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CLASSIFICATION OF FINITE p-GROUPS WITH CYCLIC
INTERSECTION OF ANY TWO DISTINCT CONJUGATE
SUBGROUPS

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. We give a complete classification of non-Dedekindian fi-
nite p-groups in which any two distinct conjugate subgroups have cyclic
intersection (Theorems A, B and C).

1. INTRODUCTION

The purpose of this paper is to give a complete classification of finite non-
Dedekindian p-groups (i.e., p-groups that possess non-normal subgroups) in
which any two distinct conjugate subgroups have cyclic intersection (Problem
1572 stated in [3]).

In Theorem 16.2 in [1], Theorem A and Theorem B are completely de-
termined finite non-Dedekindian p-groups all of whose non-normal subgroups
are either cyclic, abelian of type (p,p) or ordinary quaternion. Since in these
groups any two distinct conjugate subgroups have a cyclic intersection, so
these results can be considered as a good start in solving problem 1572.
Therefore, after proving Theorems A and B, we may always assume that
there is in a title group G a non-normal subgroup which is neither cyclic nor
abelian of type (p,p) nor an ordinary quaternion group and such groups will
be completely determined in Theorem C. Now we state our main results.

THEOREM A. Let G be a p-group all of whose non-normal subgroups are
cyclic or abelian of type (p,p). Assume in addition that G possesses a non-
normal abelian subgroup of type (p,p). Then G is one of the following groups
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(where S(p3), p > 2, denotes the nonabelian group of order p* and exponent
p):

(a) G = D1 or SDss.

(b) G =LZ, where L = S(p*), p > 2, is normal in G, Z = Cp2, LNZ =
Z(L) = Z(G).

(c) G is any nonabelian group of order p* with an elementary abelian sub-
group of index p.

(d) p =2 and G =2 (Dg * Qs) x Cqg, where Dg N Qg = (Dg)’ or G =
Hig * Qs with Hig N Qs = (Hyg)', where Hig is the nonmetacyclic
minimal nonabelian group of order 16.

(e) G = Mpst1 X Cp, 5> 3.

(f) G =(Z%8) xCp, where Z = Cpesr, s > 1, ZNS =5, and either
p=2and S=Dg orp>2and S =S(p3) or

G =2x8, where Z = Cpesr, s > 1, ZNS =5, and S is the
nonmetacyclic minimal nonabelian group of order p*.

(g) G is an Ag-group of order p° from Proposition 71.4(b2) in [2] for
a=1.

(h) G = Qs * Qg * Qg, an extraspecial group of order 27 and type ” —

(i) G = (A1%xA2)Z(Q), where Ay and Az are minimal nonabelian p-groups
and Z(G) is cyclic. In case p = 2, Ay and As are isomorphic to one
of Dg, Qs and Man, n > 4, where in case A1 = Qg and As = Dg we
must have |Z(G)| > 2. In case p > 2, A; and Az are isomorphic to
one of S(p®) or Myn, n > 3.

Conversely, all the above groups satisfy the assumptions of the theorem.

2

THEOREM B. Let G be a 2-group all of whose non-normal subgroups are
either cyclic, abelian of type (2,2) or ordinary quaternion. Assume in addition
that G possesses a non-normal subgroup H which is isomorphic to Qgs. Then
G is isomorphic to one of the following groups :

(a) G = Q32 (a generalized quaternion group of order 32).

(b) G is a unique 2-group of order > 2% with the property that Qa(G) =
Qs x C2 and we have |G| = 25, where this group (of class 3) is defined
in part A2(a) of Theorem 49.1 in [2].

(¢) G is a splitting extension of a cyclic noncentral normal subgroup of
order 4 by Qs.

(d) G = Hy x Hy, where Hy = Hy = Qs.

(¢) G = tho, hn){g), where (ho, ) = Qs, Z((ho, 1)) = (2}, (g) = Cor,
w23, o) 0(g) = {1}, 21((9) = (). ° € Z(G), . ol = 1, and
lg,h1] = 2¢2', e = 0,1. Here we have |G| = 2"* n>3 G’ 7Ql(G)
(z,72') 2 Eyq, G is of class 2 and Z(G) = (g?) x () Con- 1><C2

(f) G=Cx*Q, where C 2 Hy = {(a,b|a* =b*=1, a®* =a™1), Q = Qg
and CNQ = (a?h?) = Q.

Conversely, all the above groups satisfy the assumptions of the theorem.
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THEOREM C. Let G be a p-group with a cyclic intersection of any two
distinct conjugate subgroups. Assume in addition that G has a mon-normal
subgroup which is neither cyclic nor abelian of type (p,p) nor an ordinary
quaternion group. Then G is metabelian and G is either a 2-group of mazximal
class and order > 25 (if |G| = 2°, then G = D3y or SD33) or G is a p-group
of class at most 3 with G' # {1} elementary abelian of order at most p? and
G is isomorphic to one of the groups defined in Propositions 3(b2), 5, 7, 8,
9, 10, 11 and 12 stated in the section 4.Proof of theorem C.

Conversely, all these groups satisfy the assumptions of our theorem.

In this paper we shall consider only finite p-groups and our notation is
standard (see [1]).

2. PROOF OF THEOREM A

Let G be a p-group all of whose non-normal subgroups are cyclic or abelian
of type (p, p) and we assume that G possesses a non-normal abelian subgroup
H of type (p,p). We set K = Ng(H) so that we have H < K < G and
K < @G. Since each subgroup X of G with X > H is normal in G, it follows
that K/H is Dedekindian and K/H has exactly one subgroup of order p. This
implies that K/H # {1} is either cyclic or p = 2 and K/H = Qs. Let L/H
be a unique subgroup of order p in K/H so that L < G and ;1 (K) < L. If
g € G— K, then L = (H,HY) and so we have Q;(K) = L.

Suppose that K does not possess a G-invariant abelian subgroup of type
(p,p). By Lemma 1.4 in [1], we get p = 2 and K is of maximal class. But H is
a normal four-subgroup in K and so K = Dg. Since Cq(H) = Cx(H) = H,
it follows by a result of M. Suzuki (see Proposition 1.8 in [1]) that G is also
a 2-group of maximal class. In this case H has exactly two conjugates in
K =L=Dgandso|G:K|=2and |G| = 2% It follows that G = D14 or
SD1¢ and we have obtained the groups stated in part (a) of our theorem.

In what follows we may assume that K possesses a G-invariant abelian
subgroup U of type (p,p). Since Q1 (K) = L, we have U < L and so L = HU
with [H NU| = p. If L is abelian, then L = E,s. If L is nonabelian, then in
case p > 2 we have L = S(p?) and in case p = 2 we must have L = Dg. But
the last case cannot happen since U <G and L has exactly two four-subgroups
which would imply that also H < G, a contradiction. Hence we have either
L~E, or p>2and L2 S(p?).

Suppose that p > 2 and L = S(p?). In that case we have

(z) =HNU=L"=7(L) <Z(Q).

If Co(L) > (z), then take an element z € Cg(L) — (2) such that 2P € (z) and
consider the abelian subgroup S = (h, z, z) of order p?, where h is any element
in H — (z). By our assumptions, we have S <G. But LNS = H = (h,z)
and so H < G, a contradiction. We have proved that Cq(L) = (z). Since an



104 Z. JANKO

Sp-subgroup of Aut(L) is isomorphic to S(p?), it follows that |G : L| = p and
K = L so that |G| = p*. Also note that G/(z) = S(p?) and G/K acting on
p + 1 subgroups of order p? (containing (z)) fixes U and acts transitively on
p other ones. Hence U is the unique G-invariant subgroup of order p? in L.
Set V = Cg(U) so that V is an abelian normal subgroup of order p® in G and
we have G = LV with LNV =U. If V = E.;s, then we get a group stated in
part (¢) of our theorem. Hence we may assume that there is an element ¢ of
order p? in V — U such that t» = z. We have obtained a group from part (b)
of our theorem.

From now on we may assume that L = Es. If |G/L| = p, then K = L is
elementary abelian of order p? and index p and again we have obtained the
groups from part (c) of our theorem. Thus we may assume in what follows
that |G/L| > p.

In the rest of the proof we fix our notation for:

B, H, K =Ng(H) #G, \(K) =L, B =U <G,
where
L=HU, HNU = C,,
and {1} # K/H is either cyclic or p = 2 and K/H = Qg. Also we fix our
assumptions that L = E,s and |G/L| > p.

(i) First assume that there is a central element z in G of order p which is
contained in H.

In that case we have |G : K| = p so that K > L and therefore there is an
element v € K — L of order p? with v € L — H. We may choose a G-invariant
subgroup U < L of order p? so that U < Z(G). The socle Q;(X) of any cyclic
subgroup X in G of composite order is contained in U.

Indeed, acting with G/K on p + 1 subgroups of order p? in L which
contain (z), we see that |G : K| = p. Since |G/L| > p, we have K > L and
so there is an element v € K — L of order p?, where v? € L — H. Considering
(v,2) =2 Cp2 x Cp, we obtain

(v,2) QG and so U1 ({v, z)) = (vP) < G.

Then we may set E,» = U = (z,v”) < Z(G). Let X be any cyclic subgroup
of composite order in G and assume that €4 (X) £ U. But then O;(X) < K
and so Q1(X) < L. Take an element 1 # v € U < Z(G) and consider the
subgroup X x (u) < G so that we get 1(X) < G. Since Q4 (X) £ U, we get
L <Z(G) and so H 94 G, a contradiction.

(i1) Suppose that K/L is noncyclic. Then we have p = 2, K/H = Qg,
|G| = 26 and K/L = E4. Since U1(K) < U < Z(G), K/U is elementary
abelian. Considering the Dedekindian group G /U of order 2* which possesses
an elementary abelian subgroup K /U of index 2, it follows that G/U is abelian
and so G’ < U. Any two non-commuting elements in G generate here a
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minimal nonabelian subgroup (see Lemma 65.2 in [2]). For any g,h € G
we have [g%,h] = [g,h]? = 1 and so U1(G) < Z(G). In particular, for any
g € G-—K, g2 € K — L is not possible and so g> € L and this implies
g> € U. Hence U1(G) < U and exp(G) = 4. Since Z(G) < K, we get
Z(G) = U. Because G/L = Eg, we have Cg(L) > L and so Cg(L) < K
implies C (L) > L. Thus there is v € Cx (L) — L such that v? € U — H. Let
h € H —U and consider the subgroup (h,v) 2 Cy x C4 so that (h,v) <G and

Q1 ((h,v)) = (h,v*) <G.

If (h,v?) £ Z(K), then there is g € G — K centralizing (h,v?), a contradiction.
We have proved that H < Z(K) and so Cg(L) = K.

We have Z(K) = L and so |K'| =2 and U = K’ x (HNU). Suppose that
U1(K) = U. Then there are elements vy,v, € K — L such that z; = v? #
29 = v3, where 21,20 €U — H. Let h€ H—U and g € G — K. Since

<h,’U1> = CQ X C4 and <h,’U2> = CQ X C4,
we have
(h,v1) <G and (h,v2) <G and so (h,z1) <G and (h, z2) <G.

But this gives h9 = hz; = hzo and 21 = z2, a contradiction.

We have proved that Uy(K) = (u) is of order 2, where w € U — H. Tt
follows that K/(u) is elementary abelian and so U1(K) = K’ = (u). Let
ki,k2 € K — L be such that (kq,ks) covers K/L. Since k% = k3 = u and
[k1, k2] = u, we get Q = (k1,k2) 2 Qs and K = H x Q, L = H x (u), where
Q<G.

Since G’ < U is elementary abelian, it follows that G induces on @ only
inner automorphisms of @ and so we have G = @ * C, where C = C¢(Q) and
QNC = (u)y, KNC = L. Also we have Z(C) = Z(G) = U. By Lemma 1.1 in
[1] we get |C'| = 2. On the other hand,let he H—-U, g€ C — L and v € Q
with v? = u. Since

Cy x C4 = (h,v) <G, it follows that Q4 ((h,v)) = (h,u) <G.

Thus we get h9 = hu and so u € C’. We have proved that ' = Q' = (u) = G'.

Let g be an element in C — L and h € H — U. If g*> € U — (u), then
C = (g, h) = Hye, where Hyg denotes the nonmetacyclic minimal nonabelian
group of order 16. If g € (u), then we have (g, h) = Dg and so in this case
C = (g,h) x (z), where (z) = HNU. We have obtained the groups stated in
part (d) of our theorem.

(i2) Suppose that {1} # K/L is cyclic so that K/H is cyclic of order
> p2. In this case we show that G/L is abelian.

Indeed, assume that G/L is nonabelian. Since G/L is Dedekindian, it
follows that p = 2 and G/L = Qg. We also have 1 (G) = L. Since Cg(L) > L
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and Cg(L) < K, we get Cx(L) > L. Let v € Cx(L) — L with o(v) = 4 so
that v2 € U — H and let h € H — U. Then

Cy x Cy 2 (h,v) <G, and (h,v?) <G.

If (h,v?) £ Z(K), then there is ¢ € G— K which centralizes h, a contradiction.

Hence (h,v?) < Z(K) and so H < Z(K) which implies that K is abelian.
Since G/U is Dedekindian and nonabelian, it follows that G/U is Hamil-

tonian. Let /U be a subgroup in G/U which is isomorphic to Qg and set

Qo/U =Z(Q/U) = (Q/U)".

Let Q1/U and Q2/U be two distinct cyclic subgroups of order 4 in @Q/U so
that @1 and Q9 are abelian and Q1 N Q2 = Qo. It follows that Qy < Z(Q)
and so Qo = Z(Q). By Lemma 1.1 in [1], |Q’| = 2 and since @’ covers Qo /U,
it follows that Qp = U x Q" = Eg. But then Qp = Q1(G) = L and so
K = Cg(L) > Q is nonabelian, a contradiction. We have proved that G/L is
abelian and so G/L is either cyclic of order > p? or G/L is abelian of type

(p*p), s 2 1.

(i2a) Assume that G/L is cyclic. Let g € G — K so that (g) covers G/L
and let (t) = Q1((g)) be the socle of (g), where t € U — H and o(g) = p°,
s > 3. We may set t = g*"  and so (gP) covers K/H = C,.-1. Also set
v=g?"" " so that (v) = Cp2 and vP = t.

Since (g) stabilizes the chain L > U > {1}, it follows that (g”) centralizes
L and so K is abelian. Consider the abelian subgroup (h,v) = C, x Cp2,
where h is any element in H — U. Since (h,v) < G, we get

Qi ((h,v)) = (h, 1) G,

Thus we get h9 = ht' for some i #Z 0 (mod p) and so G’ > (t). On the other
hand,

Z(G) = Ck(9) = (¢",U) and 50 |G : Z(G)| = p*.
By Lemma 1.1 in [1], we get

|G| = p|Z(G)||G'| and so |G'| = p and G’ = (¢t).
We have (g, h) = M,:+1 and if we set (z) = H N U, then

G= <Z> X <g,h> = Cp X Mps+1.
We have obtained the groups stated in part (e) of our theorem.
(i2b) Assume that G/L is abelian of type (p®,p), s > 1, and K is abelian.

Let v € K — L be such that (v) covers K/L = Cps, s > 1. Then t = vP" €
U — H so that

K/H = Cps+1 and K = H x <’U> = Ep2 X Cps+1.
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Since G/ L is abelian of type (p®, p), there is an element w € G — K such that
wP € L and so wP? € U. Let h € H — U and consider the abelian subgroup

<h,’l)> = Cp X Cps+1, s> 1.
Since (h,v) <G, we get (h,t) <G and so h" = ht (where we replace h with a
suitable power h7, j # 0 (mod p), if necessary). In particular, we get G’ > (t).

Suppose that G/U is nonabelian so that p = 2 and G/U is Hamiltonian.
But G/L is abelian and so

(G/U) =01(G/U) = L/U.
Hence there is an element m € G such that m? € L — U, a contradiction. We
have proved that G/U is abelian and so (t) < G’ < U < Z(G) and therefore

G is of class 2 with an elementary abelian commutator subgroup.
Note that

Cp x Cpav1 = (h,v) <G and so [h,w] € (h,v) NU = (t),
which implies that (v) <G and therefore p— 1 other cyclic maximal subgroups
of (h,v) are also normal in G.
In case (v) £ Z(G) we get v = vtJ for some integer j # 0 (mod p). Solve

the congruence ij = —1 (mod p), where ¢ # 0 (mod p). Then we compute:

(v'h)" = (v*)'h" = (vt!)'ht = v't " ht = v'h,
where (v'h) = Cpe+1 is also a cyclic maximal subgroup in (h,v) and (v'h) <
Z(G). Thus replacing (v) with (v'h), we may assume from the start that
(v)y <Z(G). We get

Z(G) = Cx(w) = (v)U and so |G : Z(G)| = p°.
By Lemma 1.1 in [1] we get

|G| = p|Z(G)||G'| and so |G'| = p and G’ = (t).

First suppose that w? € U — (t). Then S = (h,w) is the nonmetacyclic
minimal nonabelian group of order p*. If we set Z = (v), then we get

G=ZxS, where Z = Cpera and ZNS = 5"

Assume that w? € (t) and set (z) = UNH. Then S = (h, w) is isomorphic
to Dg in case p = 2 and to S(p®) or M,s in case p > 2. Setting again
Z = (v) = Cpey1 we have Z < Z(G) , SNZ = 5" and G = (z) x (S * Z).
However, in case p > 2 and S = M5, we have SxZ = S1%Z, where S; = S(p?)
for a suitable subgroup S; in S * Z. We have obtained all groups stated in
part (f) of our theorem.

(i2¢) Assume that G/L is abelian of type (p®,p), s > 1, and K is non-
abelian. We have K/L = Cps, s > 1. Let v € K — L be such that (v) covers
K/L. Then 1 # ¢t =vP" € U — H so that K/H = Cp.+1. Acting with K on L,
we see that K stabilizes the chain L > U > {1}. Hence if s > 1, then there is
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an element vg of order p? in K which centralizes L and v} € U — H. For an
element h € H — U we consider

Cp x Cp2 = (h,v0) <G and so Ep2 = (h,0vf)) <G.

