Suppose that we have the case (b1) of Proposition 3,
where H ∼= Mpn , n ≥ 3 (if p = 2, then n ≥ 4), G is of class 3 and G does not
have non-normal subgroups isomorphic to D8 or such one which lead to the
case (b2) of Proposition 3. Then we have p = 2, G has the following subgroup
of index 2:

M2n+1
∼= 〈g, u | g2

n

= u2 = 1, [g, u] = z = g2
n−1

〉, n ≥ 4,

and G = 〈g, u〉〈t〉, where t is an involution with [g, t] = u and [u, t] = 1.
We have

|G| = 2n+2, n ≥ 4,

with
G′ = 〈u, z〉 ∼= E4, [G,G′] = 〈z〉, Ω1(G) = 〈u, z, t〉 ∼= E8,

Z(G) = 〈g4〉 ∼= C2n−2 and 〈g2, t〉 ∼= M2n

is a non-normal subgroup in G with 〈g2〉EG.
Conversely, these groups satisfy the condition (∗).

Proof. By Proposition 4, G′ ≤ U and so we have G′ = U 6≤ Z(G). Also,
Proposition 7 implies that K/Ω1(H) is abelian, where Ω1(H) ∼= Ep2 and so we
have K ′ = H ′ = 〈z〉 ≤ Z(G). By Proposition 2, K/H is cyclic of order ≥ p.
Finally, Proposition 3 also implies that U = Ω1(Z(L)), where L = HU E G.
By Proposition 6, H possesses a G-invariant cyclic subgroup 〈h〉 of index p
and there is an element t of order p in H − 〈h〉 so that 〈[h, t]〉 = 〈z〉. For
any g ∈ G −K, we have tg = tu′ for some u′ ∈ U − 〈z〉, where G/K ∼= Cp,
S = 〈t〉U ∼= Ep3 is normal in G and S = Ω1(K). It follows that all p2

subgroups of order p contained in (S −U)∪ {1} form a single conjugate class
in G.

Since K ′ = H ′, we get ℧1(K) ≤ Z(K) and K = H ∗C, where C = CK(H)
and H ∩C = 〈hp〉 ≥ 〈z〉. On the other hand, K/H ∼= C/〈hp〉 is cyclic and so
C is abelian of rank 2 (because Ω1(C) = U), C = Z(K) and K1 = 〈h〉C is an
abelian subgroup of index 2 in K with Ω1(K1) = U .

No element in U −〈z〉 is a p-th power of an element in G. Indeed, if there
is x ∈ G such that xp ∈ U − 〈z〉, then we consider the subgroup U〈x〉 E G
of order p3. Since 〈z〉 ≤ Z(G) and x commutes with xp, it follows that U〈x〉
is abelian of type (p2, p). But then we get ℧1(U〈x〉) = 〈xp〉 E G and so
U ≤ Z(G), a contradiction.
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Since Ω1(K1) = U and no element in U−〈z〉 is a p-th power of an element
in K1, it follows that we have K1 = 〈k〉 × 〈u〉 with u ∈ U − 〈z〉, o(k) ≥ pn−1

and 〈k〉 ≥ 〈z〉. Note that ℧1(K1) = 〈kp〉 ≤ Z(K) and so 〈kp〉 × 〈u〉 ≤ Z(K).
Suppose that K > L in which case we have o(k) ≥ pn. But then we get

Ωn−1(K1) ≤ 〈kp〉 × 〈u〉 ≤ Z(K)

and since h ∈ Ωn−1(K1), we get h ∈ Z(K), a contradiction.
We have proved that we have K = L. Since 〈h〉EG, we get

[G, 〈h〉] ≤ 〈h〉 ∩G′ = 〈h〉 ∩ U = 〈z〉 and so [G, 〈h〉] = 〈z〉.

It follows that CG(h) covers G/K and CK(h) = 〈h〉U . Hence, if g ∈ CG(h)−
K, then we have gp ∈ 〈h〉U and note that |CG(h) : 〈h〉| = p2. Thus, if
gp ∈ (〈h〉U)−〈h〉, then CG(h) would be abelian and CG(U) ≥ 〈CG(h), t〉 = G,
a contradiction. We have proved that gp ∈ 〈h〉 and this gives that either
o(g) = pn in which case we may set gp = h or we may assume that o(g) = p.

First assume that p > 2. Assume in addition that gp = h. We have

[g, t] = u with some u ∈ U − 〈z〉 and ug = uz, where 〈gp
n−1

〉 = 〈z〉 ≤ Z(G).
It follows that

[g2, t] = [g, t]g[g, t] = (uz)u = u2z

and we claim that we have [gi, t] = uiz(
i

2) for all i ≥ 2. Indeed, we get by
induction:

= [gig, t] = [gi, t]g[g, t] = (uiz(
i

2))gu = (uz)iz(
i

2)u

= ui+1(zi+(
i

2)) = ui+1z(
i+1

2 ).

This gives

[h, t] = [gp, t] = upz(
p

2) = 1,

which is a contradiction.
We may assume in case p > 2 that o(g) = p, where [g, h] = 1, hpn−2

= z,
n ≥ 3, and z ∈ Z(G). We may choose a suitable power tj in 〈t〉, j 6≡ 0 (mod
p), so that we can set from the start that [h, t] = z. Then we have [g, t] = u
for some u ∈ U − 〈z〉 and we have [g, u] = zi with some i 6≡ 0 (mod p). We
note that

H∗ = 〈g〉 × 〈h〉 ∼= Cp × Cpn−1 , n ≥ 3,

is a maximal non-normal subgroup in G since |G : H∗| = p2 and [g, t] = u 6∈
H∗. Since Ω1(H

∗)U = 〈g, z〉U ∼= S(p3), we are in case (b2) of Proposition 3
with respect to H∗. But this was excluded by our assumptions.

We have proved that we must have p = 2. Assume in addition that
o(g) = 2. Then we have 〈t, g〉 ∼= D8 and [h, t] = z 6∈ 〈t, g〉 and so 〈t, g〉 is a
non-normal subgroup isomorphic to D8, contrary to our assumptions. Thus
we have in this case g2 = h. Also we have

o(g) = 2n, n ≥ 4, [g, t] = u ∈ U − 〈z〉, z = g2
n−1

, [g, u] = z
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so that

〈g, u〉 ∼= M2n+1

is of index 2 in G. Also, 〈h, t〉 = 〈g2, t〉 ∼= M2n and 〈h, t〉 is not normal in G
since [g, t] = u. We have obtained the groups G stated in our proposition.

We check that there are no involutions in G−K, where K = L = 〈g2, t〉×
〈u〉 and so we have Ω1(G) = 〈u, z, t〉 ∼= E8. Indeed, suppose that ghiujtk is
an element in G−K, where g2 = h, i is any integer and j, k ∈ {0, 1}. Then
we get

x = (ghiujtk)2 = h2i+1ukzj+ik and so 〈x〉 ≥ 〈z〉.

If x = 1, then k = 0 and so h2i+1zj = 1, a contradiction.
Conversely, let X be any noncyclic and non-normal subgroup in G of

order ≥ 23 containing more than one involution. Then we may assume (up
to conjugacy in G) that t ∈ X and so Ω1(X) = 〈t, u′〉 with some involution
u′ ∈ U . If X 6≤ K, then by the above calculation we see that X contains z
and so we have Ω1(X) = 〈t, z〉 . But then for an element x ∈ X −K, we have
[x, t] ∈ U − 〈z〉 and so in this case X ≥ G′ = 〈u, z〉, a contradiction. Hence
we have X ≤ K. Note that 〈h〉EG and 〈hu〉EG. Since |X | ≥ 23, it follows
that X ∩ 〈h〉 6= {1} and so z ∈ X and Ω1(X) = 〈t, z〉. Hence we have

X = 〈t〉(X ∩ 〈h〉) or X = 〈t〉(X ∩ 〈hu〉).

But both X ∩ 〈h〉 and X ∩ 〈hu〉 are normal in G and we are done. Our group
G satisfies the condition (∗).

Proposition 4.10. Suppose that we have the case (b1) of Proposition 3,
where H ∼= Mp3 , p > 2, and G is of class 2. Then we have the following
possibilities:

(a) G is a splitting extension of a cyclic normal subgroup 〈g〉 ∼= Cpm ,
m ≥ 3, by

Mp3
∼= 〈h, t | hp2

= tp = 1, [h, t] = hp = z〉,

where [g, h] = 1 and [g, t] = u with 〈u〉 = Ω1(〈g〉).
We have

|G| = pm+3, m ≥ 3, Ep2
∼= G′ = 〈u, z〉, Z(G) = 〈gp〉 × 〈z〉 ∼= Cpm−1 × Cp,

〈g, h〉 ∼= Cpm × Cp2 is a unique abelian maximal subgroup of G,

Ω1(G) = 〈u, z, t〉 ∼= Ep3

and

〈h, t〉 ∼= Mp3 and 〈g, t〉 ∼= Mpm+1

are non-normal subgroups in G with 〈h〉EG and 〈g〉EG.
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(b) G = (〈g〉×〈h〉)〈t〉, where 〈g〉 ∼= 〈h〉 ∼= Cp2 , gp = u, hp = z, t centralizes
〈u, z〉,

[h, t] = z, [g, t] = uizj , i 6≡ 0 (mod p).

Here G is a special group of order p5 with

Ep2
∼= G′ = 〈u, z〉, Ω1(G) = 〈u, z, t〉 ∼= Ep3

and 〈h, t〉 ∼= Mp3 is non-normal in G with 〈h〉EG.