If (h,v}) £ Z(K), then there is an element g € G — K which centralizes h,
a contradiction. Thus we must have (h,v}) < Z(K) and this implies that K
is abelian, a contradiction. We have proved that s = 1 and so t = v? and
|G| = p°. Since Cr(v) = U = Z(K), Lemma 1.1 in [1] gives that |K’'| = p.
On the other hand, K/ < H and since K’ < Z(G), we get K’ = HNU. For
any h € H—U, we have ([h,v]) = K’ and so K is the nonmetacyclic minimal
nonabelian group of order p* and ®(K) = U. Because G/L = E 2, we have
exp(G) = p? and so for any # € G — L, we have 2P € U and U;(G) < U.
For p = 2, G/U is elementary abelian. For p > 2, the fact that G/U is
Dedekindian implies that G/U is abelian and so again G/U is elementary
abelian. We have proved that ®(G) = U and so G’ < U and d(G) = 3. Since
Z(G) < K, we also get Z(G) = U. If G’ = K’, then H 4G, a contradiction.
Thus, G’ = U and so G is special.

By Lemma 146.7 in [4], G has exactly one abelian maximal subgroup
A and for each subgroup X; of order p in G’ (i = 1,2,...,p + 1) there are
exactly p pairwise distinct maximal subgroups L;; (j = 1,2,...,p) of G such
that L;_] = Xz

Suppose that G possesses a nonabelian subgroup S of order p? so that S is
minimal nonabelian and S IG. But then E» = G’ < S and since G’ = Z(G),
we get that S is abelian, a contradiction. Hence G is an As-group since each
subgroup of index p? in G is abelian and K is a minimal nonabelian maximal
subgroup in G. If there is an element g € G — K of order p, then (g, h) (with
h € H—U) is minimal nonabelian of order p?, a contradiction. We have proved
that E,s = L = Q;(G) and so a unique abelian maximal subgroup A of G is of
type (p?,p?). Indeed, A contains U = ®(G) and |[K NA| = p3. If L < A, then
there is an element g € G — K which centralizes L, a contradiction. Hence we
have ANL = U = Q(A) which shows that A2 C,2 x Cp2.

By the results of §71 in [2], it follows that G is one of As-groups from
Theorem 71.4(b2) in [2] with oo = 1. We have obtained the groups from part
(g) of our theorem.

(ii) We assume that whenever H is a non-normal abelian subgroup of
type (p,p) in G, then H NZ(G) = {1}. Let z be a central element of G
which is contained in L — H so that we have L = Q;(K) = (2) x H = E3
and L NZ(G) = (z). For any 1 # h € H, we have (h,z) < G and therefore
HnN(h,z) = (h)y<K. Thus, H < Z(K) and Cg(L) = K. It follows that G/K
acts faithfully on L and stabilizes the chain L > (z) > {1} and [H, G] = (z).
Thus {1} # G/K is elementary abelian of order < p?. However, if |G/K| = p,
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then there is an element g € G — K centralizing an element 1 # h € H and
so h € Z(G), a contradiction. We have proved that we have G/K = E,».

Let X be any cyclic subgroup of composite order in G. Since Q;(X) < K,
we have Q1(X) < L = Q;(K). Suppose that Q;(X) # (z). In this case we
have

X x (z) <G and so (X)) <G.
This is a contradiction since L N Z(G) = (z). We have proved that the socle
of each cyclic subgroup of composite order in G is equal (z) < G'.
We have Z(G) < K and so we have

Z(G)NL =7Z(G) N1 (K) = ().
This implies that Z(G) is cyclic and we also have |G : Z(G)| > p*.

(ii1) First assume that K/H = Qg. In this case we have |G| = 27. Let K;
be any of the three maximal subgroups of K containing H so that K;/H = C,
and therefore each K is abelian. Hence |K’| =2 and so K/ <G and K/ < L
implies that K’ = (z). Let vy,v2 € K — L be such that (vy,ve) covers K/L.
Because v = v3 = z and [v1,vs] = 2z, we get Q = (v1,v2) = Qg so that
K =HxQ and Q 4G. For each K; (i = 1,2,3) we have K; <G and so
K;NQ <G. Thus G induces on @ only inner automorphisms of ) which gives
G=Qx*«xMwithQNM = (2) =Q and MNK = L, where M = C5(Q)
covers G/K. We have U1(M) < (z) and so Q/(z) is elementary abelian. We
get G/ = ®(G) = Z(G) = (z) and so G is extraspecial of order 27. Since
M' = ®(M) = Z(M) = (z), it follows that M is extraspecial of order 2°
containing an elementary abelian subgroup L of order 8 and so M = Qg x Qg
and G = Qg x Qg x Qg. We have obtained the group stated in part (h) of our
theorem.

(ii2) Assume that K/H is cyclic. Then K = H x (v) is abelian, where
(v) = Cps, s > 1, and (v) > (z) < G' NZ(G).

(ii2a) First suppose that G’ = (z). Then each cyclic subgroup of compos-
ite order is normal in G. Let x,y € G so that we have [2P,y] = [z,y]” = 1 and
therefore U1(G) < Z(G). Hence we have ®(G) = G'U1(G) < Z(G) and we
know that Z(G) is cyclic. Hence ®(G) is also cyclic and G’ = 1 (®(G)). Since
vP € Z(G), we have |G : Z(G)| = p* or p°. If M is any minimal nonabelian
subgroup in G, then either M = S(p?) or Z(M) = ®(M) = U1(M) and so in
this case M has a cyclic subgroup of index p. This gives:

If p =2, then M € {Ds, Qg,Man, n > 4}.
If p > 2, then M € {S(p*),Mn, n > 3}.

Let A; be any minimal nonabelian subgroup in G. Then we have G =
Ay % C, where C = Cg(A;) with Ay N C = Z(Ay). If C is abelian, then
C =7Z(G) and |G : Z(G)| = p?, a contradiction. Thus, C' is nonabelian and
Z(C) = Z(Q), where |C : Z(C)| = p? or p3. Let Az be a minimal nonabelian
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subgroup in C'. Then we have C = AyxC*, where C* = C¢(Ag) and A;NC* =
Z(Az). Note that Z(C*) = Z(C) and so if C* were nonabelian, then we get
|C* : Z(C*)| > p* and so |C : Z(C)| > p*, a contradiction. Hence C* is
abelian and so C* = Z(C) = Z(G). We have proved that G = A; * A3Z(G),
where Z(G) is cyclic. Finally, if p = 2 and A; = Qg and Ay = Dg, then
we must have |Z(G)| > 2. Indeed, if we have in this case |Z(G)| = 2, then
G = Qg * Dg and this group does not possess an elementary abelian subgroup
of order 8. We have obtained the groups in part (i) of our theorem.

(ii2b) Finally assume that G’ > (z). Set H = (h1, he) and we know that
(h1,2) <G, (ha,z) <G and both G/(hi, z) and G/(ha, z) are Dedekindian. If
both G/{(h1, z) and G/(hz, z) were abelian, then we get G’ < (hy, 2)N{ha, z) =
(z), contrary to our assumption. Hence we must have p = 2 and we may
assume that G/(hy, z) is Hamiltonian.

Let Q/(h1, z) be an ordinary quaternion subgroup in G/{h1,z) and set

C/(h1,z) = (Q/(h1,2))
so that Q' covers C'/(h1,2). Since G/K = E4, we have G’ < K and we
know that K is abelian. It follows that C = (h1,2)Q" < K and so C is
abelian of order 8. For each x € @ — C we have 22 € C — (hy,2). On
the other hand, the socle of each cyclic subgroup of composite order in G is
equal (z) and so o(2?) = 4 and therefore C' is abelian of type (4,2). We get
01 (Q) = (h1, 2), Q2(Q) = C, and all elements in @ — C are of order 8. Also
we have QN L = (hy,2). If Q" = C, then |Q : Q'| = 4 and a well known
result of O. Taussky would imply that @ is of maximal class (and order 2%),
contrary to the fact that Q1(Q) = (h1,2) = E4. On the other hand, Q" must
cover C'/(hy,z) and so we have Q' = Cy.
By Lemma 42.1 in [1], we have

Q=1{a,b|a®=0=1,a*=b" =2 a®=0a"1),
where Q' = (a?), Z(Q) = (1?), 22(Q) = (a?,b?), and 21(Q) = (z,a?b?).
Since Z(Q) = (b?), we have Cq(b) = (b) and so Cyp, .)(b) = (z). On the
other hand, b> € K > L and therefore b? centralizes L and so b induces an
involutory automorphism on L 2 Eg. Hence Cy,(b) = E4 and so there exists
an involution e € H — (h1) such that [e,b] = 1.

We have

Cy x Cg = (e, b) <G, where Qq({e, b)) = (e, 2).

On the other hand,
b = a 'ba = b(b~'a"tb)a = ba?,

which shows that a® € (e,b). But then (e,b) contains (e, z,a%b?) = Eg,
contrary to
Q1(<€,b>) = <€,Z> = Ey.
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We have proved that the case G > (z) cannot occur.

It remains to be proved the converse that all groups G stated in our
theorem satisfy the assumptions of that theorem. In fact, we have to prove
that each noncyclic subgroup of order > p? is normal in G and that G has a
non-normal abelian subgroup of type (p, p).

If G =2 Djg or G = SDqg, a four-subgroup in G is not normal in G.

Let G be a p-group in part (b) of our theorem. Then we have L’ < G’ < L,
where G’ = E,2. For an element | € L — G', set H = (L',l) = E,». If H 4G,
then |G/H| = p? implies that G’ < H, a contradiction. Hence H is not
normal in G.

Let E be an elementary abelian maximal subgroup in a nonabelian p-
group G of order p* (from part (c) of our theorem). Then we have 1 # G’ < E.
Let E,» = H be any subgroup of order p? in E which does not contain G’. If
H <G, then |G/H| = p? implies that G’ < H, a contradiction. Hence H is
not normal in G.

Let G be a 2-group of order 2° from part (d) of our theorem. Note that
Z(G) = E4 implies that G has no abelian maximal subgroup. Indeed, if G
would have an abelian maximal subgroup, then we may use Lemma 1.1 in [1]
and we get

G| = 28 = 2|G")|Z(G)| = 2%|GY| and |G'| = 2°,

which contradicts the fact that |G| = 2. Let S be a noncyclic subgroup of
order > 22 and assume that S is not normal in G. Then G’ £ S and so S
is noncyclic abelian. If |S| = 2% then S x G’ would be an abelian maximal
subgroup of G, a contradiction. Assume that |[S| = 22. Since G has no
elementary abelian subgroups of order 24, we get that S is abelian of type
(4,2). In case G = (Dg xQg) x Cg, we have U1 (G) = G’ and so ( since G' £ S
) we must be in case

Hig*xQs &2 G = DxQ, where D 2 Hyg, Q= Qg and DNQ =D = (2) =Q’,

and z is not a square of any element in D. Since all elements in G — D are of
order 4, we have €4(S) < D and so

Es 2 Q(D) =Q1(S) x D" = Q4(S) x (z).
We have
Cp(Eu(9)) = A (S) x (z) = (D) and Ca(:1(5)) = (D) *Q,
where G1(Ca (24 (S))) = (2).

But S < Cg(1(5)) and so G’ = (z) < S, a contradiction. It is easy to see
that G possesses a non-normal abelian subgroup H = E4. Set H = (¢, u),
where t is a noncentral involution in G and u is a central involution in G such
that (u) # G’. Then we have G’ £ H. If H < G, then there is g € G such
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that [g,t] # 1 and so G’ = ([g,t]) < H, a contradiction. Hence H = (t,u) is
not normal in G.

Let G = M x (t), where M = M,.11, s > 3, and (t) = C, (which are
groups of part (e) of our theorem). We have Q1 (G) = E,3, Q2(G) is abelian of
type (p?,p,p) with U;1(Q2(G)) = G’ = C,,. Thus any subgroup of order > p?
is normal in G. Let H be a complement of G’ in 4 (G) so that H £ Z(G)
and so H is not normal in G. Indeed, if in this case H <G, then [G, H] # {1}
and [G,H] < H and so G’ < H, a contradiction.

Let G be a group of part (f) of our theorem. Let X be any subgroup of G
of order > p3 which is not normal in G. Then we have G’ = S’ £ X and so X
is abelian of order > p* with X N Z = {1}. But |G/Z| = p* and so |X| = p?
and G = Z x X is abelian, a contradiction. Let H = (t,u) = E,2, where t is
a noncentral element of order p in S and wu is a central element of order p in
G with (u) # G’. Then we have G’ £ H and so H is not normal in G.

Let G be a group of order p° given in part (g) of our theorem. Then G
is special with G’ = E,» and G is an Az-group. Let Y be any subgroup of
G of order p? which does not contain G’. Since |G : Y| = p? and G is an
As-group, it follows that Y is abelian of type (p?,p). Then A = G'Y is a
unique abelian maximal subgroup of G and we know that A = Cp2 x C,.
But then E» = Q;(A4) = ®(A) = G, a contradiction. Let H be an abelian
subgroup of order p? contained in Q1(G) = E ;s distinct from G'. If H < G,
then G = HA and G/H is abelian so that G’ < H, a contradiction. Hence H
is not normal in G.

Let G = Qg * Qg * Qg be the extraspecial group of order 27 given in part
(h) of our theorem. Let X be any subgroup of order > 2% and assume that
X is not normal in G. Then X NG’ = {1} and so X is elementary abelian.
But then X x G’ is an elementary abelian subgroup of order > 2% in G. Since
G is extraspecial of order 27 and type ” — 7, there are no such elementary
abelian subgroups in G. Hence X < G. Let H be a four-subgroup in G with
HNG ={1}. If H <G, then HNZ(G) # {1}, a contradiction.

Finally, let G be a group stated in part (i) of our theorem. Then we have

0 (Z(@)) = G', where Z(G) is cyclic.

Also note that |G : Z(G)| = p* and so G does not possess an abelian maximal
subgroup. Indeed, if G would have an abelian maximal subgroup, then Lemma
1.1 in [1] implies that

|G| = plG'l|Z(G)|, where |G'| = p,

a contradiction. Let X be any subgroup of order > p3 in G. Then we claim
that X <@G. Indeed, assume that X is not normal in G. Then we have G’ £ X
and so X NZ(G) = {1} and therefore X is abelian of order > p3. But then
Z(G) x X is an abelian subgroup of index < p in G, a contradiction. It remains
to be shown that G = (A1 * A3)Z(G) possesses an abelian subgroup of type
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(p,p) which is not normal in G. If A; and Ay possess noncentral elements
ay; € Ay and ag € Ay of order p, then H = (a1, az) = E,» and H is not normal
in G since HNZ(G) = {1}. If p > 2, then

Ay, Ay € {S(P*), Mpn, n > 3}
and in this case there are such elements a1 and as. If p = 2, then we have
A17A2 S {D87 Q87 MQ”; n 2 4}

and we may replace A; and Ay with suitable other minimal nonabelian sub-
groups of GG so that again we find noncentral involutions a; € A; and as € As.
Indeed we have:
Qs * Qg = Dg * Dg,
Qs * Man = Dg * Man, n > 4,
and
(Ds x Qs)Z(G) = (Dg x Dg)Z(G), where |Z(G)| > 2.
Theorem A is completely proved.

3. PrRooF OF THEOREM B

First we shall prove a series of lemmas about 2-groups G which satisfy the
assumptions of Theorem B, where H always denotes a non-normal subgroup
in G which is isomorphic to Qg. Set K = Ng(H) so that H < K < G and
K <G. Let L be a unique subgroup in G which contains H as a subgroup of
index 2. We fix this notation in the sequel.

LEMMA 3.1. The factor-group K/H # {1} is either cyclic or isomorphic
to Qs and G/L # {1} is Dedekindian. We have Q1(K) < L and if K does not
possess a G-invariant four-subgroup, then G = Qqs (the case (a) of Theorem
B). From now on we shall assume that K possesses a G-invariant four-
subgroup U. We have in that case L = HU with Uy = HNU = Z(H) < Z(QG)
and G/U is also Dedekindian.

PRroOF. Since K/H is Dedekindian and L/H is a unique subgroup of
order 2 in K/H, it follows that K/H # {1} is either cyclic or isomorphic to
Qs which also implies that 9, (K) < L.

Assume that K has no G-invariant four-subgroup. By Lemma 1.4 in [1],
K is a 2-group of maximal class and then K = L is of order 2%. We have
Ce(H) = Cx(H) < H and then Proposition 10.17 in [1] implies that G is also
of maximal class. Since K <G, we must have |G/K| = 2 and so |G| = 2°. The
only possibility is G = Qg5 and this group obviously satisfies the assumptions
of Theorem B.

From now on we shall assume that K has a G-invariant four-subgroup U.
Since Q1 (K) < L, we have U < L and so L = HU with Uy = HNU = Z(H).
But L’ < HNU and so we have L' = Uy < Z(G). Also, G/U is Dedekindian.

O
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LEMMA 3.2. We have U =Z(L) < G', K = HxCg(H) with U < Cg(H)
and HN Cg(H) = Uy. Also, G/K is elementary abelian of order 2 or 4 and
Q(K)=U.

PROOF. Since L' = H' = Uy, we get L = H x Z, where Z = C4 or E4 and
HNZ =Uy. However, if Z = C4, then H would be a unique subgroup in L

which is isomorphic to Qs and this gives H < G, a contradiction. Hence we
have Z = E4 and so

U=Q(L) = (K)=2(L).
Let Hy be any cyclic subgroup of order 4 in H. Then
HU<Gandso H = (HiU)NH<K.

Thus each element in K induces on H an inner automorphism of H and so
we get

K = H % Cg(H) with U < Cg(H) and H N Cg(H) = Up.

For an element x € G — K, there is an element h € H of order 4 such that
h* € L—H. But (h)U QG with h? € Up and so h* = hu for some u € U — U.
Then we have [h, 2] = u and so we get U < G'.

There are exactly three maximal subgroups of L which contain U and
they all are abelian of type (4,2). The other four maximal subgroups of L
which do not contain U are isomorphic to Qg. This gives 1 # |G/K| < 4.

For any element y € H — Uy and any g € G — K, we have

y* € Uy, Uly) <G and y? = yu, where u € U.
This gives
y92 = (yu)? = (yu)u? = (yu)uug = yup with some wuy € Up.

Hence g? € K and so G/L is elementary abelian of order < 4. O

LEMMA 3.3. If U £ Z(G), then G is the group of order 2° and class 3
from part (b) of Theorem B and this group satisfies the assumptions of that
theorem.

PROOF. Assume that U £ Z(G). Note that K/H = Cg(H)/Uy is either
cyclic or isomorphic to Qs. Hence if K > L, then Cq(H) = Cx(H) > U and
so there is an element k of order 4 in Cx(H) — U such that k2 € U — Up. In
that case we have

U<k>:UOX<k>gCQXC4§G

But then we get (k?) <G and so U < Z(G), a contradiction.
We have proved that K = L. Suppose that G — K contains an element y
of order < 4 which does not centralize U. Since y? € U, we get D = U (y) =
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Dg < G. Let V be a four-subgroup in D which is distinct from U. Because
UG, we get also V<SG and VN K =Uy = Z(D). But then we have

[HV]<KNV=Uy<H

and so V normalizes H, a contradiction. Hence each element in G — K of
order < 4 centralizes U and since U £ Z(G), there is an element x of order 8
in G — K so that we have 22 € L — U and (z*) = Uy. Note that (z)U < G
and we have either (z)U = Cg x Cq or (x)U = Myg. In any case (z?) is
characteristic in (z)U and so (z?) < G. Then there are exactly three maximal
subgroups of K = L which contain (z2), where two of them are isomorphic to
Qg and (22)U = Cy4 x Cy. Thus acting with G/K on four maximal subgroups
of L which are isomorphic to Qg, we get |G : K| = 2 and so |G| = 2°. Since
U < Z(K) (noting that K = L), each element in G — K does not centralize
U and so (by the above argument) all elements in G — K are of order 8.

We have proved that Q5(G) = K = L = Cy x Qg and so by Theorem 52.1
in [2], G is isomorphic to the group defined in part A2(a) of Theorem 49.1 in
[2]. Since ©41(G) = G' = U, this group obviously satisfies the assumptions of
Theorem B and we are done. 0

From now on we shall always suppose that U < Z(G).

LEMMA 3.4. The factor-group G/U is abelian and so we have G' = U <
Z(G). Since for all x,y € G we get [2%,y] = [z,y]? = 1, it follows that
P(G) < Z(G).

PROOF. Assume that G/U is nonabelian so that G/U is Hamiltonian. Let
Q@ /U be an ordinary quaternion subgroup in G/U, where by our assumption
we have U < Z(G) (see Lemma 3). Set

Qo/U = (Q/U) = Z(Q/U), where |Qo : U| = 2.

Let @Q1/U and Q2/U be two distinct cyclic subgroups of order 4 in Q/U
so that @1 and @9 are two distinct abelian maximal subgroups in (. This
implies that |@Q’| = 2. On the other hand, @’ covers Qo/U = (Q/U)’ and so
Qo = U x Q' = Eg. For each | € Q — Qg, we have [? € Qo — U and [? € K
(since G/K is elementary abelian of order < 4). But then Qg < K which
contradicts Lemma 2 which states that Q4 (K) =U. 0

LEMMA 3.5. There are no involutions in G— K and so we have U = G/ =
01(G) < 2G).

PROOF. Set Z(H) = H' = (z) and suppose that there is an involution ¢
in G— K. Then H # H' and i normalizes Hy = H N H' = Cy4. It follows
that Ho(i) = C4 x Co or Dg and Ho (i) < G. If (z,4) is not normal in G, then
Hy (i) = Dg and there is g € G which induces on Hy() an outer automorphism
(which permutes two four-subgroups in Hy(i)). But in that case we have
[(Ho(i)),{g)] = Ho = Cy4, contrary to the fact that G’ = U = E4. It follows
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that we have E = (z,i) < G. But then we have [H, E] < KN E = (z) and so
¢ normalizes H, a contradiction. O

LEMMA 3.6. The factor-group K/H is cyclic.

ProOOF. Assume that K/H is noncyclic so that setting Z(H) = H' = (z)

we get
Qs = K/H = Cg(H)/(z)
and therefore
Z(Ce(H)) =U and Z(K) = U = Z(G).

By Lemma 4, we have ®(G) < Z(G) and so ®(G) = U. On the other hand,
|K| = 2% and so |G| > 27 and d(G) > 5. By Lemma 5, G has no normal
elementary abelian subgroup of order 8 and so by the four-generator theorem
(see Theorem 50.3 in [2]), we must have d(G) < 4, a contradiction. O

Proor orF THEOREM B. We continue with the situation which we have
reached after Lemma 6. Hence we have

U=G"=M(G) <ZG), ®(G)<ZG),
K = H x (a) with (a) 2 Can, n>1, L =H x Q1({(a)),
and G/K # {1} is elementary abelian of order < 4.

(i) First assume K = L. In this case G is a special group of order 2° or
26 with

2 (G)=2(G) =7Z(G) =G =U 2 E4 and we set Z(H) = (z).

Let G/ K be any fixed subgroup of order 2 in G/K and let € Gy— K. Then
x normalizes
Hy = <h0>:HﬁngC4.

If x inverts hg, then for an element h € H — Hy, we have hrx € Gy — K
and hx centralizes Hy. Hence there is an element v € Gy — K such that v
centralizes an element hy € H of order 4. If v? = z, then hgv is an involution
in G — K, a contradiction. Hence we have v? = 2’ € U — (2). Since H is not
normal in in Gy, we have for any h1 € H — (ho), [h1,v] € {#/, 22'}. However,
if [h1,v] = 22/, then we get

(h1v)? = h3v?[hy,v] = 22/ (22)) = 1,

and so hyv is an involution in G — K, a contradiction. Thus we get [h1,v] =
2’ = v? and so (v) < Gy. It follows that Gy is a splitting extension of the
cyclic noncentral normal subgroup (v) of order 4 (with v? = 2) by H = Qs.
We have obtained the group stated in part (c) of Theorem B. Note that
(hov)? = 22', (hov) centralizes (ho) and [h1,hov] = 22" and so Gy is also a
splitting extension of the cyclic noncentral normal subgroup (hov) of order 4
(with (hov)? = 22') by H = Qg.
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Suppose now in addition that we have G/K = E4. If a cyclic subgroup (h)
of order 4 in H is normal in G, then acting with G/K on four quaternion sub-
groups in K = L, we see that G interchanges two quaternion subgroups which
contain (h) and so G interchanges also the other two quaternion subgroups
in K. But this implies that |G/K| = 2, a contradiction. Hence if G;/K are
three subgroups of order 2 in G/K, i = 1,2,3, then each G; normalizes ex-
actly one of the three cyclic subgroups of order 4 in H. This implies that that
there is an element w € G — Gy such that w centralizes hy (from the previous
paragraph), w? = 2’ and [ho,w] = 2’ so that K(w) is a splitting extension
of the cyclic noncentral normal subgroup (w) of order 4 (with w? = 2’) by
H = Qg. We have

[ho, vw] = 2, [hy,vw] = 2/, [hoh1, vw] = 1,

and so H normalizes (vw) with H N {(vw) = {1}. By the above, we must have
(vw)? = 2" and so we have

2 = (vw)? = v?w?[v,w] = 2’2 [v,w] = [v,w],

which implies that (v, w) = Qg with Z((v,w)) = (’). But H normalizes both
(v) and (w) and so H; = (v, w)<G. The structure of G is uniquely determined.
We verify that we have also Hy = (hyw, hov) = Qg with Z((hiw, hov)) = (22')
and [Hy, Hs] = {1}. Since Hy N Hy = {1}, we have obtained the group
G = H; x Hj from part (d) of Theorem B.

Finally, in both cases of groups G in parts (c) and (d) of Theorem B,
we have Q1(G) = G’ = E4 and so if X is any subgroup in G of order > 23
and if X contains only one involution, then X = Qg and if X contains more
than one involution, then X > G’ and so X < G. Thus in both cases the
assumptions of Theorem B are satisfied.

(ii) Now assume that K > L and so |Cg(H) : U| > 2. Since G/L is
abelian, G/K is elementary abelian of order 2 or 4, and K/L is cyclic of order
> 2, we have to consider two subcases.

(ii1) G/K has a subgroup Go/K of order 2 such that Gy/L is cyclic of
order > 4 and either G = Gy or G = GoG; with GoNGy = L and |Gy : L| = 2.
We set Z(H) = (z). Let g be an arbitrary element in Go— K so that (g) covers
Go/L. Since g% € Z(G), we have g? € Cg(H). Because K/H is cyclic but
U < Cg(H) is noncyclic and C(H)/(2) 2K/H, we get Cq(H) = (z) x (¢g?)
with o(g?) > 4 and so o(g) > 8. Let (2’) = Q;((g)) be the socle of (g), where
U = (z,2'). We have

Hy = <h0> =HNHI=Cy
is {g)-invariant and so Hy < Ggy. But hy € H — Hy inverts (hg) and so Cg(ho)
covers Go/K. Therefore we may choose g € Cg(hg) — K so that we may

assume [g,ho] = 1. But H is not normal in Gy and so [h1,g] € {7, 22}
and we may set [h1,g] = 2°2’, where ¢ = 0,1. We have obtained the groups
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from part (e) of Theorem B which obviously satisfy the assumptions of that
theorem.

Continuing with this case, we assume that G = GoG; with Go N G =
L = HU and |Gy : L| = 2. The group G is isomorphic to a group in part
(c) of Theorem B and so there is an element v € G; — L of order 4 such that
v? = 2’ and H normalizes but does not centralize (v) (see arguments in (i)).
On the other hand, g2 € Z(G) and 0(g?) > 4 and so there is an element w of
order 4 in (g?). But then vw is an involution in G — K, contrary to Lemma
5.

(ii2) G = KG*, where K N G* = L and G*/L is elementary abelian of
order 2 or 4. Also we have K = H X (a), where o(a) > 4. Also we set
Z(H) = (z) and Q4 ({(a)) = (') so that U = (z,2’). In any case, we have in
G* — L an element v of order 4 such that v? = 2’ and H normalizes but does
not centralize (v). We have Z(G) < Cg(H) = U(a). If Z(G) > U, then there
is an element w of order 4 in (a) with w? = 2’ and [v,w] = 1. But then vw is
an involution in G — K, contrary to Lemma 5.

We have proved that Q;(G) = Z(G) = U and so, in particular, o(a) = 4
and a ¢ Z(G). This also gives that exp(G) = 4 (because U1(G) < Z(G)).
Hence G is a special group of order 2° or 27. But G has no normal elementary
abelian subgroup of order 8 and so by the four-generator theorem we must
have d(G) < 4. Since ®(G) = U, we must have |G| = 2¢ and |G* : L| = 2.
We may set H = (hg, h1) so that [hg,v] = 1 and [h1,v] = 2’. Set [a,v] = u,
where 1 # u € U. We compute:

2

(va)? = v?a*u = 22u=u#1,

(v(aho))? = 2/ (22")u = uz and so u # z,
(v(ahy))? = 2 (22" )uz’ = u(z2') and so u # 27

It follows that w = 2z’ and so [a,v] = 2’ and Q = (a,v) = Qg which is
normalized but not centralized by H and Q N H = {1}. The structure of G is
uniquely determined.

Set C = (ho, hia). Since hZ = z, (h1a)? = 22’ and [ho, h1a] = z, we have
that C = Hy and C N Q = (2’), where 2’ is not a square in C. Also we have
[C, Q] = {1} and therefore we have obtained the group in part (f) of Theorem
B, which obviously satisfies the assumptions of that theorem, Our result is
completely proved. O

4. PrROOF OF THEOREM C
This theorem will be proved with a series of Propositions 1 to 12.

PROPOSITION 4.1. Let G be a p-group with a cyclic intersection of any
two distinct conjugate subgroups. Then each non-normal subgroup X in G
possesses a cyclic subgroup of index p.
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PrROOF. Let H be a maximal non-normal subgroup of G containing X.
Let L > H be such that |L : H| = p so that we have L < G. Since H is not
normal in G, there is g € G — L such that H9 # H. Hence we have L = HHY
and |H : (HNHY)| = p. By our assumption, H N HY is cyclic and so H has a
cyclic subgroup of index p. Since X < H, it follows that X also has a cyclic
subgroup of index p. O

In the rest of the paper we assume:

(¥x) G is a p-group with cyclic intersection of any two distinct conjugate
subgroups. Assume in addition that G has a maximal non-normal subgroup
H which is neither cyclic nor abelian of type (p, p) nor an ordinary quaternion
group. We set K = Ng(H) so that H < K < G and K <G and let L/H be
a unique subgroup of order p in K/H, where L < G. This notation will be
fixed in the sequel.

PROPOSITION 4.2. We have that K/H # {1} is either cyclic or p = 2
and K/H = Qg. Also we have Q1(K) < L.

If K does not possess a G-invariant subgroup isomorphic to E,2, then G
is a 2-group of mazimal class and order > 25 and if |G| = 2°, then G = Dag
or SDsy and all these groups satisfy our assumption (x).

From now on we always assume that K has a G-invariant subgroup U
isomorphic to E,2 and then we have L = HU with Uy = HNU = C, and
G/U is Dedekindian.

PROOF. Suppose that K/H has two distinct subgroups K1 /H and Ko/H
of order p. Then K1 <G, Ko <G and so K1 N Ky = H <G, a contradiction.
Hence L/H is a unique subgroup of order p in K/H and so K/H is either
cyclic or generalized quaternion. On the other hand, K/H is Dedekindian
and so K/H # {1} is either cyclic or p = 2 and K/H = Qg. In any case, we
have Q4 (K) < L.

Assume that K does not have a G-invariant abelian subgroup of type
(p,p). By Lemma 1.1 in [1], we have p = 2 and K is a 2-group of maximal
class and order > 2%. In that case K/H = Qg cannot happen and so K/H
is cyclic. It follows that K’ < H and K/K' =2 E4 and so K = L and K’ is a
cyclic subgroup of index 2 in H and K’ <G. Since H has only two conjugates
in G, we have |G : K| = 2 and so |G| > 2°. Since H is not normal in G, we
have G’ > K’ and so |G : G'| = 4. By a well known result of O. Taussky, G
is a 2-group of maximal class and order > 2°. However, Qa2 does not satisfy
(x) and so if |G| = 2°, then G = D33 or SD3s5 .

Conversely, let G be a 2-group of maximal class and order > 2°. Let Z be
a unique cyclic subgroup of index 2 in G. Let H be any non-normal subgroup
in G so that we have H £ Z and set Hy = HN Z QG with |H : Hy| = 2.
Hence if g € G is such that H9 # H, then we have H N HY = Hj is cyclic.

In the sequel we shall always assume that K possesses a G-invariant
abelian subgroup U of type (p,p). Since Q1(K) < L, we have U < L. On
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the other hand, G/U is Dedekindian and so U € H. We get L = HU with
Up=HnNU =C,. O

PROPOSITION 4.3. Assuming that G is not a 2-group of mazximal class,
then it follows that |G : K| = p and we may choose a G-invariant abelian
subgroup U of type (p,p) in L so that C, = Uy = HNU < Z(G). Also, G’
covers U/Uy and we have one of the following possibilities.

(a) We have

p=2, H>Dg, Z(L)=U < G" and K = H x C¢(H) with
U <Cg(H)and HNCg(H) = Up.
Also, the unique cyclic subgroup of order 4 in H is normal in G.

(b) We have H 2 Mpn, n >3, (if p=2, thenn >4 ) or H is abelian of
type (p°,p), s > 2. Set Hy = Qy(H) and then Hy = E,», Ng(Hy) = K
and K/Hy is Dedekindian. There are two subcases:

(bl) If S = HoU is abelian, then S<G is elementary abelian of order
p® and either H =~ Myn, n >3, (if p=2. then n >4 ) and in
this case we have U = Q1(Z(L)) , L’ = Uy, and U < G,
or H is abelian of type (p°,p), s > 2, and in this case L is
abelian of type (p*,p,p) with B1(L) = U1(H) > Uy.

(b2) If S = HoU is nonabelian, then p > 2, S = S(p*) < G (the
nonabelian group of order p® and exponent p) with Z(S) = U.
We have

G = (Z % S)(e), where Cpm 2 Z =Cg(S) <G, m>2, S=S(p*) 4G,

ZNS =17(S) =Uo, Z{e) = (e) = Cpm+1 or o(e) = p and Z(e)
is either abelian of type (p™,p) or Z(e) = Mym+1, where in any
case e induces on S an outer automorphism of order p (normal-
izing U and fusing the other p maximal subgroups of S). We
have Ep2: =2 G' =U < S and G is a group of class 3. We have
W (Z*S)=S and if Z(e) = (e) = Cpm+1, then Q1 (G) = S.
Conversely, groups G defined in (b2) satisfy our assumption (x).

Proor. By Proposition 1, H possesses a cyclic subgroup of index p.

(i) First assume that H is a 2-group of maximal class. In that case
Uo=UNH=7Z(H). If |H| > 23, then we have H/Uy = L/U 2 Dan, n > 3,
contrary to the fact that G/U is Dedekindian. It follows that H = Dg and
because |L/U| =4, we get L’ < HNU = Uy and so L' = Uy < Z(G). Then
we have L = H %« Z, where Z = C(H), ZNH = Uy and Z = Cy4 or Ey4.