Conversely, all groups in (a) and (b) satisfy our assumption (∗).

Proof. By Proposition 6, H possesses a G-invariant cyclic subgroup
〈h〉 ∼= Cp2 and then we may set:

H = 〈h, t | hp2

= tp = 1, [h, t] = hp = z〉.

Since K/〈t, z〉 is abelian, we have K ′ = H ′ = 〈z〉 and so K = H ∗ C with
H ∩ C = 〈z〉, where C = CK(H). Also, K/H ∼= C/〈z〉 is cyclic of order ≥ p
and so C and C1 = 〈h〉C are abelian, where Ω1(C1) = U = G′ ≤ Z(G) and
℧1(G) ≤ Z(G).

Since [G, 〈h〉] = 〈z〉, we have G = 〈t〉CG(h). Set S = U × 〈t〉 ∼= Ep3

and because |G : CG(t)| = p2, all p2 subgroups of order p in (S − U) ∪ {1}
form a single conjugate class in G. We have Ω1(K) = S and we have in fact
Ω1(G) = S. Indeed, if g is an element of order p in G−K, then we have

〈g, t〉 ∼= S(p3) with u′ = [g, t] ∈ U − 〈z〉.

Because 〈g, t〉 ∩K = 〈t, u′〉 ∼= Ep2 , we have z 6∈ 〈g, t〉. But [h, t] = z and so
〈g, t〉 is not normal in G, contrary to Proposition 1.

(i) First assume that G/L is cyclic of order ≥ p2, where L = HU . Let
g ∈ CG(h) −K so that 〈g〉 covers G/L and 〈gp〉 ≤ Z(G) covers K/H (which
is cyclic of order ≥ p2). Hence we have Ω1〈g〉 = 〈u〉, where o(g) = pm, m ≥ 3,
u ∈ U − 〈z〉 and [g, t] = uzi for some integer i (mod p). We replace g with
g′ = h−ig ∈ CG(h)−K so that we have

[g′, t] = [h−ig, t] = z−i(uzi) = u, where (g′)p
m−1

= (h−ig)p
m−1

= gp
m−1

with 〈gp
m−1

〉 = 〈u〉. Thus, we may assume from the start that [g, t] = u and
so 〈g, t〉 ∼= Mpm+1 with 〈g〉 E G. But [h, t] = z = hp and so z 6∈ 〈g, t〉 and
therefore 〈g, t〉 is a maximal non-normal subgroup in G. Our group G is a
splitting extension of 〈g〉 by 〈h, t〉 and so we have obtained the groups stated
in part (a) of our proposition. We check that

Ω1(G) = S = 〈u, z, t〉 ∼= Ep3 .

Indeed, let 1 6= t′ ∈ 〈t〉 and suppose that x = t′grhs (r, s are any integers) is
an element of order p in G− 〈g, h〉. Then we have

1 = (t′(grhs))p = (t′)pgprhps[grhs, t′](
p

2) = gprhps.

Hence r ≡ 0 (mod pm−1), s ≡ 0 (mod p) and so we get x ∈ S.



CLASSIFICATION OF FINITE p-GROUPS 143

Conversely, let X be a noncyclic and non-normal subgroup of order ≥ p3

in G. We may assume (up to conjugacy in G) that t ∈ X and so Ω1(X) =
〈t, u′〉 ∼= Ep2 , where u′ is an element of order p in U . Set X0 = X ∩ 〈g, h〉 so
that X0 is cyclic and NG(X0) ≥ 〈g, h〉〈t〉 = G. Our condition (∗) is satisfied.

(ii) Assume that either K = L or K > L but G/L is noncyclic so that
G/K splits over K/L. In any case we have G = KG0 with K ∩G0 = L and
|G0 : L| = p. We have CG0

(h) = (〈h〉U)〈g〉 for some g ∈ G0 −K. Since there
are no elements of order p in G0−K, we have o(g) ≥ p2 and so gp ∈ Z(G)∩L
implies that 1 6= gp ∈ U . If gp ∈ 〈z〉, then 〈g, h〉 would contain elements of
order p in G0 −K, a contradiction. Hence we must have gp = u ∈ U − 〈z〉.

Suppose that K > L. Then there is an element a ∈ C − U of order p2 so
that ap = u′ ∈ U −〈z〉. Considering the subgroup 〈h〉× 〈g〉 ∼= Cp2 ×Cp2 , each
element in ℧1(〈g, h〉) = 〈u, z〉 is a p-th power of an element in 〈g, h〉. Thus,
there is y ∈ 〈g, h〉 −K such that yp = (u′)−1. But then we get:

(ay)p = apyp[y, a](
p

2) = u′(u′)−1 = 1,

and so ay is an element of order p in G−K, a contradiction. Hence we have
K = L. In this case we have [g, t] = uizj with i 6≡ 0 (mod p) and so we have
obtained a special group of order p5 stated in part (b) of our proposition. We
check that

Ω1(G) = S = 〈u, z, t〉 ∼= Ep3 .

Indeed, let 1 6= t′ ∈ 〈t〉 and suppose that x = t′grhs (r, s are any integers) is
an element of order p in G− 〈g, h〉. Then we have

1 = (t′(grhs))p = (t′)pgprhps[grhs, t′](
p

2) = gprhps.

Hence r ≡ 0 (mod p), s ≡ 0 (mod p) and so we get x ∈ S.
Conversely, let X be a noncyclic and non-normal subgroup of order p3

in G. We may assume (up to conjugacy in G) that t ∈ X and so Ω1(X) =
〈t, u′〉 ∼= Ep2 , where u′ is an element of order p in U . Set X0 = X ∩ 〈g, h〉 so
that X0 is cyclic of order p2 and NG(X0) ≥ 〈g, h〉〈t〉 = G. Our assumption
(∗) is satisfied.

Proposition 4.11. Suppose that we have the case (b1) of Proposition 3,
where H ∼= Mpn , n ≥ 4, is a non-normal subgroup of maximal possible order
in G ( which is isomorphic to some Mpm , m ≥ 4), G is of class 2 and assume
that G does not have non-normal subgroups isomorphic to D8 or Mp3 with
p > 2. Then we have the following possibilities:

(a) G = (〈h〉 × 〈g〉)〈t〉, where

〈h〉 ∼= Cpn−1 , n ≥ 4, 〈g〉 ∼= Cpm , m ≥ 3, 〈t〉 ∼= Cp,

[h, t] = z with 〈z〉 = Ω1(〈h〉), [g, t] = ziu with 〈u〉 = Ω1(〈g〉), i integer,

and t centralizes 〈u, z〉.
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Here we have |G| = pm+n, m ≥ 3, n ≥ 4,

Ep2
∼= G′ = 〈u, z〉 ≤ Z(G), Ω1(G) = 〈u, z, t〉 ∼= Ep3 ,

〈g, h〉 ∼= Cpm × Cpn−1 is a unique abelian maximal subgroup of G and
〈h, t〉 ∼= Mpn is non-normal in G with 〈h〉EG.

(b) G = (〈k〉 × 〈g〉)〈t〉, where

〈g〉 ∼= Cpn , n ≥ 4, 〈k〉 ∼= Cpm , 2 ≤ m ≤ n− 2, 〈t〉 ∼= Cp,

[k, t] = z with 〈z〉 = Ω1(〈g〉), [g, t] = u with 〈u〉 = Ω1(〈k〉),

and t centralizes 〈u, z〉.
Here we have |G| = pm+n+1, n ≥ 4, 2 ≤ m ≤ n− 2,

Ep2
∼= G′ = 〈u, z〉 ≤ Z(G), Ω1(G) = 〈u, z, t〉 ∼= Ep3 ,

〈g, k〉 ∼= Cpn × Cpm is a unique abelian maximal subgroup of G and
〈kgp, t〉 ∼= Mpn is non-normal in G with 〈kgp〉EG.

Conversely, all groups in (a) and (b) satisfy our assumption (∗).

Proof. By Proposition 4, G′ ≤ U and so G′ = U ≤ Z(G) and ℧1(G) ≤
Z(G). Also, Proposition 7 implies that K/Ω1(H) is abelian and so K/H is
cyclic (by Proposition 2), where Ω1(H) ∼= Ep2 and therefore we have K ′ =
H ′ = 〈z〉 ≤ Z(G). By Proposition 2, K/H is cyclic of order ≥ p. Finally,
Proposition 3 also implies that U = Ω1(Z(L)), where L = HU E G. By
Proposition 6, H possesses a G-invariant cyclic subgroup 〈h〉 of index p and
there is an element t of order p in H − 〈h〉 so that 〈[h, t]〉 = 〈z〉. For any
g ∈ G − K, we have tg = tu′ for some u′ ∈ U − 〈z〉, where G/K ∼= Cp,
S = 〈t〉U ∼= Ep3 is normal in G and S = Ω1(K). It follows that all p2

subgroups of order p contained in (S −U)∪ {1} form a single conjugate class
in G.

Since K ′ = H ′, we get K = H ∗ C, where C = CK(H) and H ∩ C =
〈hp〉 ≥ 〈z〉. On the other hand, K/H ∼= C/〈hp〉 is cyclic and so C is abelian
of rank 2 (because Ω1(C) = U), C = Z(K) and K1 = 〈h〉C is an abelian
subgroup of index 2 in K with Ω1(K1) = U . Since 〈h〉EG, we get

[G, 〈h〉] ≤ 〈h〉 ∩G′ = 〈h〉 ∩ U = 〈z〉 and so [G, 〈h〉] = 〈z〉.

It follows that G = 〈t〉CG(h).
It is easy to see that there are no elements of order p in G−K. Indeed,

suppose that there is an element i of order p in G−K. Since [i, t] = u ∈ U−〈z〉,
we get that D = 〈i, t〉 is isomorphic to D8 in case p = 2 and D is isomorphic
to S(p3) in case p > 2. On the other hand, D∩K = 〈t, u〉 ∼= Ep2 and we have
[h, t] = z, where 〈z〉 = Ω1(〈h〉). Hence D is not normal in G. But the case
D ∼= D8 is excluded by our assumptions and the case case D ∼= S(p3) is not
possible by Proposition 1.

First we consider the case, where G/L (being abelian as a factor-group
of the abelian group G/U) is not cyclic of order ≥ p2. Hence we have either
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G/L ∼= Cp (i.e., K = L) or G/L is abelian of type (pr, p), r ≥ 1 (noting
that K/H is cyclic and so K/L is cyclic). In any case, G/L splits over K/L
and so G has a normal subgroup G0 such that G = KG0 with K ∩ G0 = L
and |G0 : L| = p. Since [G0, 〈h〉] = 〈z〉, it follows that CG0

(h) covers G0/L,
where CL(h) = 〈h〉U and so CG0

(h) is abelian of rank 2 with Ω1(CG0
(h)) = U

(noting that there are no elements of order p in G0 −L). If CG0
(h) is abelian

of type (pn, p), then there is an element g1 ∈ CG0
(h) − (〈h〉U) such that

(g1)
p = hui (0 ≤ i ≤ p− 1), where u ∈ U − 〈z〉. But then (g1)

p = hui ∈ Z(G)
and so h ∈ Z(G), a contradiction. Hence CG0

(h) is of type (pn−1, p2) and
therefore there is an element g ∈ CG0

(h)−K such that gp = u ∈ U −〈z〉. We
may assume that [t, g] = uzi (0 ≤ i ≤ p − 1) (by replacing t with a suitable
power 6= 1 of t, if necessary) and then we choose an element h′ ∈ 〈hp〉 such
that (h′)p = zi (noting that o(h) = pn−1 ≥ p3). Then we take the element
g′ = h′g ∈ G0 −K and compute:

(g′)p = (h′)pgp = uzi and [t, g′] = [t, h′g] = [t, g] = uzi.

Hence, in case p = 2 we have 〈g′, t〉 ∼= D8 and then g′t is an involution in
G0 −K, a contradiction. If p > 2, then 〈g′, t〉 ∼= Mp3 . But we have

〈g′, t〉 ∩K = 〈(g′)p, t〉 ∼= Ep2 and 1 6= [h, t] ∈ 〈z〉 6∈ 〈g′, t〉.

Thus, 〈g′, t〉 is a non-normal subgroup in G isomorphic to Mp3 , p > 2, which
was excluded by our assumptions.

We have proved that G/Lmust be cyclic of order≥ p2. Let g ∈ CG(h)−K
so that 〈g〉 covers G/L and we have gp ∈ Z(G). But K/H is cyclic of order
≥ p2 and so 〈gp〉 (covering K/L) covers K/H . Hence 〈g〉 covers CG(h)/〈h〉
and so A = CG(h) is abelian of rank 2 because Ω1(A) = U . We also have
|A/〈h〉| ≥ p3.

(i) First assume that A splits over 〈h〉. Then we may set A = 〈h〉×〈g〉 with
o(g) = pm, m ≥ 3, and Ω1(〈g〉) = 〈u〉. We have [h, t] = z with Ω1(〈h〉) = 〈z〉
and [g, t] = ziu, where i is an integer (mod p).

We have obtained the groups stated in part (a) of our proposition. Now
we check that we have

Ω1(G) = S = 〈u, z, t〉 ∼= Ep3 .

Indeed, let 1 6= t′ ∈ 〈t〉 and let x = t′hrgs (r, s are any integers) be an element
of order p. Then we get in case p > 2:

1 = (t′(hrgs))p = (t′)phrpgsp[hrgs, t′](
p

2) = hrpgsp.

This implies

r ≡ 0(mod pn−2) and s ≡ 0(mod pm−1) and so x ∈ S.

Suppose that p = 2. Then we have :

1 = (t(hrgs))2 = t2h2rg2s[hrgs, t] = h2rg2szrzisus = (h2rzr+is)(g2sus).
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This implies r ≡ 0 (mod 2n−3) and s ≡ 0 (mod 2m−2). Since n ≥ 4 and
m ≥ 3, this gives zr+is = us = 1 and then we get h2rg2s = 1 and therefore
r ≡ 0 (mod 2n−2), s ≡ 0 (mod 2m−1) and x ∈ S.

(ii) Assume that A does not split over 〈h〉. Then we have for an element
g ∈ A−K the following facts:

A = 〈h〉〈g〉, 〈h〉 ∩ 〈g〉 ≥ 〈z〉 and o(h) = pn−1 < o(g).

Suppose that o(g) > pn. Then we have o(gp) ≥ pn and gp ∈ Z(G). In
this case we get:

(hgp)p
n−1

= gp
n

≥ 〈z〉, [t, hgp] = [t, h], 〈[t, h]〉 = 〈z〉, [t, g] = u′ ∈ U − 〈z〉,

and this shows that 〈t, hgp〉 ∼= Mpr , r ≥ n+ 1, is non-normal in G, contrary
to our maximality assumption.

We have proved that we must have o(g) = pn. Also we get:

|A : 〈g〉| = |〈h〉 : (〈h〉 ∩ 〈g〉)| = pm with m ≤ n− 2 since 〈h〉 ∩ 〈g〉 ≥ 〈z〉.

If m ≤ 1, then A = 〈g〉U and so 〈gp〉U = A∩K ≤ Z(G), contrary to h 6∈ Z(G).
Hence we must have m ≥ 2. Since 〈gp〉 (of order pn−1) splits in A∩K, we get
A∩K = 〈k〉×〈gp〉 and so we haveA = 〈k〉×〈g〉 with o(k) = pm, 2 ≤ m ≤ n−2.
Because [A ∩K, 〈t〉] = 〈z〉, we have [k, t] = z, where 〈z〉 = Ω1(〈g〉).

Further we have [g, t] = uzi (i some integer) with 〈u〉 = Ω1(〈k〉). We may
replace g with g′ = k−ig so that we have:

(g′)p
n−1

= (k−ig)p
n−1

= gp
n−1

,

〈gp
n−1

〉 = 〈z〉,

[g′, t] = [k−ig, t] = z−i(uzi) = u,

and so writing again g instead of g′, we can assume from the start that
[g, t] = u. Also we have:

1 6= (kgp)p
n−2

= gp
n−1

≥ 〈z〉, [kgp, t] = z, [g, t] = u,

and so 〈kgp, t〉 ∼= Mpn is non-normal in G with 〈kgp〉EG. We have obtained
the groups stated in part (b) of our proposition.

Now we check that we have

Ω1(G) = S = 〈u, z, t〉 ∼= Ep3 .

Indeed, let 1 6= t′ ∈ 〈t〉 and let x = t′krgs (r, s are any integers) be an element
of order p. Then we get in case p > 2:

1 = (t′(krgs))p = (t′)pkrpgsp[krgs, t′](
p

2) = krpgsp.

This implies

r ≡ 0(mod pm−1) and s ≡ 0(mod pn−1) and so x ∈ S.
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Suppose that p = 2. Then we have :

1 = (t(krgs))2 = t2k2rg2s[krgs, t] = k2rg2szrus = (k2rus)(g2szr).

This implies s ≡ 0 (mod 2n−2) and so 1 = k2r(g2szr) and r ≡ 0 (mod 2m−1)
which gives g2s = 1 and s ≡ 0 (mod 2n−1). Hence we get again x ∈ S.

It remains to prove in case of both groups in parts (a) and (b) of our
proposition that the assumption (∗) is satisfied. Indeed, let A be a unique
abelian maximal subgroup of G, where t ∈ G − A (since Ω1(A) = U = G′).
Let X be a noncyclic and non-normal subgroup of order ≥ p3 in G which in
case p = 2 has more than one involution. Since X 6≥ G′ and all noncentral
subgroups of order p form a single conjugate class in G (with a representative
〈t〉), we may assume that t ∈ X . We set X0 = X ∩A, where X0 is cyclic since

Ω1(X) = 〈t, u′〉 for some 1 6= u′ ∈ G′ = Ω1(A).

But then we have NG(X0) ≥ 〈A, t〉 = G and we are done. Our proposition is
completely proved.

In the next proposition we collect all the remaining p-groups satisfying
the condition (∗).

Proposition 4.12. Suppose that G is a p-group satisfying (∗) which is
not a 2-group of maximal class, G has no non-normal subgroups isomorphic
to D8 or Mpn , |G′| = p2, K/Ω1(H) is abelian for each abelian noncyclic
maximal non-normal subgroup H of order ≥ p3 in G, and G has no non-
normal abelian subgroups which lead to the case (b2) of Proposition 3. Then
we have the following possibilities.