Let (h) be a unique cyclic subgroup of order 4 in H and let z € G — K so
that H* # H. Since HN H?* is cyclic, we get HNH?® = (h) for allz € G— K.
This gives (h) <G. But L/(h) = E4 and so L contains exactly two distinct
conjugates of H in G and this implies |G : K| = 2. Let ¢t be an involution
in H — (h). Because U(t) < G and H is not normal in G, we get for an
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r € G— K, t* ¢ H and therefore we have t* = tu with some u € U — Uj.
Hence [t,z] = u € G’, which implies that G’ covers U/Uy and so in this case
U<d@.

Assume for a moment that Z = C4. In this case it is well known that
L = Dg * C4 contains a unique subgroup ) isomorphic to Qg and so @ < G.
For any cyclic subgroup (v) of order 4 in @ we have Uy < (v) and U{v) < G.
But then

(v) =U@)NQ LG,

and so G induces on @ only inner automorphisms of ). We get G = @ * C,
where C' = Cg(Q) and Q@ N C = Up. Since @ does not centralize U, we have
ULC and so UNC =Uy= Q. On the other hand, we get

G =Q'C'=U,C" <C,

contrary to U < G’. We have proved that Z =2 E4 and Z =Z(L) < G.
Suppose that U # Z so that UNZ = Uy, S = UZ =2 Eg and S<G. Acting
with an element z € G — K on three subgroups of order 4 in S which contain
Uy < Z(G), we see that Z 4G, U <G and so also we have E, 2 SN H JG.
But we know that a cyclic subgroup of order 4 in H is normal in G and so we
get H 4G, a contradiction. We have proved that U = Z = Z(L).
Let ¢ be any involution in H. Since U(t) <G and H < K, it follows that

(UW)NH = (t,Up) < K.

Thus, each element in K induces on H only inner automorphisms of H. It
follows

K =HxCq(H) with U < Cg(H) =Cg(H) and HN Cg(H) = Up.

(ii) Now suppose that H = Mp», n > 3, (where in case p = 2 we have
n > 4) or H is abelian of type (p°,p), s > 2. Set Hy = Q1(H) = E,2 so
that Hy < K. Tt follows that Ng(Hp) = K and K/Hj is Dedekindian. Set
S = HoU < G. We have

L/U = H/Uy, where H < Uy <Z(H), andso L' < HNU = U,.

If L is nonabelian, then L' = Uy < Z(G). In that case we act with G/K
on p+ 1 subgroups of order p? in S which contain Uy < Z(G), where U is the
only one of them which is normal in G and all p other ones are fused with
G/K and so we get |G : K| =p. Also, if hg € Hy — Up and = € G — K, then
hE = hou with u € U — Uy. Hence G’ covers U/Uj and so we have in this case
U<d@.

Now assume that L is abelian so that L is of type (p®,p,p). If Uy < Z(G),
then with the same arguments as above, we get |G : K| = p and G’ covers
U/Uy. Now suppose that Uy € Z(G). Then there is a subgroup U; of order p
in U such that U = Uy x Uy and Uy < Z(G). We have

U1(L) =0U1(H) <G and U1 (H) # {1} is cyclic .
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Let Hy be the subgroup of order p in U1 (H) so that we get H; < Z(G). Then
we replace U with

Ep2 gU*ZUl XH1 SZ(G),

where

U =U"NH=H, <Z(G)
and set S* = HoU*. Now, working with U*, U} < Z(G) and S* = HoU*
(instead of U, Uy and S), we get with the same arguments as above that
|G : K| = p and that G’ covers U*/U;. We write again U and Uy instead of U*
and U, respectively, so that we may always assume that Uy = UNH < Z(G).

(ii1) Assume that S = HoU is abelian so that S = Ejs and S < G.
Suppose in addition that H = Mpn, n > 3, (where in case p = 2 we have
n > 4). Then we have L'’ = H' = Uy < Z(G) and U < G'. Let (a) be
a cyclic subgroup of index p in H so that (a) covers H/H, (and L/S) and
(a) N Hy = Uy = (z). Let t € Hy — Up so that we may set [a,t] = z. Suppose,
by way of contradiction, that U € Z(L). In that case, |L : Cr(U)| = p and so
Cr(U) = (aP)S. We may choose an element u € U — Uy so that [a,u] = z71.
Then we get [a,ut] = 271z = 1 so that we have

Z(L) = (a”) x (ut) and E,» = Qy(Z(L)) = (ut,z) I G.

But we know that C, = G/K acts transitively on p maximal subgroups of S
which contain Uy < Z(G) and which are distinct from U. Since (ut,z) # U,
we have a contradiction. Thus we have proved that U < Z(L) and so U =
04 (Z(L)).

Now assume that H is abelian of type (p®,p), s > 2. Suppose, by way
of contradiction, that L is nonabelian. In that case we have L' = Uy < Z(G)
and Cr(H) = H. By Lemma 1.1 in [1], we get

|L| = p|Z(L)||L'| and so |L : Z(L)| =

Since Z(L) < H, it follows that Z(L) is a maximal subgroup of H. HZ(L) >
Hy, then Hy = Q(Z(L)), which implies that Hy < G, a contradiction. It
follows that Z(L) is a cyclic subgroup of index p in H and so Z(L) covers
H/Hp and L/S. Hence we get that L = Z(L)S is abelian, a contradiction We
have proved that L is abelian of type (p®, p,p). Then we get U1(L) = U1(H)
and U1 (H) is cyclic of order > p. Let H; be the subgroup of order p in U (H)
so that H; < Z(G) and Hy; < Hy. If Hy # Uy, then Hy = Hy X Uo < Z(G)
contrary to Ng(Ho) = K. Hence we have Hy = Uy and so U1(L) = U1 (H) >
Up.

(ii2) Assume that S = HyU is nonabelian. If p = 2, then S = Dg. But
U and Hj are the only two four-subgroups in S and since U < G, it follows
that Hy < G, a contradiction. Hence we have p > 2 and S 2 S(p?) (the
nonabelian group of order p® and exponent p) with S’ = Z(S) = Uy. We
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know that U < G’. On the other hand, G/U is Dedekindian and so abelian
which implies that G’ < U and therefore we have G’ = U < S d G. Since
U =G £ 7Z(S), it follows that G is of class 3. Also, U is a unique normal
abelian subgroup of type (p,p) in G. Indeed, if V= E,, VIG and V # U,
then the fact that G/V is abelian Dedekindian implies that G’ < VNU < U,
a contradiction. Set Z = Cg(S) so that Z<4G and ZNS = Uy. We know that
Z does not have a G-invariant abelian subgroup of type (p,p) and so Lemma
1.4 in [1] implies that Z = Cpm, m > 1, is cyclic and so Q(Z *S) = S. If
Z%8S =G, then G’ = Uy = C,, a contradiction. Hence we have Z+S < G. On
the other hand, a Sylow p-subgroup of Aut(.S) is isomorphic to S(p?) and so
G/Z = S(p?) and |G : (Z x S)| = p. We know that |G| > p° because |H| > p3
and so L = HU(< @) is of order > p*. This implies that we have m > 2. Let
e be an element in G — (Z % S) so that e fixes U and fuses the other p maximal
subgroups of S. Since G/Z = S(p?) is of exponent p, we have e? € Z. If Z{e)
is cyclic, then we have

Z<6> = <€> = Cpm+1.

In this case, G/S is cyclic of order > p? and Q;(Z % S) = S together with
|Z| > p* implies Q1 (G) = S. If Z{e) is noncyclic, then Z({e) splits over Z
and we may assume that o(e) = p. In this case Z(e) is either abelian of type
(p™,p) or Z(e) = M m+1. We have obtained the groups stated in part (b2) of
our proposition.

It remains to be proved that these groups G satisfy our condition (x).
Let X be any noncyclic and non-normal subgroup of order > p? in G. First
assume that | X NS| = p? so that we have X NS = S; for some i € {1,2,...,p},
where {51, 52,...,5p} is the set of maximal subgroups of S distinct from U
which are acted upon transitively by G/(Z = S). Since Q1(Z % S) = S, we
have Q1(X N Z % S) = S; and this implies that X < Z % S. Since X > S; >
Up = (Z*S), it follows that Ng(X) = Ng(S;) = Z =S and then for each
g € G—(ZxY5), the intersection X N X9 is cyclic.

Now assume that | X N S| =p. (If | X NS| =1, then XN (ZxS)={1}
and then |X| < p, a contradiction.) In this case, Xg = X N (Z % S) is
cyclic of order > p?, X £ Z % S and so |X : Xo| = p. On the other hand,
U1(Z+8S) =01(Z) > Uy and so Xy > Uy. We get Ng(Xg) > (Zx 5, X) =G.
Hence for each g € G with X9 # X, we see that X N X9 = X is cyclic.

Finally, ZS; = Cpm x Cp, m > 2, is not normal in G but Z < G and so
our condition (x) is satisfied. Proposition 3 is completely proved. O

P

ProproSITION 4.4. If U = E,» is a G-invariant subgroup contained in
K =Ng(H) such that Uy = HNU < Z(G), then we have G' <U. Hence G’
is elementary abelian of order < p? and so G is of class at most 3.

PROOF. Assume that G/U is nonabelian so that we have p = 2 and G/U
is Hamiltonian. Let Q/U be any ordinary quaternion subgroup in G/U and
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we set
Qo/U = (Q/U) =Z(Q/U) = (G/U)".
We have |Q : Co(U)| <2andso Qo < Co(U) and let y € Co(U)— Qo so that

y? € Qo — U. Hence U(y) is an abelian maximal subgroup in Q. By lemma
1.1 in [1], we have

2° = |Q| = 2|Q'||Z(Q)|, where Z(Q) < Qo and Qp = Es or Qo = Cy x Ca.

If @ = Qo, then |Q : Q| = 4 and so by a result of O. Taussky, @ is of
maximal class and order 2°, contrary to U <0 Q. Thus, we have Q' < Qo and

Q' covers Qo/Q.

(i) First suppose that Qo = Eg. We know that G/Q is elementary abelian
and so in this case exp(G) = 4. In particular, we must have (according to
Proposition 3) H = Dg or C4 x Cy. Consider again an abelian maximal
subgroup U x (y) of Q, where (y) = C, and y? € Qo — U. Since U x (y) <G,
we get y2 € Z(G). Hence y? is an involution in K and since Q1 (K) < L (see
Propositions 2 and 3), we get Qo = (y?) x U < L. Set Hy = Qo N H = Ey,
where Hy > Uy and Ng(Hp) = K. Now act with G/K on three subgroups of
order 4 in Qo which contain Uy < Z(G). We see that only U is normal in G
and Hy # H§ with some g € G — K. But y? € Qo — U and y* € Z(G) and so
(y%,Up) < G, a contradiction.

(ii) We have proved that Qg = C4 x Cs so that all elements in Qo — U are
of order 4 and all elements in @ — Qo are of order 8. Since @’ covers Qo/U
and Q' < Qo, we get Q' = C4. On the other hand, 22(Q) = Qo = C4 x Co
and so Lemma 42.1 in [1] implies that @ can be defined with:

Q=1(a,b|a®=0=1, a*=b' =2 a®=a"?),
where
Q' = (a®) = C4, Z(Q) = (b*) = C4, 02(Q) = (a®,b*) = Qo = C4 x Cy,

M(Q) =U = (2,a*?) 2 Ey, Uy = (2),
and A = (a,b?) =2 Cg x Cy is a unique abelian maximal subgroup of Q. Also, it
is easy to see that (a) is a characteristic subgroup in Q. Indeed, if 8 € Aut(Q),
then A’ = A and so % € Q — A. Suppose that (a)? # (a). Then we have
(a)? = (ab?) and we get

(abQ)be —ap 2= abe(bQ)be — o 1p?
and so we get b* = 1, a contradiction.

(iii) We know from Proposition 3 that G’ covers U/Uy and since G/Qy is
elementary abelian (and so exp(G) = 8), we have G’ < Qp. But Q' = (a?)
with (a*) = (2) = Uy and so we get G’ = Qp. In particular, we have G > Q
and |G| > 26.
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Since Co(U) = A = (a,b?) and |Q : A| = 2, we see that C = Cg(U)
covers G/Q, where CNQ = A and C > A. On the other hand, C'/U does not
possess an ordinary quaternion subgroup and so C'/U is abelian and therefore
C is of class < 2 with ¢/ < U < Z(C). Indeed, if Q1/U = Qg and Q1 < C,
then by (ii) (since Q/U was an arbitrary ordinary quaternion subgroup in
G/U), we have U £ Z(Q1) which is not the case. For any z,y € C, we
have [22,y] = [z,y]? = 1 and so we have U1(C) < Z(C). Since a € C and
a? € Qo — U, it follows that Qp < Z(C) and so C = Cg(U) = Cg(Qop). In
particular, we get Cg(b?) > (Q,C) = G which shows that b? € Z(G).

(iv) Now we show that Cg(Q) = Z(Q) = (b*) = Z(G). Indeed, set
R = Cg(Q), where RN Q = Z(Q) = (b*) < Z(G) and b* = 2z with (z) = Up.
First suppose that R has a G-invariant four-subgroup U;. If U; > (z), then
set Uy = U™ and if Uy 2 (z), then considering Eg = U; x (z), we may choose
in U; x (z) a G-invariant four-subgroup U* such that U* > (z) and we have
in any case U*NU = (2) = U*NQ. Since U*NH = (z) = Uy < Z(G)
and |(HU*) : H| = 2, we have HU* < K = Ng(H) and so L = HU*.
By Proposition 3 (using U* instead of U), we get that G’ covers U* /Uy,
contrary to to the fact that G’ = Qy. Hence R does not have a G-invariant
four-subgroup. By Lemma 1.4 in [1], R is either cyclic or R is of maximal
class. But (b?) = C4 and (b?) < Z(R) and so R must be cyclic. Assume that
R > (b?) which together with exp(G) = 8 gives R = Cg. We may choose a
generator 7 of R so that r?> = b=2 and then i = 7b is an involution in G — Q
since i2 = (rb)? = r2b% = b=2b2 = 1. We have

a'=a"=a"=0a""and so [a,i] = a2 ¢ U,
contrary to the fact that G/U is Hamiltonian, where for each x € G with
22 € U we must have [G,z] < U.

(v) We study the automorphisms of @ induced on @ by elements of C,
where C' N Q = A. Now, A induces on @ the inner automorphisms given by:

b* = a ba = b(b~ra"'b)a = ba?, b* = (ba?)" = ba* = bz.

Let + € C — A so that z centralizes Qo = (a? b?) and 2 normalizes (a)
(because (a) is characteristic in @) ) which gives a®* = az¢ , where € € {0, 1}.
Note that b* = by with some y € A = (a,b?). But = normalizes (centralizes )
Qo = (a?,b?) = C4 x Cy and so x must also normalize (a?,b) = M;s and so
y € (a®,b?). Then we get (noting that b? € Z(QG)):

b2 = (b*)" = (b")% = (by)® = byby = b* (b 'yb)y = b*y"y,

1

and so we have y* = y~! and this implies y € (a?).

(vi) We have proved that each element z € C' — A induces on @Q an
automorphism given by:

b = by, where y € (a*) and a® = az.
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Indeed, if € = 0, i.e., a® = a, then z would induce on ) an inner automor-
phism, contrary to Ce(Q) = Z(Q). Since b = by? and a®’ = a, we have
2? € Q. Setting Go = ()@, where |Gy : Q| = 2, we see that Gy = G and so
G' = Q' = (a?) = C4 because

[b,2] =y € (a®) and [a,7] =z =a

and so G/(a?) is abelian. On the other hand, we know that G’ = Q. This is
a final contradiction and our proposition is proved. O

4

PROPOSITION 4.5. Suppose that we have the case (a) of Proposition 3,
where H = Dg. Then K/H is cyclic and we have the following possibilities:
(a)
G = ({a) x (b)){i), where (a) = (b) = C4

and i is an involution with a* = a~* and b* = b1 or b* = ba?b>.
(b) G is a unique group of order 25 and class 3 with Qa(G) = Cy x Dg

which is defined in Theorem 52.2(a) in [2] for n = 2.
(c)

G = ((h) x {(g))(i), where (h) = Cy4, (g) = Com, m >3,

and i is an involution with hi = h=' and g* = ¢**2"". Here we have
(Gl =271, G/ = (W, 9" ) = By, &' < Z(G), ZG) = (?) x (g?) =
Cy x Com-1. Finally, (h,i) = Dg and {g,i) = Mgm+1 are not normal
in G.
(d) G is a special group of order 2° given with:
G = (H x (a)){g), where H = (h,i | h* =i* =1, h' = h™', h? = 2) = Dy,

/

(a) = Cy, a> =2, g* =27, [g,h] =1, [g,i] = [g,a] = 7.
We have G' = (z,2') 2 By, (h,i) = Dg is not normal in G but (h) <G,
and (i,a) = Cy x Cy4 is not normal in G but (a) <G.

Conversely, all the above groups satisfy our assumption (x).
PROOF. By Proposition 4, we have G’ = U = E,.