(a) G has a maximal subgroup

Mps+2
∼= 〈g, u | gp

s+1

= up = 1, [u, g] = z, 〈z〉 = Ω1(〈g〉)〉, p > 2, s ≥ 2,

G = 〈g, u〉〈t〉, where o(t) = p, [g, t] = u and [u, t] = 1.
These groups are actually A2-groups defined in Proposition 71.3(i)

in [2], where 〈gp, t〉 ∼= Cps × Cp is non-normal in G with 〈gp〉EG.
(b) G is a special group of order 25 with a unique abelian maximal subgroup

K = 〈h〉 × 〈u〉 × 〈t〉, 〈h〉 ∼= C4, h2 = z, 〈u〉 ∼= 〈t〉 ∼= C2,

and G = K〈g〉, where g2 = z, [g, h] = z, [g, u] = 1, [g, t] = u.
Here we have G′ = 〈u, z〉 ∼= E4, Ω1(G) = 〈u, z, t〉 ∼= E8 and 〈h, t〉 ∼=

C4 × C2 is a non-normal subgroup in G with 〈h〉EG.
(c) G has a maximal subgroup

〈h, g | hps

= gp
r

= 1, hps−1

= z, [g, h] = z 〉, s ≥ 4, 3 ≤ r < s

and

G = 〈h, g〉〈t〉 with tp = 1, [h, t] = 1, [g, t] = uzi, i 6≡ 0(mod p),

〈u〉 = Ω1(〈g〉), [u, t] = 1.
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We have |G| = pr+s+1, Ep2
∼= G′ = 〈u, z〉 ≤ Z(G), Ω1(G) =

〈u, z, t〉 ∼= Ep3 ,

K = 〈t, h, gp〉 ∼= Cp × Cps × Cpr−1

is a unique abelian maximal subgroup in G and

〈h, t〉 ∼= Cps × Cp

is an abelian maximal non-normal subgroup in G with 〈h〉EG.
(d) G is a 2-group which possesses a normal subgroup G0 = L〈g〉, where

L = 〈h〉 × 〈u〉 × 〈t〉, 〈h〉 ∼= C4, h2 = z, 〈u〉 ∼= 〈t〉 ∼= C2,

g2 = z, [g, h] = z, [g, u] = 1, [g, t] = u,

which is a special group of order 25 with G′
0 = 〈u, z〉 ∼= E4. Then we

have the following possibilities for G = G0〈k〉:
(d1) k4 = u, [k, g] = 1, [k, t] = z, [k, h] = z, and here we have

|G| = 27, exp(G) = 8 and Z(G) = G′〈k2〉 ∼= C4 × C2.
(d2) k2 = u, [k, g] = [k, t] = [k, h] = 1, and here we have |G| = 26,

exp(G) = 4 and Z(G) = G′〈k〉 ∼= C4 × C2.
(d3) k2 = uz, [k, g] = [k, h] = 1, [k, t] = z and here G is a special

group of order 26 with Z(G) = 〈u, z〉 ∼= E4.
In all three cases we have E4

∼= G′ = 〈u, z〉 ≤ Z(G), Ω1(G) = G′×〈t〉 ∼=
E8 and 〈h, t〉 ∼= C4 × C2 is an abelian maximal non-normal subgroup
in G with 〈h〉EG.

(e) We have G = (〈a〉 × 〈b〉)〈t〉, where

〈a〉 ∼= Cps+1 , 〈b〉 ∼= Cpr , 〈t〉 ∼= Cp, s ≥ 2, 2 ≤ r ≤ s+ 1,

z = ap
s

, u = bp
r−1

, [b, t] = z, [a, t] = uizj, i 6≡ 0(mod p), [z, t] = [u, t] = 1.

If r = s+ 1, then j 6≡ ξ − iξ−1(mod p) for all integers ξ 6≡ 0(mod p).
We have here |G| = pr+s+2, G′ = 〈u, z〉 ∼= Ep2 , Ω1(G) = G′×〈t〉 ∼=

Ep3 , G is of class 2 with

Φ(G) = ℧1(G) = Z(G) = 〈ap〉 × 〈bp〉 ∼= Cps × Cpr−1 .

Finally, 〈ap〉× 〈t〉 ∼= Cps ×Cp is a maximal non-normal subgroup of G
with 〈ap〉EG.

Conversely, all the above groups from (a) to (e) satisfy our condition (∗).

Proof. Let G be a p-group satisfying all assumptions of this proposition.
Let H be a maximal non-normal subgroup of a maximal possible order in G
which is abelian of type (ps, p), s ≥ 2.

Set U0 = U ∩ H = 〈z〉 ≤ Z(G) and H0 = Ω1(H) = 〈t, z〉 so that S =
H0U ∼= Ep3 , S = Ω1(K) = Ω1(L) and L is abelian with ℧1(L) = ℧1(H) ≥
U0. Also, K/H0 is abelian and since G′ ≤ U (Proposition 4), we have here
G′ = U (see Proposition 3(b1)) because by our assumption |G′| = p2 and so
K ′ ≤ 〈z〉 and G/L is abelian. By Proposition 6, H possesses a G-invariant
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cyclic subgroup 〈h〉 ∼= Cps which contains z and so we have H = 〈h〉 × 〈t〉.
Also, NG(H0) = K and by Proposition 2, K/H is cyclic of order ≥ p. By
Proposition 3, for each g ∈ G − K, we have [g, t] = u ∈ U − 〈z〉, where
|G/K| = p. We shall use all these facts in the proof of this proposition.

First we prove that there are no elements of order p in G−K and so we
have Ω1(G) = S = G′ × 〈t〉 ∼= Ep3 . Indeed, let i be an element of order p in
G−K. We have [i, t] = u′ ∈ U − 〈z〉 and so 〈h, i〉 is not normal in G because
〈h, i〉 ∩K = 〈h〉. It follows that

H∗ = 〈h, i〉 = 〈h〉 × 〈i〉

is abelian and the fact that |H∗| = |H | together with the maximality of |H |
implies that H∗ is another maximal non-normal subgroup in G of type (ps, p).
SinceH∗∩U = 〈z〉 ≤ Z(G), it follows thatH∗U is the unique normal subgroup
of G which contains H∗ with |(H∗U) : H∗| = p. By our assumptions, we
have that Ω1(H

∗) = 〈z, i〉 centralizes U . Thus CG(U) ≥ L〈i〉 and since u′

commutes with i and t, we get together with [i, t] = u′ that D = 〈i, t〉 ∼= D8 if
p = 2 andD = 〈i, t〉 ∼= S(p3) if p > 2 and in any case we get D′ = Z(D) = 〈u′〉.

If D ∼= D8, then our assumptions imply D E G and if D ∼= S(p3), then
Proposition 1 gives that D E G. Hence in any case we have D E G and so
D′ = 〈u′〉 ≤ Z(G). This gives that G′ = U = 〈z〉 × 〈u′〉 ≤ Z(G) and therefore
G is of class 2 with ℧1(G) ≤ Z(G). Since D ∩ G′ = 〈u′〉, it follows that no
element in G induces an outer automorphism on D. We get G = D∗C, where
C = CG(D) and C ∩D = 〈u′〉.

Note that 〈h〉U ≤ C and CG(t) = C × 〈t〉, which together with the fact
that no element in G−K centralizes t implies that CG(t) = K. Also, we have
|G : CG(i)| = p and so if K would be abelian, then C = CK(i) is abelian and
then G′ = D′ = 〈u′〉 is of order p, a contradiction. Hence K is nonabelian
and so K ′ = 〈z〉 = C′ since K = C × 〈t〉. If 〈h〉 ≤ Z(K), then L ≤ Z(K) and
so the fact that K/L is cyclic gives that K is abelian, a contradiction. Hence
we get 〈h〉 6≤ Z(K) and so, in particular, we have K > L.

We have K = CK(i)× 〈t〉 and since K/H is cyclic of order ≥ p2 and

K/H ∼= CK(i)/CH(i) = CK(i)/〈h〉,

we may choose k ∈ CK(i) = C so that 〈k〉 covers CK(i)/〈h〉 and [h, k] = z.
Since

C = CK(i) = 〈h, k〉 with [h, k] = z, 〈z〉 = 〈h〉 ∩ U and U = Ω1(C) ≤ Z(G)

and noting that Ω1(K) = U × 〈t〉 ∼= Ep3 , it follows that C is metacyclic
minimal nonabelian without a cyclic subgroup of index p. Hence we may set

C = 〈a, b | ap
α

= bp
β

= 1, [a, b] = z = ap
α−1

〉,

where α ≥ 2, β ≥ 2 and bp
β−1

= u ∈ U − 〈z〉. Also we know that we have

G = C ∗〈i, t〉 with C∩〈i, t〉 = 〈u′〉, u′ ∈ U−〈z〉 and D = 〈i, t〉 ∼= D8 or S(p3).
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We consider the subgroup H1 = 〈b〉 × 〈i〉 ∼= Cpβ × Cp, β ≥ 2. Since
H1 ∩ C = 〈b〉 and [a, b] = z 6∈ H1, it follows that H1 is non-normal in G.
Suppose that H1 is not a maximal non-normal subgroup in G. Then there
is an element b′ ∈ G such that b = iγ(b′)p, where γ is an integer mod p and
(b′)p ∈ ℧1(G) ≤ Z(G). Then we get

[a, b] = [a, iγ(b′)p] = [a, i]γ = 1,

a contradiction. Hence H1 is a maximal non-normal subgroup in G. By
Proposition 6, H1 possesses a G-invariant subgroup 〈biδ〉 of index p, where δ
is an integer mod p and Ω1(〈bi

δ〉) = 〈u〉. On the other hand, we have [a, biδ] =
[a, b] = z, a contradiction. We have proved that there are no elements of order
p in G−K.