(i) First assume K/H =2 Qg so that we have |G| = 27. We set C' =
Cg(H) = Ck(H) so that we have K = H+C with U < C, HNC = Uy
and C/Up =2 Qs. Let C1 /Uy and Cs/Uy be two distinct cyclic subgroups of
order 4 in C/Uy so that C; and Cy are abelian and C; N Cy = U. Tt follows
that U < Z(C) and so we get U = Z(K) and |C’| = 2 and therefore we
have U = Uy x C’, where we set Uy = (z) and C' = (z'). Also we have
C = Cg(L) and C <4 G, C' QG , which implies U < Z(G). Thus we get
U = 7Z(G) = G’ and for any z,y € G we have [2%,y] = [r,y]®> = 1 and
therefore U1(G) < Z(G) and so U = ®(G), which shows that G is special. Set
H = (h,t|h* =12 =1, k' = h™1) = Dg and we have (h) < G (Proposition
3(a)).
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(i1) Suppose that C splits over Uy and so we have in this case C' = (z) x Cy,
where Cy = (c1, c2) = Qg and C} = (2/). Since () x Cp has no cyclic subgroup
of index 2, Proposition 1 implies that (t) x Cp < G. But then we have

CQ:CQ(@) XCO)S]G

and each element in G induces on Cjy an inner automorphism (otherwise,
a cyclic subgroup of order 4 in Cy would be contained in G’, contrary to
Proposition 4). This implies

G = Cp * Go,
where
GO = CG(Co), CO N GO = <Zl> = Z(Co), GO NK = L, K=Hx CQ,

and Gy is special of order 2° with Z(Gp) = U. Since (h) I G and ht = h~1,
there is g € Go — L such that [g,h] = 1. But ({)U < G and H is not normal
in G, and so we get t9 = tu with u € {2/, z2’}. However, if t9 = tz2’, then
we replace g with ¢’ = gh (noting that ¢’ € Gy — L and ¢’ also centralizes h
) and get
9 = (tzz)! = (tz2)22 = t2.

Hence writing again g instead of ¢’, we may assume from the start that t9 = ¢z’
and so [t,g] = z’. We have g*> € U and so we have g2 € {1,2/, 22/, 2}.

If g2 = 1, then [g,t] = 2’ gives that (g,t) = Dg with (g,t) = (2/),
where the unique cyclic subgroup (gt) of order 4 in (g,¢) must be normal
in G. Indeed, if (g,t) < G, then (gt) < G, and if (g,t) is not normal in
G, then Proposition 3(a) implies that (gt) < G. However, [gt,h] = z but
(gt)? = [g,t] = 2’ # 2 and so (gt) is not normal in G, a contradiction. This
kind of argument we shall use here several times.

If g = 2/, then ¢ = 2’ together with [g, ¢;] = 1 implies that gc; is an invo-
lution. In that case, [t,gc1] = 2’ shows that (¢, gc1) = Dg with (¢, ge1)’ = (7).
But then C4 2 (tgey) is not normal in G since [tger, h] = z, a contradiction.

If g> = 22/, then (gh)? = 2’ = ¢} together with [gh, c;] = 1 implies that
ghecy is an involution. In that case, [t, ghc1] = 2’z shows that (¢, ghci) = Dg
with (t,ghc1)’ = (2’z). But then C4 = (tghc;) is not normal in G since
[tghci, g] = 2/, a contradiction.

If g% = 2, then gh is an involution. In this case, [t, gh] = 2’z shows that
(t,gh) = Dg with (t,gh)’ = (2’z). But then C4 = (tgh) is not normal in G
since [tgh, g] = Z/, a contradiction.

(i2) We have proved that C' does not split over Up. Since C is two-
generator with C’ = (2/), it follows that C' is minimal nonabelian. We have

01(C) = U = E4 and so C is metacyclic. Hence we may choose generators
c1,co of C so that we have

Ho =C = <Cla62 | Cil - Cg =1, C? = C;1>a
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where ¢? = 2/, ¢3 = 22/, z is not a square in C.

Since (h) < G and h* = h~1, it follows that Cg(h) covers G/K. Let
g € Cg(h) — K so that [h,g] =1 and g% € (z,2'). Because (t)U <G, (h) <G
and H is not normal in G, it follows that t9 = tu with u € U — Uy. Replacing
g with gh, if necessary, we may assume from the start that ¢9 = ¢z’ and so we
have [g,t] = 2.

If g normalizes (c1), then replacing g with ¢’ = gea (if necessary), we
may assume that ¢’ centralizes (¢1) (and we note that ¢’ acts the same way
on H as g does). In this case we write again g instead of ¢’ and we have
[g,c1] = 2 with € = 0. If g does not normalize {(¢1), then we have [g, ¢1] = 22’
or [g,c1] = z. If in this case [g, ¢1] = 22/, then again replacing g with ¢’ = gco,
we get

g, c1] = [gea, e1] = (227)2 = 2.

Hence writing again ¢ instead of ¢’, we may assume from the start that
[g,c1] = 2° with ¢ = 1. Hence we have in any case [g,c1] = z¢, where
e€{0,1}.

If g> = 1, then [g,t] = 2’ shows that (g,t) = Dg with (g,t)’ = (z/). But
then C4 2 (gt) is not normal in G since [gt, h] = z, a contradiction.

Assume that g? = z/. If € = 0, then we have [g,c1] = 1 and so gc; is an
involution. Then [t, gc1] = 2’ shows that (¢, gc1) =& Dg with (¢,gc1) = (/).
But then C4 2 (tgc;) is not normal in G since [tger, h] = z, a contradiction.
Thus we must have e = 1 and so we get [g, c1] = z. We compute

(ghc1)? = 2'z- 2" - [e1, gh) = 22 = 1,

and so ghey is an involution. Then [t, ghci] = 2’z shows that (¢, ghcy) = Dg
with (t,ghc1)’ = (2'z). But then C4 = (tghc;) is not normal in G since
[tghci, h] = z, a contradiction.

If g2 = 2, then gh is an involution. Then [t, gh| = 2’z shows that (¢, gh) =
Dg with (t,gh) = (z’z). But then C4 = (tgh) is not normal in G since
[tgh,g] = 2’, a contradiction.

Suppose that g2 = zz’. Assume in addition that e = 0 and so [g,c1] = 1.
In this case we have

(ghe1)? =22 - z-2' =1

and so ghep is an involution. Then [t, ghci] = 2’z shows that (¢, ghci) = Dg
with (t,ghc1)’ = (2'z). But then C4 = (tghc;) is not normal in G since
[tghci, g] = 2/, a contradiction. Hence we must have e = 1 and so [g,¢1] = z.
In this case, gc; is an involution since (gc1)? = 22’-2'-2 = 1. Then [t, ge1] = 2/
shows that (t,gc1) = Dg with (¢,gc1)’ = (2/). But then C4 = (tgey) is not
normal in G since [tgc, g] = 2’2, a contradiction. We have finally proved that
here K/H 2 Qg is not possible.
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(ii) Now assume that K/H # {1} is cyclic. Here we have K = H X (a)
with o(a) = 2", n > 1, where we set
M ((a)) = (), Uo = (z) = Z(H),

(W' | B = (W)2 =1, [h,h] =2, 22 =1)=Dg, U= (z,2)=G".
Since (h) <G (Proposition 3(a)) and " = h~1, it follows that Cg/(h) covers
G/H = Cy. Let g € Cg(h) — K so that we have (h')9 = h'u for some
u € U — Uy (noting that (h) <G and (U(h')) < G but H is not normal in G)

and so replacing g with gh (if necessary), we may assume from the start that
(h')9 = h'z" and so we have [g, h'] = 2/.

(ii1) Assume that K = L and 2z’ € Z(G). In this case we have Z(K) =
Z(L) = U = Z(G) and U1(G) < Z(G). Hence G is a special group of order 2°.
In particular, all elements in G — K are of order < 4. Suppose that there is an
involution ¢ € Cg(h) — K. Then we have [h',t] = u € U — (z) and therefore
(h',t) = Dg with (h/,t)’ = (u). Then we must have C4 = (h't) < G. On
the other hand, [h't,h] = z, a contradiction. Hence there is no involution in
Cg(h) — K. If g2 = z, then hg is an involution in Cg(h) — K, a contradiction.
Hence we have

g> € {7, 22"} and (h, g) = (h) x (g) = C4 x Cy.

We set b/ =i so that G = ((h) x {g))(i) with h* = h~! and ¢* = g2’. We have
obtained two groups of order 2° stated in part (a) of our proposition, which
obviously satisfy our assumption ().

(ii2) Assume that K = L and 2z’ € Z(G). Then we have [g,2] = z.
Suppose that there is an element y € G — K of order < 4. We claim that in
this case we have y? € U. Indeed, if y? is a noncentral involution in K = L,
then y? inverts (h) and y normalizes (h) (since (h)<G), a contradiction. Hence
we have y? € U and so y? € (z) since [y,2] = 2. We get D = (y,U) = Dg
and D < G with Z(D) = (z) = D'. Since G’ = U is elementary abelian, each
element in G induces an inner automorphism on D. Hence we have G = DxC,
where C' = Cg(D) and DN C = (2). Since |C| = 23 and z € Z(C), we have
C’ < (z). This gives that G’ = (z), contrary to Proposition 3(a). We have
proved that all elements in G — K are of order 8 and so Q2(G) = Cs x Dg.
Since g centralizes (h), we must have (g?) = (h) and so we may assume that
g> = h. Indeed, if (¢%) = (h2'), then g would centralize h and hz’ and so
g would centralize 2/, a contradiction. We have obtained a unique group G
of order 2° and class 3 with Q3(G) = Cy x Dg which is defined in Theorem
52.2(a) in [2] for n = 2 (stated in part (b) of our proposition). This group
obviously satisfies our assumption (x).

(ii3) Assume that K > L, i.e., o(a) = 2", n > 2. Then there is an element
w € {a) of order 4 so that w? = 2/. We have

(z,w) = (2) x (w) <G and so U1((z) x {w)) = (z') <G,
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which implies that G’ = U < Z(G). We have also U1(G) < Z(G). Since G/L
is abelian and K/L # {1} is cyclic, we have here two subcases.

(ii3a) Suppose that G/L is cyclic and so if g € Cg(h) — K, then (g) covers
G/L, [I,g] = 2" with (') = Q1((¢g?)) and o(g) = 2™, m > 3. Hence we have
(g, h') = Mom+1. Setting h' = i, we get

G = ((h) x(9)){@),

where
27n —1

<h>gc47 <g>202m; m > 3, hi:h_la gi:g1+ .

We have obtained the groups stated in part (c) of our proposition. Conversely,
let X be a non-normal and noncyclic subgroup of order > 22 in G. We see that
A = (h) x (g) is an abelian maximal subgroup in G. If XN A is noncyclic, then
XNA>(z,2) =G and so X <G, a contradiction. Hence X N A is cyclic and
then X £ Asothat | X : (XNA)| = 2. It follows that Ng(XNA) > (4, X) =G
and so X NA<G. Thus, if g € G is such that X9 # X, then XNX9=XNA
is cyclic. Finally, (h,i) = Dg and [i, g] = 2’ & (h,4) and so (h,7) is not normal
in G. Hence our groups satisfy the assumption ().

(ii3b) G/L is noncyclic abelian so that G/L splits over K/L, where K =
H x {a) with o(a) = 2™, n > 2, and Q1({a)) = (/). We have G = KGy,
where K NGy = L and |Gp : L| = 2. Since G' = U = (z,2) < Z(G) and
U1(G) < Z(G)), we have that Gg is one of two groups defined in part (a)
of this proposition, where there is ¢ € Gy — L such that (g, h) = (g) x (h),
[h,g] = 2" and g% = 22’ with e =0, 1.

Suppose that € = 0 so that g? = 2’ and so h’ inverts each element in (g, h).
Consider the subgroup Hy; = (h/, g) = Dg with Z((h/,g)) = (/). If H, <G,
then (¢) < G and if H; is not normal in G, then Proposition 3(a) shows that
also (g) < G. Hence in any case we have (g) < G. Since (a) centralizes h’, it
follows that (a) x (z) normalizes H;. On the other hand, [h,h'] = z and so
(h) does not normalize H; a so we get

Ne(Hy) = Hi((a) x (2)).

If w is an element of order 4 in {(a), then we have w? = 2’ and so (Hy(w))/H;
and (H;(z))/H; are two distinct subgroups of order 2 in N (H;)/H1, contrary
to Proposition 2. We have proved that we must have e = 1 and so ¢ = 22’

Assume that there is an element w € (a) of order 4 such that w? = 2’ and
[w, g] = 1. Then we have

(w.g)Q = ’U.)292 =7z = 2, [wgah] = ]-7
and so hwg is an involution. From [h/, hwg] = zz’ follows that

(W, hwg) = Dg with Z((h', hwg)) = (z2).
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But then C4 = (h’hwg) is not normal in G since [h'hwg, h] = z, a contra-
diction. We have proved that there is no such an element w € (a). This
implies

n=2, ola) =4, exp(G) =4, a* =2, [a,g] # 1, Z(G) =U = G’ = ®(G)

and so G is special of order 2°. It remains to determine [a, g] # 1.

Suppose that [a, g] = z. Then we get (ag)? = 2'-22'-z = 1 and so ag is an
involution. Since [h/,ag] = 2/, we have (h/,ag) = Dg with Z({h/,ag)) = (2’).
But then C4 = (h'ag) is not normal in G since [h'ag, h] = z, a contradiction.

Suppose that [a,g] = 22’. Then we get (gah’)? = 22’ - 2" - 22/ - 2’ = 1
and so gah’ is an involution. Since [gah’,h’] = z’, we have (gah’,h’) =
Dg with Z({gah', h')) = (z'). But then C4 = (gah’h’) = {ga) is not normal in
G since [ga, g] = z2’, a contradiction.

Hence we must have [a,g] = 2’ and so the structure of G is uniquely
determined. We set ' =i and so we get a special group G of order 26 given
with:

G = (H x {(a)){g), where H = (h,i | h* =i* =1, h' = h™', h? = 2) = D,

/

(a) = Cy, a*> =2, g* =27, [g,h] =1, [g9,i] = [g,a] = 7.
We have G’ = (z,2') = Ey4, (h,i) = Dg is not normal in G but (h) < G, and
(i,a) = Cq x Cy is not normal in G but (a) <G. We have obtained the group
stated in part (d) of our proposition.
It remains to be proved that this group G satisfies our assumption (x).
We first show that there are no involutions in G — K, where K = H X (a).
Indeed, suppose that gh®i®a” with a, 8,7 € {0,1} is an involution. Then we
get

1= (ghaiﬁa'y)Q = 22 2. (Z/)fy . (Z/),H . (Z/)'y . Za,@ — Zl+a+a6(zl)1+6’
which implies 5 = 1 and then we get z = 1, a contradiction. We have proved
that Q1(G) = L = HU, where U = (z,2). There are exactly two conjugate

classes of noncentral involutions in G with representatives ¢ (4 conjugates)
and hi (4 conjugates) and we have

Ca(i) = (i, z) x (a) 2 E4 x C4 and Cg(hi) = (hi, z) x (a) 2 E4 x Cy.

Let X be a noncyclic non-normal subgroup of order > 23 which contains
more than one involution (so that X = Qg is excluded). Then we have
G'=U=(z,7) £ X and | X| = 23 or 2* (noting that all subgroups of order
> 25 are normal in G).

First assume that |X| = 2% In this case X £ K since ®(K) = (z,2/)
and |K| = 2°. We have |X : (X N K)| =2 and |X N K| = 23. All elements
in X — K are of order 4 and so U;(X) # {1} and this implies that there
is exactly one central involution zp in G which is contained in X N K and
therefore we have U1(X) = (z9) and d(X) = 3. But X N K must contain
another involution i’ # zy which is noncentral in G and we know (by the
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above) that Cg(i') = Ck (i) is abelian. In particular, X is nonabelian and
X" = (20). Because d(X) = 3, X is not minimal nonabelian. Let X, be
any minimal nonabelian subgroup in X. If Xy = Dg, then (since there are
no involutions in X — K) we have Xo = X N K. Since G' = Ey, it follows
that X induces on X only inner automorphisms of Xy which implies that
Cx(#') £ K, a contradiction. Hence each minimal nonabelian subgroup of X
is isomorphic to Qg. By Corollary A.17.3 in [2], we get X = (t) x Q, where ¢
is an involution and @ = Qg with Z(Q) = X’ = (z0). Thus ¢ is a noncentral
involution in G, contrary to the fact that Cg(t) must be abelian.

We have proved that |X| = 23 and assume first that X £ K. Since X
contains more than one involution, it follows that X N K contains a noncentral
involution ¢’ of G. We know that Cg(i') < K and so X is nonabelian. But
then X = Dg which is not possible since there are no involutions in X — K.
We have proved that X < K.

If X = Eg, then X < L, where L = H x (2/). But then X > (z,2') = G,
a contradiction. It follows that either X = Dg or X = C4 x Cy. First assume
that X = Dg. Because in this case Q;(X) = X and Q1 (K) = L, it follows
that X < L. But then X is conjugate in G to H = (h,i) or to H* = (hz’,1),
where both (h) and (hz’) are normal in G.

Finally, suppose that X = C4 x Cy. Because in this case {1} # U1(X) <
(z,2'), it follows that X contains exactly one central involution of G and two
noncentral involutions of G. Then X is conjugate in G to X; = (i) x (v) or
to Xo = (hi) x (w), where (v) = (w) = Cy4. Since

X1 < Cq(i) = Ck (i) = (i, 2) x (a),
we get X1 = (i) x (a) or X7 = (i) X
X2 < CG(hZ) = CK(hz) - <hZ,Z> X <a>7

gives Xo = (hi) X {a) or Xo = (hi) X {az). On the other hand, we see that
(a) <G and (az) <G and we are done. Our proposition is completely proved.
0

(az). Similarly,

PROPOSITION 4.6. Suppose that we have the case (b1) of Proposition 3.
Then H possesses exactly one G-invariant cyclic subgroup of index p.

PrOOF. We have H = My, n > 3, (if p =2, thenn >4 ) or H is
abelian of type (p®,p), s > 2. Set Hy = Q1(H) and then we have

Hy = E,2, Na(Ho) = Na(H) = K, |G/K|=p, Uy=UNH = (z) < Z(G),

and let ¢ € G— K. Note that H has exactly p cyclic subgroups of index p. By
Proposition 4, we have G’ < U and so we get [K, H| < HNU = Uy = (z). This
implies that each cyclic subgroup of index p in H is normal in K. Assume, by
way of contradiction, that H does not have any G-invariant cyclic subgroup
of index p. Since H N HY is a cyclic subgroup of index p in H, there is a
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cyclic subgroup (h) of index p in H such that (h)9 = (ht) for some element
t € Hy — (z). Then we get
h? = htv with some v € ((ht)?) = (hP).
In that case we get
hthd = [h,gl=tv e UNH = (2).