Now assume that G is of class 3. In that case no element in U−〈z〉 is a p-
th power of an element in G. Indeed, if there is x ∈ G such that xp ∈ U −〈z〉,
then we consider the subgroup U〈x〉EG of order p3. Since 〈z〉 ≤ Z(G) and x
commutes with xp, it follows that U〈x〉 is abelian of type (p2, p). But then we
get ℧1(U〈x〉) = 〈xp〉 is normal in G and so G′ = U ≤ Z(G), a contradiction.

Note that G/K ∼= Cp acts transitively on p subgroups of order p2 in
S = U × 〈t〉 which contain 〈z〉 and which are distinct from U . Assume
for a moment that t 6∈ Z(K). Then we have K ′ = 〈z〉 and K > L. Let
k ∈ K − CK(t) so that 〈k〉 covers K/H . Suppose that 〈k′〉 = Ω1(〈k〉) 6≤ U .
Then we have k′ ∈ Z(K) and if U 6≤ Z(K), then Ω1(Z(K)) = 〈z, k′〉 E G,
a contradiction. Hence U ≤ Z(K) and so S ≤ Z(K) which implies that
t ∈ Z(K), a contradiction. Thus we have Ω1(〈k〉) ≤ U and so Ω1(〈k〉) = 〈z〉
and o(k) ≥ p3. Since 〈[k, t]〉 = 〈z〉, we have

〈k, t〉 ∼= Mpm , m ≥ 4.

On the other hand, for an element g ∈ G −K we have [g, t] = u′ ∈ U − 〈z〉
and so 〈k, t〉 is not normal in G, contrary to our assumptions. We have proved
that t ∈ Z(K) and so we have CG(t) = K.

If U 6≤ Z(K), then H0 = Ω1(Z(K)) EG, a contradiction. Hence we have
U ≤ Z(K) and so S = Ω1(Z(K)) = Ω1(G). Let x ∈ G −K so that we have
CU (x) = 〈z〉 and therefore, by the above, CS(x) = 〈z〉. In particular, we get
p > 2 and Ω1(〈x〉) = 〈z〉.

Suppose that for some y ∈ K we have yp ∈ S−U . Then we have 〈y〉SEG
and

℧1(〈y〉S) = 〈yp〉 ≤ Z(G),

a contradiction. Hence for each element x ∈ G of composite order, the socle
Ω1(〈x〉) is equal 〈z〉.

Assume that 〈h〉 6≤ Z(K) so that we have K > L. Let k ∈ K be such that
〈k〉 covers K/H and since Ω1(〈k〉) = 〈z〉, we get o(k) ≥ p3. It follows that
〈h, k〉 is a splitting metacyclic minimal nonabelian subgroup with 〈[h, k]〉 =
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〈z〉. We may set

〈h, k〉 = 〈a, b | ap
α

= bp
β

= 1, [a, b] = z = ap
α−1

〉,

where α ≥ 3 and β ≥ 1. By the previous paragraph, we must have β = 1 and
then b ∈ Z(K), a contradiction.

We have proved that h ∈ Z(K) and so L ≤ Z(K) which together with the
fact that K/L is cyclic implies that K is abelian. Hence K is abelian of rank
3 and therefore we may set

K = 〈a〉 × 〈u〉 × 〈t〉 with Ω1(〈a〉) = 〈z〉, o(a) ≥ ps, and 〈z, u〉 = U.

Since [t, g] ∈ U − 〈z〉 for each element g ∈ G −K, we have that 〈a〉 × 〈t〉 is
non-normal in G which together with the maximality of |H | gives o(a) = ps

and so we have K = L.
Let g ∈ G − K. Since CS(g) = 〈z〉, it follows that CK(g) is cyclic. By

Lemma 1.1 in [1], CK(g) = 〈h′〉 coversK/S and so 〈h′〉 ∼= Cps and 〈h′〉 = Z(G)
so that gp ∈ 〈h′〉. But there are no elements of order p in G − K and so
〈g, h′〉 = 〈g〉 is cyclic of order ps+1. We may assume without loss of generality
that gp = h. Then we may set [g, t] = u ∈ U − 〈z〉 and [u, g] = z, where
〈z〉 = Ω1(〈g〉). The group G has a maximal subgroup

Mps+2
∼= 〈g, u | gp

s+1

= up = 1, [u, g] = z, 〈z〉 = Ω1(〈g〉)〉,

where p > 2, s ≥ 2 and G = 〈g, u〉〈t〉 with o(t) = p, [g, t] = u and [u, t] = 1.
We have obtained the groups stated in part (a) of our proposition. It turns
out that these groups are actually A2-groups which are defined in Proposition
71.3(i) in [2]. Conversely, it is easy to check that these groups satisfy our
condition (∗).

From now on we may assume that G is of class 2. Since G′ = U ∼= Ep2 ,
we also have ℧1(G) ≤ Z(G). Also we have Ω1(Z(G)) = U and so no element
in S − U is a p-th power of any element in G.

(i) Assume that K = L. In this case Lemma 1.1 in [1] gives that
|G/Z(G)| = p3. We have 〈h〉 E G but 〈h〉 6≤ Z(G) and so we have
Z(G) = U〈hp〉. Hence for each g ∈ G−K, we get 1 6= gp ∈ U〈hp〉.

(i1) First suppose that 1 6= gp ∈ 〈hp〉 ≥ 〈z〉. Since there are no elements
of order p in 〈g, h〉 − 〈h〉 and 〈g, h〉 is nonabelian (because 〈h〉 6≤ Z(G)) with
Ω1(〈g, h〉) = 〈z〉, it follows that we have p = 2 and 〈g, h〉 ∼= Q8. Hence
〈h〉 ∼= C4, g

2 = z, [g, h] = z and [g, t] = u ∈ U − 〈z〉. We have obtained the
special group of order 25 stated in part (b) of our proposition and this group
satisfies our condition (∗).

(i1) Now we assume that gp ∈ (U〈hp〉)−〈hp〉 so that we may set gp = uh′,
where u ∈ U − 〈z〉, 〈z〉 = Ω1(〈h〉) and h′ ∈ 〈hp〉. Let h0 be an element in 〈h〉
such that hp

0 = (h′)−1. Then we replace g with gh0 ∈ G−K and we compute

(gh0)
p = gphp

0[h0, g]
(p2) = (uh′)(h′)−1z′ = uz′ ∈ U − 〈z〉,
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where

[h0, g]
(p2) = z′ ∈ 〈z〉.

It follows that in this case we may choose from the start an element g ∈ G−K
so that gp = u ∈ U − 〈z〉. Then we have [g, t] = uzi for some integer i mod
p ( where we have replaced t with a suitable power tj (j 6≡ 0 mod p ). Let
h∗ ∈ 〈h〉 be such that (h∗)p = zi.

Assume that either p > 2 or p = 2 and s ≥ 3 (where in the last case we
have [h∗, g] = 1). Then we consider the subgroup 〈g′, t〉, where g′ = gh∗ ∈
G−K. We have

(g′)p = gp(h∗)p[h∗, g](
p

2) = uzi = [g, t] = [gh∗, t] = [g′, t],

and so we get 〈g′, t〉 ∼= D8 if p = 2 and 〈g′, t〉 ∼= Mp3 if p > 2. On the other
hand, 1 6= [h, g′] ∈ 〈z〉 and so 〈g′, t〉 is non-normal in G, contrary to our
assumptions.

We have proved that we must have p = 2 and s = 2 so that we have
〈h〉 ∼= C4 and G is a special group of order 25 with g2 = u ∈ U − 〈z〉, h2 = z,
[g, h] = z and [g, t] = uzi, i = 0, 1. However, if i = 0, then 〈g, t〉 ∼= D8 is
non-normal in G, a contradiction. Thus we have i = 1 and so [g, t] = uz. The
structure of G is uniquely determined.

We claim that the special 2-group obtained in the previous paragraph is
in fact isomorphic to the special group of order 25 from part (i1) of our proof.
Indeed, set g′ = gt and u′ = uz. Then we have

(g′)2 = (gt)2 = u(uz) = z = h2,

[g′, h] = [gt, h] = z,

[g′, t] = [gt, t] = uz = u′.

In addition we have [g′, u′] = [h, t] = 1 and so writing again g, u instead of
g′, u′, respectively, we see that we have obtained the relations for the special
group of order 25 defined in (i1).

From now on we shall always assume that K > L.

(ii) Suppose that G/L is cyclic of order ≥ p2. Let g ∈ G−K so that 〈g〉
covers G/L. But gp ∈ Z(G) and 〈gp〉 covers K/L 6= {1}. Since K/H is cyclic
of order ≥ p2, it follows that 〈gp〉 covers K/H and so K = H〈gp〉 is abelian.
Since G′ = U ∼= Ep2 , Lemma 1.1 in [1] implies that |G : Z(G)| = p3. On the
other hand, 〈hp, gp〉 ≤ Z(G) and |K1 : 〈hp, gp〉| = p, where K1 = 〈h, gp〉 and
K = 〈t〉×K1 is of rank 3. It follows that Z(G) = 〈hp, gp〉. In particular, (since
U ≤ Z(G)) we must have U ≤ 〈hp, gp〉 so that Ω1(K1) = U and h 6∈ Z(G).
We may set [g, h] = z. There are exactly p conjugate classes of non-central
subgroups of order p in G with the representatives 〈tzi〉, 0 ≤ i ≤ p − 1.
It follows (using also Proposition 6) that any abelian maximal non-normal
subgroup in G of type (pr, p), r ≥ 2 is contained in CG(tz

i) = K.
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Suppose that K1 is of exponent pr, where r > s. Let k be an element of
order pr in K1 and consider the subgroup 〈t〉 × 〈k〉. If 〈t〉 × 〈k〉 is non-normal
in G, then 〈t〉×〈k〉 is maximal non-normal in G of order > |H | = ps, contrary
to our assumptions. Hence we have 〈t〉 × 〈k〉 E G. Since [g, t] ∈ U − 〈z〉,
it follows that Ω1(〈k〉) = 〈u〉 with u ∈ U − 〈z〉. Since [g, h] = z, we have
[g,K1] = 〈z〉 and so the fact that k ∈ K1 implies that [g, k] ∈ 〈z〉. But we
have Ω1(〈t, k〉) = 〈t, u〉 and so [g, k] = 1 and therefore k ∈ Z(G). Now consider
the subgroup 〈t〉 × 〈hk〉, where hk ∈ K1 o(hk) = pr and Ω1(〈hk〉) = 〈u〉. If
〈t〉 × 〈hk〉 is not normal in G, then 〈t〉 × 〈hk〉 is maximal non-normal in
G of order > |H |, a contradiction. Hence we have 〈t〉 × 〈hk〉 E G. But
[g, hk] = [g, h][g, k] = z and z 6∈ Ω1(〈t〉 × 〈hk〉) = 〈t, u〉, a contradiction. We
have proved that exp(K) = exp(K1) = ps and therefore o(g) ≤ ps+1 and all
elements in G−K are of order ≤ ps+1.

There are elements of order ps or ps+1 in G − K. Indeed, assume that
o(g) ≤ ps−1 for some g ∈ G − K. In that case we must have s ≥ 3 since
Ω1(G) = U × 〈t〉. Then we compute

(gh)p
s−1

= gp
s−1

hps−1

[h, g](
ps−1

2 ) = hps−1

= z,

where 〈z〉 = Ω1(〈h〉) and so we get o(gh) = ps.
If there is an element g ∈ G−K of order ps+1, then all elements in G−K

are of order ps+1. Indeed, for any x ∈ K and and any integer i 6≡ 0 (mod
p)we have:

(gix)p
s

= (gi)p
s

xps

[x, gi](
ps

2 ) = (gi)p
s

6= 1.

(ii1) Suppose that G − K contains elements of order ps. Let g be an
element of the minimal possible order pr in G−K. Then we have 3 ≤ r ≤ s.
Indeed, 〈g〉 covers G/L (which is cyclic of order ≥ p2) and there are no
elements of order p in G− L and so o(g) ≥ p3.

The element gp
r−1

is of order p and is contained in U . Assume that

gp
r−1

= z, where 〈z〉 = Ω1(〈h〉). Let h′ be an element in 〈h〉 such that

(h′)p
r−1

= z−1. Then we compute (noting that r ≥ 3):

(h′g)p
r−1

= (h′)p
r−1

gp
r−1

[g, h′](
pr−1

2 ) = z−1z = 1,

and so o(h′g) ≤ pr−1, a contradiction. We have proved that 〈g〉 splits over
〈h〉 and so we have Ω1(〈g〉) = 〈u〉 with u ∈ U − 〈z〉.

Set hps−1

= z, s ≥ 3, and then replacing g with gj for some integer
j 6≡ 0 ( mod p), we see that we may set [g, h] = z. Replacing t with tl for
some suitable integer l 6≡ 0 ( mod p), we may assume that [g, t] = uzi for
some integer i ( mod p). If [g, t] = u (i.e.,i ≡ 0 ( mod p)), then we have
〈g, t〉 ∼= Mpr+1 , r ≥ 3. But [g, h] = z 6∈ 〈g, t〉 and so 〈g, t〉 is not normal in G,
contrary to our assumptions. Hence we have i 6≡ 0 ( mod p) .

Assume that r = s and so o(g) = ps. We set gp
s−1

= u and then changing
t with a suitable power tj , j 6≡ 0 ( mod p), we may set [g, t] = uzi with i 6≡ 0
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( mod p). Let h′ ∈ 〈h〉 be such that (h′)p
s−1

= zi. Then we have (noting that
s ≥ 3):

(gh′)p
s−1

= uzi[h′, g](
ps−1

2 ) = uzi,

and since [gh′, t] = [g, t] = uzi, we obtain that 〈gh′, t〉 ∼= Mps+1 . On the
other hand, we have 1 6= [gh′, h] ∈ 〈z〉 and so 〈gh′, t〉 is non-normal in G, a
contradiction. We have proved that we must have o(g) = pr with 3 ≤ r < s
and this gives s ≥ 4. We have obtained the groups stated in part (c) of our
proposition which obviously satisfy our condition (∗).

(ii2) Suppose that all elements in G−K are of order ps+1.

(ii2a) First assume that there is g ∈ G−K such that 〈g〉 splits over 〈h〉.

We may choose a generator g in 〈g〉 so that [g, h] = z = hps−1

, s ≥ 2. Then
we set u = gp

s

∈ U − 〈z〉 and we may choose a generator t ∈ 〈z〉 so that
[g, t] = uzi, where i is an integer mod p. Suppose that i ≡ 0 (mod p). Then
we have 〈g, t〉 ∼= Mps+2 . But [g, h] = z 6∈ 〈g, t〉 and so 〈g, t〉 is not normal in
G, contrary to our assumptions. Hence we have i 6≡ 0 (mod p). Note that the
socle Ω1(〈x〉) is equal 〈u〉 for each x ∈ G−K.

Consider the subgroup X = 〈t, hαgp〉 ∼= Cp × Cps , where gp ∈ Z(G) and
α is any fixed integer with α 6≡ 0 (mod p). We have for every integer j (mod
p ):

(tjhαgp)p
s−1

= (hps−1

)αgp
s

= zαu,

and so 〈tjhαgp〉 ∼= Cps is a maximal cyclic subgroup in G since its socle is
〈zαu〉. We have Ω1(X) = 〈t, zαu〉 and

[g, hαgp] = [g, hα] = zα 6∈ X

implies that X is not normal in G. This gives

NG(X) = NG(Ω1(X)) = K.

We have [g, t] = uzi and so ziu 6∈ Ω1(X) = 〈t, zαu〉. In particular, i 6≡ α (mod
p) for any integer α 6≡ 0 (mod p). But this implies that we must have i ≡ 0
(mod p), a contradiction.

(ii2b) We have proved that for each g ∈ G −K, 〈g〉 does not split over
〈h〉. Hence we have:

〈g〉 ∩ 〈h〉 ≥ 〈z〉, 〈g, h〉′ = 〈z〉 = Ω1(〈h〉)

and therefore

〈g〉E 〈g, h〉 with p ≤ |〈g, h〉 : 〈g〉| ≤ ps−1.

Since 〈gp〉 is of order ps = exp(〈gp, h〉), it follows that 〈gp〉 splits in 〈gp, h〉
and so we have:

〈gp, h〉 = 〈k〉 × 〈gp〉 with K = 〈t〉 × (〈k〉 × 〈gp〉) and

〈k〉〈g〉 = 〈g, h〉 with 〈k〉 ∩ 〈g〉 = {1}.
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Because 〈[k, g]〉 = 〈z〉 and Ω1(〈k〉〈g〉) = U ≤ Z(G), we get o(k) = pr, 2 ≤ r ≤

s − 1 and so s ≥ 3. We may set u = kp
r−1

∈ U − 〈z〉 and [g, k] = z = gp
s

.
Also note that the socle Ω1(〈x〉) for each x ∈ G−K is equal 〈z〉.

We may choose a suitable generator t in 〈t〉 so that [g, t] = uzi for some
integer imod p. Consider the subgroup Y = 〈k〉×〈t〉 ∼= Cp×Cpr , 2 ≤ r ≤ s−1,
which is not normal in G since [g, k] = z 6∈ Y . We have NG(Y ) = K and so
NG(〈t, u〉) = K, where 〈t, u〉 = Ω1(Y ). We have [g, t] = uzi 6∈ Ω1(Y ) and so
we must have i 6≡ 0 (mod p).

Choose an element g′ in 〈gp〉 such that o(g′) = pr and (g′)p
r−1

= z and
note that g′ ∈ Z(G). Now we consider for each α 6≡ 0 ( mod p) the subgroup

V = 〈kαg′〉× 〈t〉 ∼= Cpr ×Cp with (kαg′)p
r−1

= uαz so that Ω1(V ) = 〈t, uαz〉.

Since [g, kαg′] = zα 6∈ Ω1(V ), we have NG(V ) = K and so also NG(〈t, u
αz〉) =

K. Because [g, t] = uzi, it follows that uzi 6∈ 〈uαz〉 for each α 6≡ 0 ( mod p).
We can find an integer j 6≡ 0 ( mod p) so that ij ≡ 1 ( mod p). We get

(uzi)j = ujzij = ujz 6∈ 〈uαz〉

for each α 6≡ 0 ( mod p), a contradiction.

(iii) We consider the remaining case, where G/L is not cyclic and G > L.
Since G/L is abelian and K/L 6= {1} is cyclic, it follows that G/L splits over
K/L and so we have G = KG0 with K ∩ G0 = L and |G0 : L| = p. Also,
K/H is cyclic of order ≥ p2 and we have:

H = 〈h〉 × 〈t〉 ∼= Cps × Cp, s ≥ 2, where Cps ∼= 〈h〉EG, 〈t〉 ∼= Cp,

Ω1(H) = 〈z〉, G′ = U ∼= Ep2 , L = UH is abelian and U ≤ Z(G).