Since v € (hP) and (by Proposition 3(b1l)) (h*) > (z), it follows that ¢t € (hP),
a contradiction. Since H is not normal in G, then clearly H possesses exactly
one G-invariant cyclic subgroup of index p and we are done. O

PROPOSITION 4.7. Suppose that we have the case (b1) of Proposition 3
and assume in addition that K/Hy is Hamiltonian (and so p = 2), where
Hy = Q1(H) & Ey4, and that G does not possess any non-normal subgroup
isomorphic to Dg. Then G is of order 27 and class 2 which has a normal
subgroup K of index 2, where

K = ((h) x Q)(t) with (h) = Cy, h* =2, Q = (a,b) = Qg, Q' = (u),
t is an involution commuting with h and a and [b,t] = z. There is an element
g € G — K such that either
(a) g = uz, g centralizes Q, [g,h] = z, [9,t] = u
(and here G is a special group with G' = (u,z) = E4 and 01 (G) =
G’ x (t) 2 Eg)
or
(b) g% = h, g centralizes Q, [g,t] = uz
(and here G is of exponent 8 with G' = (u,z) = Ey, Z(G) =
G/<h> = C4 X CQ, Ql(G) =G x <t> = Eg and QQ(G) = K)

Conversely, the above two groups satisfy our assumption (x).
ProOOF. We have
Hy =0 (H) 2 Ey, Ng(Hp) =Ng(H)=K, |G: K|=2,
Es=2S=HU<G, UNHy=UNH=Up = (z) <Z(G),
and K/Hj is Hamiltonian. By Proposition 4, we have G’ < U and this gives
(K/Ho)' = S/Ho = U1(K/Hp),

and so exp(K) = 4 and H = C4 x Co. By Proposition 3(bl), L = HU
is abelian of type (4,2,2), U1(L) = U1(H) = Uy = (z) and so we have
S=0(L) =N (K).

Let QQ/Hy be an ordinary quaternion subgroup of K/Hj. Since

(Q/Ho)" = (K/Ho)" = S/ Ho,

it follows that S < Q. Also, S/Hj is a unique subgroup of order 2 in Q/Hy
and so we have Q N H = Hyp and QN L = S. Since Q/Hy = Qg is isomorphic



134 Z. JANKO

to a subgroup of K/H, Proposition 2 implies that K/H = Qg and so we get
K = HQ with HNQ = Hy.

We have |Q : Co(Ho)| < 2 and so if a € Cg(Hp) — S, then a? € S — Hy
and so A = (a) x Hy = C4 x E4 (containing U) is an abelian maximal subgroup
of Q, A< G and we get U1(A) = (a?) < Z(G) and E4 = (a?,2z) < G. On the
other hand, G/K acts on the three maximal subgroups of S which contain
(z) < Z(QG) fixing U and fusing the other two (since Ng(Hp) = K) and so we
get (a?,2) = U and U < Z(G). In particular, G is of class 2 with an elementary
abelian commutator subgroup of order < 4 (contained in U) and this implies
that U1(G) < Z(G). Indeed, if z,y € G, then we have [22,y] = [z,y]? = 1.
We have U1 (K) < S and since SNZ(G) = U, we get U1(K) < U and so
®(K) = U. For each element k € K — L, we have k* € U — (z).

By Proposition 6, H possesses exactly one cyclic subgroup (h) of index
2 which is normal in G and we have h?> = z. Note that for an element
u € U — (z), the cyclic subgroup (hu) = Cy is also normal in G. But the
abelian normal subgroup L possesses exactly four cyclic subgroups of order 4
and so the other two cyclic subgroups of order 4 in L (which are distinct from
(h) and (hu)) must be fused in G. Indeed, if t € Hy — (z) and g € G — K,
then we have t9 = tu for some u € U — (z) and so we get (ht)? = (htu).

By Proposition 4, G/U is abelian and so G/L is abelian and K/L = Ey4.
Assume that G/L is not elementary abelian. Then there is an element = €
G — K such that 22 € K — L. But then 22 € Z(G), contrary to the fact
that K/H = Qg. Hence we have G/L = Eg. For any g € G — K, we have
g%? € LN Z(G) and so either g € U or g> € L — S and in the second case we
have either g% € (h) or g? € (hu) with u € U — (z). Note that H; = (hu,t)
is also a maximal non-normal subgroup in G with Q;(H;) = Qi (H) = (z,t).
Indeed, if H; is not maximal non-normal, then let H; containing H; be a
maximal non-normal subgroup in G. Since exp(G) < 8 and exp(K) = 4, it
follows that Hi = Cg x Cy or Hf = M6 and so Hf £ K. But we have

Ql(Hik) = Ql(Hl) = H() = <Z,t>

and so we get Hy <G, a contradiction. Thus, in case that we have an element
g € G — K with g2 € (hu), we replace H with H; (and write again H instead
of Hi) so that we may assume from the start that g € (h) and then (by a
suitable choice of a generator of {g)) we have g2 = h.

Let k be any element in K — L which commutes with ¢t € Hy — (z). Then
we have k% € U — (2) so that (k,t) = C4 x C3. We claim that in that case
at least one of cyclic subgroups (k) or (kt) is normal in G. If (k,t) <G, then
both (k) and (kt) are normal in G because G’ < U. (If there is € G such
that k* = kt or k® = k~'t, then we have either t € G’ or k*t € G’ and so
t € U, a contradiction.) If (k,t) is not normal in G, then it is easy to see
that (k,t) is a maximal non-normal subgroup in G. Indeed, if H* > (k,t) is
a maximal non-normal subgroup in G, then by Proposition 3, H* = Cg x Cq
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or H* 2 Mg (noting that exp(G) < 8) and so k or kt is a square in H* and
therefore k or kt is contained in Z(G), contrary to the fact that K/H = Qs.
Hence (k,t) is a maximal non-normal subgroup in G and so, by Proposition
6, one of (k) or (kt) is normal in G. Since (k,t) N (h) = {1} and (h) I G, we
see that k or kt commutes with h. But ¢ commutes with h and so in any case
k commutes with h. We have proved that whenever an element k € K — L
commutes with t € Hy — (z), then k also commutes with h.

Suppose, by way of contradiction, that ¢t € Z(Q). Let a,b € Q — S be such
that (a, b) covers Q/S and set a? = u € U — (z). By the above, both a and b
commute with h. We have [a,b] € U — (z) and so [a, ] € {u,uz}. Suppose at
the moment that [a, b] = uz. By the previous paragraph, we know that (a) or
{at) is normal in G. On the other hand, we have

a® = a(uz), (at)’ = (at)(uz) with a® = (at)? = u,

and so both (a) and (at) are non-normal in G, a contradiction. Thus, we
must have [a,b] = u. Considering the subgroup (ah) x (t), we know that one
of (ah) or (aht) must be normal in G. But we have

(ah)? = (aht)* = uz, (ah)® = (ah)u, (aht)’® = (aht)u,

and so both (ah) and (aht) are non-normal in G, a contradiction.
We have proved that ¢ ¢ Z(Q). Then we have |Q : Cq(t)] = 2. Let
a€Cq(t)—Sand be @ —Cgq(t) so that

(a,b) covers Q/S, [a,b] € U — (z), [a,h] =1, and [b,t] = z.

In particular, we get Q' = G’ = U and we set a®> = u € U — (2). If [a,b] = uz,
then we replace a with a’ = at (noting that [@’,h] = 1 and (a/)? = u) and
then we get [a/,b] = [at,b] = uz -z = u. We write a instead a’ so that we
may assume from the start that [a,b] = u. If b> = uz, then we replace b with
b = bt (noting that [a,d’] = [a,bt] = w and [b,t] = [bt,t] = z) and we obtain

(b)? = (bt)* = b*t2[t,b] = uz - z = u.

Hence writing b instead of &', we may assume from the start that b = u. We
have obtained that Q* = (a,b) = Qg. Since (at)® = (at)(uz) and (at)? = u,
we see that (at) is not normal in G. This implies that (a) is normal in G. Also
note that b has four conjugates in Q and Q <G. Since |G’| = 4, b has exactly
four conjugates in G and so Cg(b) must cover G/Q. Let g € Cg(b) — K and
we know that g normalizes (a). If a9 = a~! = au, then we replace g with
g =gbe G — K so that

ad =a? = (au)’ = (au)u = a.

Noting that ¢’ also commutes with b, we may write g instead of ¢’ so that
we may assume from the start that g € G — K centralizes Q* = (a,b). Since
t" =tz and t9 = tu’ with some u' € U — (z), it follows that the conjugate
class of ¢ in G contains four elements (and they all lie in S — U).
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Now it is easy to see that there are no involutions contained in G — K
and so we have Q1 (G) = S = G’ x (t) = Eg. Indeed, assume that there is an
involution ¢ € G—K. Then we have D = (i,t) = Dg and by our assumption we
have D < @G. Since G' = E4 is elementary abelian, each element in G induces
on D an inner automorphism of D. In particular, both four-subgroups in
D are normal in G. But then t would have only two conjugates in G, a
contradiction.

It remains to determine:

g%, h9 =hzf, h® = hz", and t9 = tuz®, where €,1,¢ € {0,1}.

Considering the subgroup (ah) x (t), we know (by the above) that at least
one of the cyclic subgroups (ah) or (aht) must be normal in G. Since

(hya,t) = (h) x {a) x (t) 2 Cy x Cy x Cq

is abelian, it is enough to consider the action of elements b and g on these
cyclic subgroups. We have

(ah)? = (aht)* = uz, and (ah)® = (ah)uz", (ah)? = (ah)z",
(aht)? = (aht)uz""t, (aht)? = (aht)uz<*s.
If n = 1, then (aht)® = (aht)u and so (aht) is not normal in G. Then we
must have (ah) <G and so we get € = 0.

If n = 0, then (ah)” = (ah)u and so {ah) is not normal in G. Then we
must have (aht) < G which gives e + ¢ = 1.

(i) First assume that g% € {u,z,uz}. If ¢ = 0, then hY = h and so g
centralizes (h) x (a) = C4 x C4 and then there is an involution in g(h,a), a
contradiction. Hence we must have e = 1. By the above, we get n = 0 and
¢ = 0. Hence we have in this case

h9 = hz, h® = h, and t7 = tu.

If g% = u, then [g,a] = 1 implies that ga is an involution, a contradiction. If
g% = z, then (tb)? = uz and

(gth)?> = z-uz-[thygl =u-u=1

so that gtb is an involution, a contradiction. Hence we must have g = uz.
The structure of G is determined as given in part (a) of our proposition. We
check that there are no involutions in G— K. Indeed, assume that gh®t?a7b%u/
with v’ € U = Z(G) and «, 8,7, € {0, 1}, is an involution. Then we get

1= (ghatﬁavb6u1)2 — ,ullJr,BJr'y4r5+'y§z1+ﬁ67

and so 8 = § = 1, which gives u = 1, a contradiction.

It remains to prove that this special group G of order 27 satisfies our
condition (). Let X be a noncyclic and non-normal subgroup of order > 23
which has more than one involution. Then | X N S| =4 and X NU = (u'),
where v is a central involution and S = Q;(G) = U x (). But all four
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involutions in S — U are conjugate in G noting that Cg(t) = (h) x (a) x (t).
Therefore we may assume that ¢ € X and so we have Q1 (X) = (t,u') = XNS.
We have X < Ng((¢,u')) and since Q1 (X)) contains at most two conjugates
t and tu' of ¢, it follows that X cannot cover G/Cg(t). Therefore we have
either X < Cg(t) or X £ Cg(t) in which case we must have one of the three
possibilities: X < Cg(¢)(b) or X < Cg(t){g) or X < Cg(t)(bg).

First assume that X € Cg(¢) and then we have three subcases.

(1) If X < Cg(t)(b), then t* =tz and so v/ = 2. If z € X — Cg(t), then
22 € U — (z), which gives X > U = G’, a contradiction.

(2) Assume that X < Cg(¢)(g) and then we have 9 = tu and so v’ = u.
If in this case x € X — Cg(t), then we have

= ga®tPh " (v € U, o, B, v € {0,1}) and then 22 = u!+o+Fz,

which gives that X > U = G, a contradiction.

(3) Suppose that X < Cg(t)(bg) and then we have t*9 = tuz and so
u' = wuz. If in this case x € X — Cg(t), then we have

x = bga“t’hu" (u" € U, a, B, v € {0,1}) and then 22 = u’2'*5.

If 3 =0, then 22 = 2. If B = 1, then 22 = w. In any case we get X > U = ¢,
a contradiction.
Now assume X < Cg(t) = ((h) x (a)) x (¢) .
X e {(hu) x (t), {az") x (t), (ahz”) x (t),
If X = (hu*) x (t), then we have (hu*) < G.
If X =(az") x (t), then (az") <G.
If X = (ahz?) x (t), then (ahzt) QG since

(ahz°t)? = uz, [ahz°t,b] = uz, and [ah2°t,g] = uz.

Since X # G’ = U, we have
where p, v, o € {0,1}.}

We have proved that the condition (x) is satisfied because for example (h) X (t)
is not normal in G (noting that ¢9 = tu).

(ii) Assume that g> = h. In this case we have h € Z(G) and this gives ¢ = 0
and n = 0. It follows (from the above) that ( = 1 and so we have t9 = tuz.
The structure of G is determined as given in part (b) of our proposition. For
each k € K we have (gk)* = g* = 2. Thus, all elements in G — K are of order
8 and so we have Q;(G) = S =G’ x (t) = Es.

Conversely, let X be a noncyclic and non-normal subgroup of order > 23
in G which has more than one involution. Since four noncentral involutions
in S — U form a single conjugate class in G, it follows that we may assume
t € X. In addition, X contains exactly one central involution u’ € U so that
we have Q1 (X) = (¢, u/).

First suppose that X £ K so that X contains elements of order 8 which
implies that z € X and so we have Q(X) = (t,z) = Hy. But then Hy <G,
contrary to t9 = tuz.
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We have proved that we must have X < K. Suppose that
X £ Cq(t) = ((h) x {(a)) x (t) and let € X — Cq(t).

Then we have t* = tz and 22 € U — (z) and so X > U = (u,2) = G, a
contradiction.

Thus, we must have X < Cg(t) and since (u, z) £ X, we get X 22 Cyx Cs.
We have three subcases.

If X = (hu*) x (t) (u € {0,1}), then we have (hu*) < G.

If X = (az”) x (t) (v € {0,1}), then (az”) <G.

If X = (ahz?) x (t) (o0 € {0,1}), then (ahz°t) <G since

(ahz°t)? = uz, [ahz°t,b] = uz, and [ah2°t,g] = uz.

We have proved that the condition (x) is satisfied because for example (h) X (t)
is not normal in G (noting that t9 = tuz). Our proposition is completely
proved. O

PROPOSITION 4.8. Suppose that our group G has the commutator group
G’ of order p. Then we have |G : Z(G)| = p?, Z(G) is of rank 2, Q1 (G) £ Z(G)
and Z(G) possesses cyclic subgroups of order > p* which do not contain G'.
Conversely, all these groups satisfy our condition (x).

PROOF. By Propositions 2 and 3, we must be in case (b1l) of Proposition
3, where H is abelian of type (p°,p), s > 2, L = HU is abelian of type
(p°,p,p) with G1(L) = U1(H) > Uy = HNU = (z) < Z(G). By Proposition
3, G’ covers U/(z) and so we may set G’ = (u), where u € U — (z) so that
U < Z(G). We have Ng(Hy) = Ng(H) = K, where Hy = Q1(H) = Ep2,
S = HoU = E,s and S = Q;(K). Note that G/K = C, acts transitively on
p subgroups of order p? in S which contain (z) and which are distinct from
U and so we have Z(G) NS = U. Since Z(G) < K, it follows that Z(G)
is of rank 2 and 24(G) £ Z(G). By Proposition 3, G does not possess any
non-normal subgroup isomorphic to Dg and so by Proposition 7, K/Hj is
abelian. This implies that K is abelian and so Lemma 1.1 in [1] gives at once
that |G : Z(G)| = p*. By Proposition 6, H has exactly one G-invariant cyclic
subgroup (h) = Cps, s > 2, where (h) NU = (z) and so G’ £ (h). But we
have

[G, (h)] < (h)yNG" = {1} and so (h) < Z(G).

We have proved that Z(G) contains cyclic subgroups of order > p? which do
not contain G'. We have obtained the groups stated in our proposition.

Conversely, let X be any noncyclic and non-normal subgroup of order
> p3 in a group G described in our proposition. Since G’ £ X, it follows
that X is abelian and so X does not cover G/Z(G) and X £ Z(G). We get
| X : (X NZ(G))| =pand Xg = X NZ(G) is cyclic (since Ep2 = Q1(Z(G))
contains G’). For any g € G with X9 # X, we see that X N X9 = X is cyclic.
Let (k) be a maximal cyclic subgroup of order > p? in Z(G) which does not
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contain G’ and let ¢ be an element of order p in Q1 (G) — Z(G). Then (k) x (i)
does not contain G’ and so (k) x (i) is a maximal non-normal subgroup of G
of type (p",p), r > 2. Indeed, if (k) x (i) <G, then

(G, (k) x ()] < ((k) x (i) NG" = {1}
and so i € Z(G), a contradiction. The maximality of the cyclic subgroup (k)
in Z(G) also shows that (k) x (i) is a maximal non-normal subgroup in G and
we are done. O

PROPOSITION 4.9. Suppose that we have the case (b1) of Proposition 3,
where H 2 Mpn, n >3 (if p=2, thenn >4), G is of class 3 and G does not
have non-normal subgroups isomorphic to Dg or such one which lead to the
case (b2) of Proposition 3. Then we have p =2, G has the following subgroup
of index 2:

Man+1 = <gvu | 92" =’ = L [gau] =z= 927L71>7n >4,
and G = (g, u)(t), where t is an involution with [g,t] = v and [u,t] = 1.
We have
|G| =22 n >4,
with
G' = (u,z) 2 Ey, [G,G'] = (2), U(G) = (u,z,t) = Eg,
Z(G) = (g*) = Cyn—2 and (g*,t) = Man
is a non-normal subgroup in G with (g?) < G.
Conversely, these groups satisfy the condition ().