(iii1) Suppose first that 〈h〉 6≤ Z(G0) so that we have U = G′
0
∼= Ep2

and therefore by (i) we get p = 2 and G0 is the uniquely determined special
2-group of order 25 (stated in part (b) of our proposition):

L = 〈h〉 × 〈u〉 × 〈t〉 ∼= C4 × C2 × C2, 〈h〉 ∼= C4, h2 = z, 〈u〉 ∼= 〈t〉 ∼= C2,

G0
∼= L〈g〉 with g2 = z, [g, h] = z, [g, u] = 1, and [g, t] = u.

Since Z(G0) = U , it follows that for each x ∈ K−L such x2 ∈ L, we must
have 1 6= x2 ∈ U . Let k ∈ K − L be such that 〈k〉 covers the cyclic group
K/H of order ≥ 4. Thus Ω1(〈k〉) = 〈u〉 or 〈uz〉 and so K splits over H .

Because CG0
(g) = U〈g〉 and so |G0 : CG0

(g)| = 4, we get together with
|G′| = 4 that |G : CG(g)| = 4. But we have G = K〈g〉 and so CG(g) =
CK(g)〈g〉 which implies that |K : CK(g)| = 4. On the other hand, we have
|H : CH(g)| = 4 and therefore CK(g) covers K/H . It follows that we may
choose our element k ∈ CK(g) such that 〈k〉 covers K/H . Hence we may
assume [g, k] = 1.

Case (1). Suppose that |K : L| > 2 so that o(k) ≥ 8. Then there is an
element k′ of order 4 in 〈k〉 such that k′ ∈ Z(G). Note that (tg)2 = uz and so
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if (k′)2 = uz, then k′(tg) is an involution in G−K, a contradiction. Hence we
must have in this case (k′)2 = u. We set o(k) = 2n, n ≥ 3, and then we have

k2
n−1

= u. Assume for a moment that that [k, h] = [k, t] = 1 which together
with [k, g] = 1 (from the previous paragraph) then implies that k ∈ Z(G). In

that case we have (gk)2
n−1

= u and [gk, t] = u so that 〈gk, t〉 ∼= M2n+1 with
n ≥ 3. But [h, gk] = z 6∈ 〈gk, t〉 and so 〈gk, t〉 is not normal in G, contrary to
our assumptions. We have proved that k 6∈ Z(G).

Assume that [k, t] = 1. Then we have [k, h] = z. Consider in this case
the subgroup

〈t〉 × 〈k〉, where o(k) = 2n = exp(G), n ≥ 3.

Since [h, k] = z 6∈ 〈t, k〉, it follows that 〈t, k〉 is a maximal non-normal sub-
group in G of order > |H |, contrary to our assumptions. We have proved that
we must have [k, t] = z (noting that we have K ′ ≤ 〈z〉).

Now we consider the subgroup 〈t〉 × 〈hk′〉, where k′ is an element of
order 4 in 〈k〉 and k′ ∈ Z(G). Here we have Ω1(〈t, hk

′〉) = 〈t, uz〉. Because
[g, t] = u, it follows that 〈t, hk′〉 ∼= C2×C4 is abelian non-normal in G. By the
maximality of |H |, it follows that 〈t, hk′〉 is a maximal non-normal subgroup
in G. Then Proposition 6 implies that either 〈hk′〉 E G or 〈thk′〉 E G. But
[hk′, g] = z and so 〈hk′〉 is not normal in G. Hence we must have 〈thk′〉EG.
From [thk′, k] = z[h, k] follows that [h, k] = z.

Finally assume that n > 3 so that the subgroup 〈t〉×〈k2〉 ∼= C2×C2n−1 is
non-normal in G ( since [t, k] = z), contrary to the maximality of |H |. Hence
we get n = 3, o(k) = 8 and |G| = 27. We have obtained the group stated in
part (d1) of our proposition.

Case (2). Suppose that |K : L| = 2 and k ∈ Z(G). Here we have o(k) = 4
and k2 ∈ {u, uz}. If k2 = uz, then (gt)2 = uz together with [k, gt]=1 implies
that gtk is an involution in G − K, a contradiction. Hence in this case we
have k2 = u and we have obtained the group of order 26 stated in part (d2)
of our proposition.

Case (3). Assume that |K : L| = 2 and k 6∈ Z(G). We have

k2 = uzǫ, ǫ ∈ {0, 1}, [k, t] = zη, [k, h] = zδ, η, δ ∈ {0, 1},

and η = δ = 0 is not possible.
Then the fact that there are no involutions in G − K gives a unique

solution

ǫ = 1, η = 1, δ = 0

and so we have obtained the special group of order 26 stated in part (d3) of
our proposition.

Conversely, all groups from part (d) of our proposition satisfy the condi-
tion (∗).
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(iii2) Suppose that 〈h〉 ≤ Z(G0). We have for each g ∈ G0−L,G′
0 = 〈[g, t]〉

with [g, t] = u ∈ U − 〈z〉 and 〈z〉 = Ω1(〈h〉). We have

Z(G0) = 〈h〉 × 〈u〉 ∼= Cps × Cp, s ≥ 2.

Since 1 6= gp ∈ Z(G0) and there are no elements of order p in G−K, it follows
that A = Z(G0)〈g〉 is abelian of rank 2. Hence A is either of type (ps, p2) or
(ps+1, p).

Suppose, by way of contradiction, that A is of type (ps, p2). In that case
there is an element g0 ∈ A − Z(G0) such that g20 = u, where 〈u〉 = G′

0. If
p = 2, then 〈g0, t〉 ∼= D8 and so g0t is an involution in G0−K, a contradiction.
Hence we must have p > 2 and M = 〈g0, t〉 ∼= Mp3 . By our assumptions, we
have M EG. Note that G′ ∩M = U ∩M = 〈u〉 and set C = CG(M) so that
C ∩ M = 〈u〉. If C ∗ M < G, then G/C ∼= S(p3) (which is an Sp-subgroup
of Aut(M)), contrary to U = G′ ≤ C. Hence we have G = M ∗ C. Since
〈h〉 ≤ C, 〈h〉 E G and t centralizes C, we have C ≤ K and so K = C × 〈t〉.
Because C < K and K ′ ≤ 〈z〉, we have C′ ≤ 〈z〉 . If C′ = {1}, then
G′ = C′M ′ = 〈u〉, a contradiction. Hence we have C′ = 〈z〉. Note that
{1} 6= K/L is cyclic, where L = (〈h〉U)×〈t〉 and K = CL with C ∩L = 〈h〉U .
Thus {1} 6= C/(〈h〉 × 〈u〉) is cyclic. Let c ∈ C be such that 〈c〉 covers
C/(〈h〉×〈u〉) and so we must have 〈[h, c]〉 = 〈z〉. Since K/H is cyclic of order
≥ p2, 〈c〉 also covers K/H and so 〈c〉 covers C/(H ∩ C) = C/〈h〉. It follows
that C is metacyclic minimal nonabelian without a cyclic subgroup of index
p (noting that Ep2

∼= Ω1(C) = U ≤ Z(G) ). Hence we may set

C = 〈a〉〈b〉 with 〈a〉 > 〈z〉 = C′, 〈a〉 ∩ 〈b〉 = {1}, 〈b〉 ∼= Cpr , r ≥ 2,

and Ω1(〈b〉) = 〈uzi〉, where i is an integer mod p. Consider the subgroup

〈b〉 × 〈t〉 ∼= Cpr × Cp,

which is non-normal in G since 〈[a, b]〉 = 〈z〉 and z 6∈ 〈b, t〉. We claim that
〈b, t〉 is a maximal non-normal subgroup in G. Indeed, let X > 〈b, t〉 be a
maximal non-normal subgroup in G. If X ∩ C > 〈b〉, then 〈z〉 ≤ X and so
〈z, uzi〉 = G′ ≤ X , a contradiction. Hence we have X ∩ C = 〈b〉. Because
G/C ∼= Ep2 , it follows that X must contain an element x ∈ G − (C × 〈t〉) =
G −K. On the other hand, CG(t) = C × 〈t〉 = K and so [x, t] 6= 1 and X is
nonabelian, contrary to our assumptions. Finally, by Proposition 6, we have
〈btj〉 E G for some integer j mod p, where Ω1(〈bt

j〉) = 〈uzi〉. On the other
hand, we have

[a, btj] = [a, b], where 〈[a, b]〉 = 〈z〉 6= 〈uzi〉,

a final contradiction.
We have proved that A = Z(G0)〈g〉 is abelian of type (ps+1, p). It follows

that all elements of order ps in 〈h〉U are central in G (noting that U ≤ Z(G)).
Replacing H with H∗ = 〈t〉 × 〈hui〉 for some integer i mod p (which is also
a maximal non-normal abelian subgroup of type (ps, p)) so that 〈gp〉 = 〈hui〉
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and then working with H∗ instead of H , we see that we may assume from the
start that there is g ∈ G−K such that gp = h, where 〈h〉 ≤ Z(G) and we set
gp

s

= z. If t ∈ Z(K), then L ≤ Z(K) and since K/L is cyclic, K would be in
that case abelian.