PROOF. By Proposition 4, G’ < U and so we have G' = U £ Z(G). Also,
Proposition 7 implies that K /Q(H) is abelian, where Q; (H) = E,» and so we
have K’ = H' = (z) < Z(G). By Proposition 2, K/H is cyclic of order > p.
Finally, Proposition 3 also implies that U = Q41 (Z(L)), where L = HU < G.
By Proposition 6, H possesses a G-invariant cyclic subgroup (h) of index p
and there is an element ¢ of order p in H — (h) so that ([h,t]) = (z). For
any g € G — K, we have t9 = tu’ for some v’ € U — (z), where G/K = C,,
S = (t)U = E,s is normal in G and S = Q(K). It follows that all p?
subgroups of order p contained in (S — U)U {1} form a single conjugate class
in G.

Since K’ = H', we get U1(K) < Z(K) and K = H+C, where C = Cx (H)
and HNC = (h?) > (z). On the other hand, K/H = C'/(h?) is cyclic and so
C' is abelian of rank 2 (because Q4 (C) =U), C = Z(K) and K; = (h)C' is an
abelian subgroup of index 2 in K with Qy(K;) =U.

No element in U — (z) is a p-th power of an element in G. Indeed, if there
is € G such that P € U — (z), then we consider the subgroup U{z) < G
of order p?. Since (z) < Z(G) and z commutes with 2P, it follows that U(x)
is abelian of type (p?,p). But then we get U1(U(z)) = (2P) < G and so
U < Z(G), a contradiction.
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Since 4 (K1) = U and no element in U — (z) is a p-th power of an element
in K7, it follows that we have K1 = (k) x (u) with u € U — (), o(k) > p"~!
and (k) > (z). Note that U;(K;) = (kP) < Z(K) and so (k?) x (u) < Z(K).
Suppose that K > L in which case we have o(k) > p™. But then we get

Q1 (K1) < (KP) x (u) < Z(K)

and since h € Q,,_1(K7), we get h € Z(K), a contradiction.
We have proved that we have K = L. Since (h) < G, we get

(G, ()] < (WY NG = (h) NU = (2) and so [G, (h)] = (2).

It follows that Cg(h) covers G/K and Ck(h) = (h)U. Hence, if g € Cg(h) —
K, then we have g? € (h)U and note that |Cg(h) : (k)| = p®. Thus, if
g? € ((R)U)—(h), then Cg(h) would be abelian and C(U) > (Cg(h),t) = G,
a contradiction. We have proved that ¢g? € (h) and this gives that either
o(g) = p™ in which case we may set g? = h or we may assume that o(g) = p.

First assume that p > 2. Assume in addition that ¢g? = h. We have
[9.1] = u with some u € U — (z) and w9 = uz, where (¢?" ') = (2) < Z(G).
It follows that

[9%.1] = [9,1)[9,1] = (uz)u = u®~

and we claim that we have [¢%,t] = wiz(2) for all i > 2. Indeed, we get by
induction:

k3 k3

= 19911 = g (9, ] = (u'2() )7 = (uz)2 ()
_ ui+1(2i+(;)) — it (8
This gives
1] = g7, 1] = uPz(3) = 1,
which is a contradiction. ,

We may assume in case p > 2 that o(g) = p, where [g,h] = 1, h?" ~ = 2z,
n >3, and z € Z(G). We may choose a suitable power ¢/ in (¢), j # 0 (mod
p), so that we can set from the start that [h,t] = z. Then we have [g,t] = u
for some u € U — (z) and we have [g,u] = 2% with some i # 0 (mod p). We
note that

H* = (g) x (h) = C, x Cpn-1, n >3,
is a maximal non-normal subgroup in G since |G : H*| = p? and [g,t] = u &
H*. Since Qi (H*)U = {(g,2)U = S(p*), we are in case (b2) of Proposition 3
with respect to H*. But this was excluded by our assumptions.

We have proved that we must have p = 2. Assume in addition that
o(g) = 2. Then we have (t,g) = Dg and [h,t] = z & (t,g) and so (t,g) is a
non-normal subgroup isomorphic to Dg, contrary to our assumptions. Thus
we have in this case g2 = h. Also we have

2n—1

O(g):2n,n24, [gat]:ueU7<Z>a2:g 7[97“]:2
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so that
<ga u> = 1\/12”+1

is of index 2 in G. Also, (h,t) = (g?,t) = Man and (h,t) is not normal in G
since [g, t] = u. We have obtained the groups G stated in our proposition.
We check that there are no involutions in G — K, where K = L = (g?,t) x
(u) and so we have Q;(G) = (u,z,t) = Eg. Indeed, suppose that gh‘u/t* is
an element in G — K, where g? = h, i is any integer and j,k € {0,1}. Then
we get
x = (ghtuIth)? = ¥ H1uF 274 and so (z) > (2).

If = 1, then & = 0 and so h?*127 = 1, a contradiction.

Conversely, let X be any noncyclic and non-normal subgroup in G of
order > 2% containing more than one involution. Then we may assume (up
to conjugacy in G) that t € X and so Q;(X) = (t,u') with some involution
v € U. If X £ K, then by the above calculation we see that X contains z
and so we have Q;(X) = (t,z) . But then for an element z € X — K, we have
[z,t] € U — (z) and so in this case X > G’ = (u, z), a contradiction. Hence
we have X < K. Note that (h) <G and (hu) < G. Since |X| > 23, it follows
that X N (h) # {1} and so z € X and Q;(X) = (¢, z). Hence we have

X = (1)(X N (R)) or X = ()(X N (hu)).

But both X N (k) and X N (hu) are normal in G and we are done. Our group
G satisfies the condition (x). O

PROPOSITION 4.10. Suppose that we have the case (b1) of Proposition 3,
where H =2 Mys, p > 2, and G is of class 2. Then we have the following
possibilities:

(a) G is a splitting extension of a cyclic normal subgroup (g) = Cpm,
m >3, by
Mys 2 (ht | W7 =17 =1, [h,t] = h? = 2),
where [g,h] = 1 and [g,t] = u with (u) = Q1((g)).
We have

|Gl =p™", m >3, Epp 2 G = (u,2), Z(G) = (g") x (2) =2 Cpm-1 x Cp,

(g, h) = Cpm x Cp2 is a unique abelian maximal subgroup of G,

Q(G) =(u,z,t) = E

P3

and
(h,t) = Mys and (g,t) = M,m+
are non-normal subgroups in G with (h) <G and (g) < G.
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(b) G = ({g)x(h))(t), where (g) = (h) = Cp2, g? = u, hP = z, t centralizes
{u, 2), .
[hat] =z, [gat] =u'z!, i #£0 (mOd p)'
Here G is a special group of order p® with
Epe 2 G = (u,z), U(G) = (u,z,t) 2 Ep

p2 &
and (h,t) = M,s is non-normal in G with (h) <G.

Conversely, all groups in (a) and (b) satisfy our assumption (x).

PRrROOF. By Proposition 6, H possesses a G-invariant cyclic subgroup

(h) = Cp2 and then we may set:

H=(ht|h =t? =1, [ht] = h? = 2).
Since K/(t,z) is abelian, we have K’ = H' = (z) and so K = H x C with
HNC = (z), where C = Cg(H). Also, K/H = C/(z) is cyclic of order > p
and so C and C; = (h)C are abelian, where Q;(C1) = U = G’ < Z(G) and
51(G) < Z(G).

Since [G, (h)] = (z), we have G = (t)Cq(h). Set S = U x (t) = Es
and because |G : Cg(t)| = p?, all p? subgroups of order p in (S — U) U {1}
form a single conjugate class in G. We have Q1 (K) = S and we have in fact
21(G) = S. Indeed, if g is an element of order p in G — K, then we have

(9,t) = S(p°) with u' = [g,t] € U — (2).

Because (g,t) N K = (t,u') = Ej2, we have z € (g,t). But [h,t] = z and so
(g,t) is not normal in G, contrary to Proposition 1.

(i) First assume that G/L is cyclic of order > p?, where L = HU. Let
g € Cg(h) — K so that (g) covers G/L and (g?) < Z(G) covers K/H (which
is cyclic of order > p?). Hence we have Q(g) = (u), where o(g) = p™, m > 3,
u € U — (z) and [g,t] = uz® for some integer i (mod p). We replace g with
g =h7ig € Cg(h) — K so that we have

m—1 m—1

g, 1] = [h g, = 2 (uz’) = u, where (¢/)"" = (h'g)"" " =g

with (gP" ") = (u). Thus, we may assume from the start that [g,¢] = u and
so (g,t) = Mpm+1 with (g) < G. But [h,t] = z = h? and so z & (g,t) and
therefore (g,t) is a maximal non-normal subgroup in G. Our group G is a
splitting extension of (g) by (h,t) and so we have obtained the groups stated

in part (a) of our proposition. We check that
Ql(G) =5= <U,Z,t> = EPS.
Indeed, let 1 # t' € (t) and suppose that @ = t'¢"h® (r, s are any integers) is

an element of order p in G — (g, h). Then we have

p

L= (¢(g"h")) = ()7 g" b [g"h* #]®) = g e,
Hence r =0 (mod p™~1!), s =0 (mod p) and so we get = € S.
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Conversely, let X be a noncyclic and non-normal subgroup of order > p?
in G. We may assume (up to conjugacy in G) that ¢t € X and so Q;(X) =
(t,u') = E,2, where v’ is an element of order p in U. Set Xy = X N (g, h) so
that Xy is cyclic and Ng(Xo) > (g, h)(t) = G. Our condition (*) is satisfied.

(ii) Assume that either K = L or K > L but G/L is noncyclic so that
G/K splits over K/L. In any case we have G = KGq with K NGy = L and
|Go : L| = p. We have Cg,(h) = ((h)U){g) for some g € Gy — K. Since there
are no elements of order p in Go — K, we have o(g) > p? and so g € Z(G)NL
implies that 1 # ¢gP € U. If gP € (z), then (g, h) would contain elements of
order p in Gy — K, a contradiction. Hence we must have g? = u € U — (2).

Suppose that K > L. Then there is an element @ € C — U of order p? so
that a? = v’ € U — (z). Considering the subgroup (h) x (g) = C,2 x C,2, each
element in U1((g,h)) = (u, z) is a p-th power of an element in (g, h). Thus,
there is y € (g, h) — K such that y? = (u/)~1. But then we get:

(ay)? = aPyPly,a]®) = ' (u)) "t =1,

and so ay is an element of order p in G — K, a contradiction. Hence we have
K = L. In this case we have [g,t] = u’27 with i # 0 (mod p) and so we have
obtained a special group of order p® stated in part (b) of our proposition. We
check that
N(G) =8 = (u,z,t) 2 Eps.

Indeed, let 1 # ¢’ € (t) and suppose that © = t'g"h® (r, s are any integers) is
an element of order p in G — (g, h). Then we have

L= (¢(g"h*)" = ()7 g7 h*[g"h*, ¥)®) = g e,
Hence =0 (mod p), s =0 (mod p) and so we get x € S.

Conversely, let X be a noncyclic and non-normal subgroup of order p?
in G. We may assume (up to conjugacy in G) that ¢t € X and so Q(X) =
(t,u’) = E,2, where v’ is an element of order p in U. Set Xo = X N (g, h) so
that X is cyclic of order p? and Ng(Xo) > (g, h)(t) = G. Our assumption

(x) is satisfied. O

PROPOSITION 4.11. Suppose that we have the case (b1) of Proposition 3,
where H = Mpn, n > 4, is a non-normal subgroup of maximal possible order
in G ((which is isomorphic to some Mym, m > 4), G is of class 2 and assume
that G does not have non-normal subgroups isomorphic to Dg or M,s with
p > 2. Then we have the following possibilities:

(a) G = ((h) x (9))(t), where
(h) 2 Cpn-1, n >4, (g) = Cpm, m >3, (t) =C,,
[h,t] = 2z with (z) = Q1((h)), [g,t] = z'u with (u) = Q1((g)), 7 integer,

and t centralizes (u, z).
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Here we have |G| =p™*t", m >3, n >4,
p? =G = <u,z> < Z(G)a Ql(G) - <U,Z,t> =E

(g,h) = pm X Cpn—1 is a unique abelian mazimal subgroup of G and
(h,t) = Mpn is non-normal in G with (h) < G.

(b) G = (k) x {)){t), where
(g) =Cpn, n>4, (k) =Cpm, 2<m<n—2, (t) =C,p,
e t] = 2 with (=) = Q4((g)), [9,1] = u with (u) = D1 ((k)),

and t centralizes {u,z).
Here we have |G| = pmt" L n>4,2<m<n-2,

2 =G = (u,2) <Z(G), U(G) = (u,z,t) =E

(g,k) = Cpn x Cpm is a unique abelian mazimal subgroup of G and
(kgP,t) = Mpn is non-normal in G with (kg?) < G.
Conversely, all groups in (a) and (b) satisfy our assumption (x).

ProoF. By Proposition 4, G’ < U and so G' = U < Z(G) and U1(G) <
Z(G). Also, Proposition 7 implies that K/Qq(H) is abelian and so K/H is
cyclic (by Proposition 2), where Q;(H) = E,» and therefore we have K’ =
H' = (z) < Z(G). By Proposition 2, K/H is cyclic of order > p. Finally,
Proposition 3 also implies that U = Q4(Z(L)), where L = HU < G. By
Proposition 6, H possesses a G-invariant cyclic subgroup (h) of index p and
there is an element ¢ of order p in H — (h) so that ([h,t]) = (z). For any
g € G — K, we have t9 = tu for some v € U — (z), where G/K = C,,
S = (t)U = E,s is normal in G and S = Q(K). It follows that all p?
subgroups of order p contained in (S —U) U {1} form a single conjugate class
in G.

Since K’ = H', we get K = H « C, where C = Cg(H) and HNC =
(h?) > (z). On the other hand, K/H = C/(h?) is cyclic and so C' is abelian
of rank 2 (because Q;(C) = U), C = Z(K) and K; = (h)C is an abelian
subgroup of index 2 in K with ;(K;) = U. Since (h) < G, we get

(G, (h)] < (hyNG" = (h)NTU = (z) and so [G, (k)] = (2).

It follows that G = (t)Cq(h).

It is easy to see that there are no elements of order p in G — K. Indeed,
suppose that there is an element ¢ of order pin G—K. Since [i,t] = u € U—{(z),
we get that D = (i,t) is isomorphic to Dg in case p = 2 and D is isomorphic
to S(p*) in case p > 2. On the other hand, DN K = (t,u) = E,» and we have
[h,t] = z, where (z) = Q1((h)). Hence D is not normal in G. But the case
D = Dy is excluded by our assumptions and the case case D = S(p?) is not
possible by Proposition 1.

First we consider the case, where G/L (being abelian as a factor-group
of the abelian group G//U) is not cyclic of order > p?. Hence we have either

3>

p3>
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G/L = C, (i.e., K = L) or G/L is abelian of type (p",p), r > 1 (noting
that K/H is cyclic and so K/L is cyclic). In any case, G/L splits over K/L
and so G has a normal subgroup Gq such that G = KGy with K N Gg = L
and |Gp : L| = p. Since [Go, (h)] = (z), it follows that Cg,(h) covers Go/L,
where Cr(h) = (h)U and so Cg, (h) is abelian of rank 2 with 4 (Cg,(h)) = U
(noting that there are no elements of order p in Go — L). If Cg, (h) is abelian
of type (p™,p), then there is an element g; € Cg,(h) — ((R)U) such that
(g1)P = hu' (0 <i <p—1), where u € U — (z). But then (g1)? = hu' € Z(G)
and so h € Z(G), a contradiction. Hence Cg,(h) is of type (p"~1,p?) and
therefore there is an element g € Cg,(h) — K such that ¢? =u € U — (z). We
may assume that [t,g] = uz’ (0 < i < p— 1) (by replacing ¢t with a suitable
power # 1 of ¢, if necessary) and then we choose an element h’ € (h?) such
that (h/)P = 2% (noting that o(h) = p"~! > p3). Then we take the element
g =h'g € Gy — K and compute:

(') = (W)PgP =uz" and [t,¢'] = [t,h'g] = [t,g] = uz".

Hence, in case p = 2 we have (¢’,t) = Dg and then ¢'t is an involution in
Go — K, a contradiction. If p > 2, then (¢',t) = M,s. But we have

(¢, ) N K =((g))"t) = Ep and 1 # [h, 1] € (2) & (', 1).
Thus, (¢’,t) is a non-normal subgroup in G isomorphic to Mys, p > 2, which
was excluded by our assumptions.

We have proved that G /L must be cyclic of order > p?. Let g € Cg(h)—K
so that (g) covers G/L and we have g” € Z(G). But K/H is cyclic of order
> p? and so (gP) (covering K/L) covers K/H. Hence {g) covers Cg(h)/(h)
and so A = Cg(h) is abelian of rank 2 because Q1(A) = U. We also have
|A/(h)| = p°.

(i) First assume that A splits over (h). Then we may set A = (h)x (g)
o(g) =p™, m >3, and Q1({g)) = (u). We have [h,t] = z with Qy((h))
and [g,t] = z%u, where i is an integer (mod p).

We have obtained the groups stated in part (a) of our proposition. Now

we check that we have
Ql(G) =S= <U,Z,t> = EPS.