(iii2a) First assume that K is nonabelian, i.e., t 6∈ Z(K). Then we have
K ′ = 〈z〉 and so if k ∈ K − L is such that 〈k〉 covers K/H (which is cyclic
of order ≥ p2), then we may set (by choosing a suitable generator t of 〈t〉)
[k, t] = z.

It is easy to see that 〈k〉 splits over H . Indeed, if 〈k〉 does not split over
H , then 〈k〉 ∩H = 〈k〉 ∩ 〈h〉 since Z(G)∩L = 〈h〉U and so we have 〈k〉 > 〈z〉.
It follows that 〈k, t〉 ∼= Mpn+1 with n ≥ 3 since [k, t] = z. On the other hand,
[g, t] ∈ U − 〈z〉 and so [g, t] 6∈ 〈k, t〉 which implies that 〈k, t〉 is not normal
in G, contrary to our assumptions. Hence 〈k〉 splits over H and we may set

o(k) = pr, r ≥ 2, and kp
r−1

= u ∈ U − 〈z〉.
If o(kp) > ps, then 〈t〉 × 〈kp〉 ∼= Cp × Cpr−1 is non-normal in G (since we

have [k, t] = z 6∈ 〈t, kp〉), contrary to the maximality of |H | = ps+1. Hence we
have r ≤ s+ 1. We set [g, t] = uizj with i 6≡ 0 (mod p).

We have here

Φ(G) = ℧1(G) = Z(G) = 〈gp〉 × 〈kp〉 and so |G : Φ(G)| = p3.

By Lemma 146.7 in [4], G possesses a unique abelian maximal subgroup A∗.
Because we have |G : CG(t)| = p2, it follows that t ∈ G−A∗ and

CA∗(t) = Z(G) = 〈h〉 × 〈kp〉, A∗/Z(G) ∼= G′ = U = Ω1(A
∗)

so that A∗ is of rank 2 and of type (ps+1, pr), where s ≥ 2 and 2 ≤ r ≤ s+1.
Indeed, the map a → [a, t] (a ∈ A∗) is a homomorphism from A∗ onto G′ and
so A∗/Z(G) ∼= G′.

Case (a): r < s+ 1. In this case we may set

A∗ = 〈a〉 × 〈b〉, where 〈a〉 ∼= Cps+1 , 〈b〉 ∼= Cpr , z = ap
s

, u = bp
r−1

.

Take an element a′ ∈ 〈ap〉 ≤ Z(G) such that o(a′) = pr and (a′)p
r−1

= z.
Suppose that [b, t] 6∈ 〈z〉. Then we have [b, t] = ziu (i is an integer mod p) for
a suitable choice of a generator t of 〈t〉. We get

((a′)ib)p
r−1

= ziu and [(a′)ib, t] = [b, t] = ziu

and therefore we have either p = 2, r = 2 and 〈(a′)ib, t〉 ∼= D8 or 〈(a′)ib, t〉 ∼=
Mpr+1 (where in case p = 2, we have r ≥ 3). But |G : CG(t)| = p2 and so

for some g ∈ G we get 〈[g, t]〉 6= 〈ziu〉 and so 〈(a′)ib, t〉 is not normal in G,
contrary to our assumptions. Hence choosing a suitable generator t of 〈t〉, we
must have [b, t] = z. Then we also get [a, t] = uizj with i 6≡ 0 (mod p).

Case (b): r = s + 1. Let b ∈ A∗ − Φ(G) be such that [b, t] = z and set
bp

s

= u, where 〈u〉 6= 〈z〉. Let a ∈ A∗ − Φ(G) be such that ap
s

= z and then
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we have

A∗ = 〈a〉 × 〈b〉 ∼= Cps+1 × Cps+1 and [a, t] = uizj , i 6≡ 0 (mod p).

In this critical case we must also have j 6≡ ξ − iξ−1 (mod p) for all
integers ξ 6≡ 0 (mod p). Indeed, assume that for some ξ 6≡ 0 (mod p), we
have j ≡ ξ− iξ−1 (mod p). In that case we solve the congruence iµ ≡ ξ (mod
p) with some µ 6≡ 0 (mod p). We compute (noting that s ≥ 2):

(aµb)p
s

= (ap
s

)µbp
s

[b, aµ](
ps

2 ) = zµu

and

[aµb, t] = (uizj)µz = z1+jµuiµ = z1+(ξ−iξ−1)µuξ =

z1+ξµ−ξ−1iµuξ = z1+ξµ−1uξ = zξµuξ = (zµu)ξ.

It follows that 〈aµb, t〉 ∼= Mps+2 , s ≥ 2, and since [b, t] = z 6∈ 〈aµb, t〉, it
follows that 〈aµb, t〉 is not normal in G, contrary to our assumptions. We
have obtained the groups stated in part (e) of our proposition.

Conversely, we see that in any group G from part (e) of our proposition,
for each x ∈ A∗ − Z(G), 〈x〉 is not normal in G and so D8 or Mpn cannot
be subgroups of G, where A∗ is the unique abelian maximal subgroup of G.
Furthermore, let X be any maximal non-normal abelian subgroup of G of
order ≥ p3 which has more than one subgroup of order p. Since G has exactly
one conjugacy class of noncentral subgroups of order p with the representative
〈t〉, we may assume that t ∈ X . It follows that X = 〈t〉 × X0, where X0 is
any maximal cyclic subgroup in Z(G). Hence our condition (∗) holds.

(iii2b) It remains to consider the case t ∈ Z(K) so that K is abelian and
K > L. Since K/CK(g) ∼= G′ (Lemma 1.1 in [1]), there is k ∈ K − L such
that 〈k〉 covers K/H and [g, k] = z = gp

s

, s ≥ 2, where [g, t] ∈ U − 〈z〉
with pr = o(k) ≥ p2. Since K = 〈t〉 × 〈h, k〉 and Z(G) = 〈h, kp〉, it follows
that U ≤ 〈h, kp〉 because U ≤ Z(G). Hence we have Ω1(〈h, k〉) = U = G′.
Consider the subgroup

〈t〉 × 〈k〉 ∼= Cp × Cpr , r ≥ 2.

If Ω1(〈k〉) = 〈z〉, then [g, t] ∈ U − 〈z〉 shows that 〈t, k〉 is not normal in G.
If we have Ω1(〈k〉) = 〈u〉 with u ∈ U − 〈z〉, then [g, k] = z shows that again
〈t, k〉 is not normal in G. The maximality of |H | shows that we must have
r ≤ s and so we have exp (K)=ps. It follows that 〈h〉 splits in 〈h, k〉 and so
we have

〈h, k〉 = 〈h〉 × 〈k′〉 with Ω1(〈k
′〉) = 〈u〉, u ∈ U − 〈z〉 and o(k′) ≥ p2.

Since [g, t] ∈ U−〈z〉, there is an integer j mod p so that [g, tjk′] = z. Because
Ω1(〈t

jk′〉) = 〈u〉, we may assume from the start that (replacing k with tjk′
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and writing k again):

K = 〈t〉 × 〈h〉 × 〈k〉, o(k) = pr, 2 ≤ r ≤ s,

kp
r−1

= u ∈ U − 〈z〉 and [g, k] = z = gp
s

.

Replacing t with some other generator of 〈t〉 (if necessary), we may assume
from the start that [g, t] = uzi for some integer i mod p.

For any integer α 6≡ 0 (mod p) and any x ∈ K, we have (noting that
s ≥ 2)

(gαx)p
s

= zα[x, gα](
ps

2 ) = zα

and so Ω1(G) = 〈t〉 × U ∼= Ep3 and the socle of each cyclic subgroup of G
which is not contained in K is equal 〈z〉.

Let h′ be an element of order pr in 〈h〉 such that (h′)p
r−1

= z. For any
fixed α 6≡ 0 (mod p) we consider the subgroup

〈t〉 × 〈(h′)αk〉 ∼= Cp × Cpr , where ((h′)αk)p
r−1

= zαu

and note that 〈(h′)αk〉 ∼= Cpr , r ≥ 2, is a maximal cyclic subgroup in G with
the socle 〈zαu〉. We have [g, (h′)αk] = z 6∈ 〈t, (h′)αk〉 so that 〈t, (h′)αk〉 is
a maximal non-normal subgroup in G. By Proposition 6, there is a unique
integer j ( mod p ) such that 〈tj(h′)αk〉EG. Hence we must have:

[g, tj(h′)αk] = (uzi)jz = z1+ijuj ∈ 〈zαu〉,

which shows that j 6≡ 0 (mod p) and we get

z1+ijuj = zαjuj so that 1 + ij ≡ αj or j(α− i) ≡ 1 (mod p).

Hence for any fixed α 6≡ 0(mod p), there must exist j 6≡ 0(mod p) such that
j(α − i) ≡ 1 (mod p) and this gives that we must have i ≡ 0 (mod p). We
have obtained the relation [g, t] = u.

Because [g, k] = z and 〈k〉 ∼= Cpr , r ≥ 2, is a maximal cyclic subgroup
in G with the socle 〈u〉, it follows that 〈t〉 × 〈k〉 ∼= Cp × Cpr is a maximal
non-normal subgroup in G. By Proposition 6, there is a unique integer m (
mod p ) such that 〈tmk〉EG. But we have

[g, tmk] = [g, t]m[g, k] = umz,

a final contradiction (since Ω1(〈t
mk〉) = 〈u〉). Our proposition is completely

proved.

Proof of Theorem C. By inspection of all Propositions 1 to 12, we see
that all possible cases have been investigated and so our theorem is proved.
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