Indeed, let 1 # ¢’ € (t) and let x = t'h"g® (r, s are any integers) be an element
of order p. Then we get in case p > 2:

L= (E(hg") = (¢ hrg g, ¢)5) = hroger.
This implies
r = 0(mod p™~?) and s = 0(mod p™ ') and so = € S.
Suppose that p = 2. Then we have :
1= (t(h"g%))? = £2h2 g2 [h7 g%, 1] = W27 g2 27 250" = (K227 +i%) (g% u®).
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This implies 7 = 0 (mod 2"73) and s = 0 (mod 2™72). Since n > 4 and
m > 3, this gives 2" 7% = u® = 1 and then we get h2"g>* = 1 and therefore
r=0 (mod 2"72), s =0 (mod 2™ ') and x € S.

(i) Assume that A does not split over (h). Then we have for an element
g € A — K the following facts:

A= (h){g), (h)N{g) > (z) and o(h) = p"~" < o(g).

Suppose that o(g) > p™. Then we have o(gP) > p" and ¢? € Z(G). In
this case we get:
n—1 n
(hgp)p =g" > <Z>7 [ta hgp] = [tvh]v <[ta h]) = <Z>a [tag] =u €U~ <Z>7
and this shows that (¢, hg?) = Mp-, r > n + 1, is non-normal in G, contrary
to our maximality assumption.
We have proved that we must have o(g) = p™. Also we get:

[ A= {g) = [(h) = ((h) N (g))] = p™ with m < n — 2 since (h) N (g) = (2).

If m <1, then A = (g)U and so (¢*)U = ANK < Z(G), contrary to h € Z(G).
Hence we must have m > 2. Since (gP) (of order p™~!) splits in AN K, we get
ANK = (k) x(gP) and so we have A = (k) x(g) with o(k) = p™,2 <m < n—2.
Because [AN K, (t)] = (z), we have [k,t] = z, where (z) = Q1((g)).
Further we have [g,t] = uz* (i some integer) with (u) = Q1((k)). We may
replace g with ¢’ = k~%g so that we have:
i n—1 n—1
@) =&"g" =g"
(9" ) =(2),

[g . t] = [k7"g, 1] = 27 (uz") = u,

n—1

and so writing again ¢ instead of ¢/, we can assume from the start that
[g,t] = u. Also we have:

L# (kg?)?" " =g"" 2 (2), ket =2, 9.t = u,

and so (kg?,t) = Mp» is non-normal in G with (kg?) <G. We have obtained
the groups stated in part (b) of our proposition.
Now we check that we have

N(G) =8 = (u,z,t) 2 Eps.

Indeed, let 1 # ¢/ € (t) and let & = t'k"g® (r, s are any integers) be an element
of order p. Then we get in case p > 2:

L= ({(k9") = (¢ kg K g" 1]8) = krger.
This implies
r = 0(mod p™~ ') and s = 0(mod p" ') and so x € S.
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Suppose that p = 2. Then we have :

1= (t(krgs))2 _ t2k2rg2s[krgs’ t] _ k2r9252ru5 _ (k2rus)(g2szr).
This implies s = 0 (mod 2"2) and so 1 = k?"(¢%*2") and r = 0 (mod 2™~ 1)
which gives g%* =1 and s = 0 (mod 2"~1). Hence we get again x € S.

It remains to prove in case of both groups in parts (a) and (b) of our
proposition that the assumption (x) is satisfied. Indeed, let A be a unique
abelian maximal subgroup of G, where t € G — A (since 1 (A) = U = G).
Let X be a noncyclic and non-normal subgroup of order > p? in G which in
case p = 2 has more than one involution. Since X % G’ and all noncentral
subgroups of order p form a single conjugate class in G (with a representative
(t)), we may assume that t € X. We set Xg = X N A, where X is cyclic since

01 (X) = (t,u') for some 1 # u' € G' = Q1 (A).

But then we have Ng(Xo) > (A,t) = G and we are done. Our proposition is
completely proved. 0

In the next proposition we collect all the remaining p-groups satisfying
the condition (x).

PROPOSITION 4.12. Suppose that G is a p-group satisfying (%) which is
not a 2-group of mazximal class, G has no non-normal subgroups isomorphic
to Dg or Myn, |G'| = p?, K/Qi(H) is abelian for each abelian noncyclic
mazimal non-normal subgroup H of order > p3 in G, and G has no non-
normal abelian subgroups which lead to the case (b2) of Proposition 3. Then
we have the following possibilities.

(a) G has a maximal subgroup
Myes = (gu | g7 =P =1, [u,g] =2, () = %((g)p>2, s> 2,
G = (g, u)(t), where o(t) = p, [g,t] = v and [u,t] = 1.
These groups are actually As-groups defined in Proposition 71.5(i)
in [2], where (g7,t) = Cps x C,, is non-normal in G with (g*) I G.
(b) G is a special group of order 25 with a unique abelian mazximal subgroup
K = (h) x (u) x (t), (h) = Cyq, h* =z, (u) = (t) = Cy,
and G = K(g), where > = z, [g,h] = 2, [g,u] = 1, [g,1] = u.
Here we have G' = (u, z) = E4, 0 (G) = (u, z,t) = Eg and (h, t) =
Cy4 x Cq is a non-normal subgroup in G with (h) < G.
(¢) G has a mazimal subgroup
(hog | WP =g =1, W' =2 [g,h]=2),5>4, 3<r<s
and
G = (h,g)(t) with t* =1, [h,t] = 1, [g,1] = uz’, i # O(mod p),

(u) =0 ((9), [ut] = 1.



148 Z. JANKO

We have |G| = p"™t B = G = (u,2) < Z(G), %(G) =

(u,z,t) = Eps,

K = (t,h,g") =2 Cp x Cps x Cpr
is a unique abelian mazimal subgroup in G and
(h,t) = Cps x Cp

is an abelian mazimal non-normal subgroup in G with (h) < G.
(d) G is a 2-group which possesses a normal subgroup Gy = L{g), where

L= (h) x (u) x (), (B) = Cy, h2 =z, (u) = (t) = Cy,

92 =z, [gah] =z, [gau] =1, [gat] =u,

which is a special group of order 2° with Gfy = (u,z) = Ey4. Then we

have the following possibilities for G = Go(k):

(d1) k* = u, [k,g] = 1, [k,t] = 2z, [k,h] = 2, and here we have
|G| =27, exp(G) =8 and Z(G) = G'(k?) = C4 x Ca.

(d2) k% = u, [k,g] = [k,t] = [k,h] = 1, and here we have |G| = 2°,
exp(G) =4 and Z(G) = G'( ) = Cy x Ca.

(d3) k? = uz, [k,g] = [k,h] = 1, [k,t] = 2z and here G is a special
group of order 25 with Z(G) = (u, z) = E4.

In all three cases we have By = G' = (u, z) < Z(G), 01 (G) = G’ x (t) =

Es and (h,t) =2 C4 x Cy is an abelian mazimal non-normal subgroup

in G with (h) <G.

(e) We have G = ({a) x (b))(t), where

<a>%Cps+1 <> C <>Ncp5822;2§7n§5+17

r—1

z=a”, u=0" | [bt] =z [a,t] =u'z’, i # 0(mod p), [z,t] = [u,t] = 1.
If r =s+1, then j # £ — i€ 1 (mod p) for all mtegers &£ O(mod D).
We have here |G| = p" ™72, G’ = (u,2) X E,2, U (G) = G’ x (t) &
Eps, G is of class 2 with

O(G) = U1(G) = Z(G) = (a) x (b*) = Cps x Cpr-1.
Finally, (a?) x (t) = Cps x C,, is a mazimal non-normal subgroup of G
with (a?) < G.
Conversely, all the above groups from (a) to (e) satisfy our condition (x).

PROOF. Let G be a p-group satisfying all assumptions of this proposition.
Let H be a maximal non-normal subgroup of a maximal possible order in G
which is abelian of type (p*,p), s > 2.

Set Up = UNH = (z) <Z(G) and Hy = O (H) = (t,z) so that S =
HoU =2 Eps, S = Qi (K) = Qi(L) and L is abelian with Uy(L) = U1(H) >
Up. Also, K/Hy is abelian and since G’ < U (Proposition 4), we have here
G' = U (see Proposition 3(b1)) because by our assumption |G’| = p? and so
K’ < (z) and G/L is abelian. By Proposition 6, H possesses a G-invariant
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cyclic subgroup (h) = C,s which contains z and so we have H = (h) x (t).
Also, Ng(Hp) = K and by Proposition 2, K/H is cyclic of order > p. By
Proposition 3, for each ¢ € G — K, we have [g,t] = u € U — (z), where
|G/K| = p. We shall use all these facts in the proof of this proposition.

First we prove that there are no elements of order p in G — K and so we
have Q1(G) = S = G’ x (t) = E,s. Indeed, let i be an element of order p in
G — K. We have [i,t] = v’ € U — (z) and so (h,4) is not normal in G because
(h,i) N K = (h). It follows that

H* = (h,3) = (h) x (i)

is abelian and the fact that |H*| = |H| together with the maximality of |H]|
implies that H* is another maximal non-normal subgroup in G of type (p°, p).
Since H*NU = (z) < Z(G), it follows that H*U is the unique normal subgroup
of G which contains H* with |(H*U) : H*| = p. By our assumptions, we
have that Qi (H*) = (z,4) centralizes U. Thus Cg(U) > L(i) and since v’
commutes with ¢ and ¢, we get together with [i,¢] = v’ that D = (i,t) = Dg if
p=2and D = (i,t) = S(p?) if p > 2 and in any case we get D’ = Z(D) = (u).

If D = Dg, then our assumptions imply D < G and if D = S(p?), then
Proposition 1 gives that D < G. Hence in any case we have D < G and so
D’ = (u') <Z(QG). This gives that G' = U = (z) x (v') < Z(G) and therefore
G is of class 2 with U1(G) < Z(G). Since D N G" = (u'), it follows that no
element in G induces an outer automorphism on D. We get G = D xC, where
C =Cg(D) and CND = (u).

Note that (h)U < C and Cg(t) = C x (t), which together with the fact
that no element in G — K centralizes t implies that Cg(t) = K. Also, we have
|G : Cq(i)| = p and so if K would be abelian, then C' = Ck (i) is abelian and
then G’ = D' = (u/) is of order p, a contradiction. Hence K is nonabelian
and so K’ = (z) = C" since K = C x (t). If (h) < Z(K), then L < Z(K) and
so the fact that K /L is cyclic gives that K is abelian, a contradiction. Hence
we get (h) £ Z(K) and so, in particular, we have K > L.

We have K = Cg (i) x (t) and since K/H is cyclic of order > p? and

K/H = Cr(i)/Cu(i) = Cr (i)/(h),

we may choose k € Cg (i) = C so that (k) covers Ck(i)/(h) and [h, k] = z.
Since

C = Cx(i) = (h, k) with [h,k] = 2, () = (h) U and U = Q,(C) < Z(G)
and noting that Q4 (K) = U x (t) & E_3, it follows that C is metacyclic

p3H
minimal nonabelian without a cyclic subgroup of index p. Hence we may set

C={(a,b|a" = b’ = 1, [a,b] =z = ap(kl),
where 0« > 2, 3 >2 and b?*  =u e U — (z). Also we know that we have

G = Cx(i,t) with CN(i,t) = (u'), v € U~ () and D = (i, t) = Dg or S(p?).
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We consider the subgroup H; = (b) x (i) = C,s x Cp, f > 2. Since
HiyNC = (b) and [a,b] = z & Hy, it follows that H; is non-normal in G.
Suppose that H; is not a maximal non-normal subgroup in G. Then there
is an element b’ € G such that b = ¢7(b')P, where v is an integer mod p and

()P € U1(G) < Z(G). Then we get
[aab] = [avi’y(b/)p] = [aai]’y =1,

a contradiction. Hence H;j is a maximal non-normal subgroup in G. By
Proposition 6, H; possesses a G-invariant subgroup (bi5> of index p, where ¢
is an integer mod p and Q; ((bi®)) = (u). On the other hand, we have [a, bi’] =
[a,b] = z, a contradiction. We have proved that there are no elements of order
pin G — K.

Now assume that G is of class 3. In that case no element in U — (z) is a p-
th power of an element in G. Indeed, if there is € G such that 2? € U — (z),
then we consider the subgroup U{x) < G of order p3. Since (z) < Z(G) and x
commutes with x?, it follows that U{x) is abelian of type (p?, p). But then we
get U1(U(x)) = (2P) is normal in G and so G’ = U < Z(G), a contradiction.

Note that G/K = C, acts transitively on p subgroups of order p? in
S = U x (t) which contain (z) and which are distinct from U. Assume
for a moment that t ¢ Z(K). Then we have K’ = (z) and K > L. Let
k € K — Ck(t) so that (k) covers K/H. Suppose that (k') = Q1 ((k)) £ U.
Then we have k' € Z(K) and if U € Z(K), then Q(Z(K)) = (2, k') <G,
a contradiction. Hence U < Z(K) and so S < Z(K) which implies that
t € Z(K), a contradiction. Thus we have Q4 ((k)) < U and so 4 ((k)) = (z)
and o(k) > p?. Since ([k,t]) = (z), we have

(k,t) = Mpm, m > 4.

On the other hand, for an element g € G — K we have [g,t] = v € U — (2)
and so (k,t) is not normal in G, contrary to our assumptions. We have proved
that ¢ € Z(K) and so we have Cq(t) = K.

If U £ Z(K), then Hy = Q1(Z(K)) < G, a contradiction. Hence we have
U<Z(K) and so S = 0 (Z(K)) = Q1(G). Let z € G — K so that we have
Cy(z) = (z) and therefore, by the above, Cg(x) = (z). In particular, we get
p>2and Q;((z)) = (z).

Suppose that for some y € K we have y? € S—U. Then we have (y)S <G
and

G1((y)S) = (¥*) < Z(G),
a contradiction. Hence for each element x € G of composite order, the socle
01 ((x)) is equal (z).
Assume that (h) £ Z(K) so that we have K > L. Let k € K be such that

(k) covers K/H and since Q ((k)) = (z), we get o(k) > p®. It follows that
(h, k) is a splitting metacyclic minimal nonabelian subgroup with ([h, k]) =
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(z). We may set
(h, k) = (a,b | a’" = bpﬁ =1, [a,b] =z = ap“*1>’

where a > 3 and § > 1. By the previous paragraph, we must have 5 =1 and
then b € Z(K), a contradiction.

We have proved that h € Z(K) and so L < Z(K) which together with the
fact that K/L is cyclic implies that K is abelian. Hence K is abelian of rank
3 and therefore we may set

K = (a) x (u) x (t) with Q;({a)) = (z), o(a) > p°, and (z,u) = U.

Since [t,g] € U — (z) for each element g € G — K, we have that (a) x (t) is
non-normal in G which together with the maximality of |H| gives o(a) = p°
and so we have K = L.

Let ¢ € G — K. Since Cg(g) = (), it follows that Cx(g) is cyclic. By
Lemma 1.1in [1], Cx(g) = (k') covers K/S and so (') = C,- and (h') = Z(G)
so that g? € (h'). But there are no elements of order p in G — K and so
(g, h') = {g) is cyclic of order p*T!. We may assume without loss of generality
that g = h. Then we may set [g,t] = u € U — (z) and [u, g] = z, where
(z) = Q1({g)). The group G has a maximal subgroup

Motz & (gyu | ¢ =P =1, [u,g] = 2, () = ((g)),

where p > 2, s > 2 and G = (g, u)(t) with o(t) = p, [9,t] = v and [u,t] = 1.
We have obtained the groups stated in part (a) of our proposition. It turns
out that these groups are actually As-groups which are defined in Proposition
71.3(i) in [2]. Conversely, it is easy to check that these groups satisfy our
condition (x).

From now on we may assume that G is of class 2. Since G’ = U = E,,
we also have U1(G) < Z(G). Also we have Q1(Z(G)) = U and so no element
in § — U is a p-th power of any element in G.

(i) Assume that K = L. In this case Lemma 1.1 in [1] gives that
|G/Z(G)] = p®. We have (h) < G but (h) £ Z(G) and so we have
Z(G) = U{h?). Hence for each g € G — K, we get 1 # gP € U(hP).

(i1) First suppose that 1 # g? € (h?) > (z). Since there are no elements
of order p in (g, h) — (h) and (g, h) is nonabelian (because (h) £ Z(G)) with
Q1({g,h)) = (z), it follows that we have p = 2 and (g,h) = Qs. Hence
(h) =2 Cy, g°> = 2, [g,h] = 2z and [g,t] = u € U — (2). We have obtained the
special group of order 2° stated in part (b) of our proposition and this group
satisfies our condition (x).

(i1) Now we assume that g? € (U(hP))— (h?) so that we may set gP = uh’,
where u € U — (2), (z) = Q1((h)) and i’ € (h?). Let hy be an element in (h)
such that h = (h')~!. Then we replace g with ghg € G — K and we compute

(gho)? = g"h8[ho, g)®) = (uh') ()12’ = uz’ € U — (2),
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where
[ho, g)8) = 2" € (2).

It follows that in this case we may choose from the start an element g € G— K
so that g? = u € U — (). Then we have [g,t] = uz® for some integer i mod
p ( where we have replaced ¢ with a suitable power t/ (j # 0 mod p ). Let
h* € (h) be such that (h*)P = 2*.

Assume that either p > 2 or p = 2 and s > 3 (where in the last case we
have [h*,g] = 1). Then we counsider the subgroup (¢’,t), where ¢’ = gh* €
G — K. We have

()" = gP ()P, g 5) = wz' = [g,1] = [gh*, 1] = ¢/, 1],

and so we get (¢, t) = Dg if p = 2 and (¢',t) = M,s if p > 2. On the other
hand, 1 # [h,¢'] € (z) and so (¢/,t) is non-normal in G, contrary to our
assumptions.

We have proved that we must have p = 2 and s = 2 so that we have
(h) = C4 and G is a special group of order 2° with ¢ =u € U — (2), h? = 2,
[g,h] = z and [g,t] = uz’, i = 0,1. However, if i = 0, then (g,t) = Dg is
non-normal in G, a contradiction. Thus we have ¢ = 1 and so [g,t] = uz. The
structure of G is uniquely determined.

We claim that the special 2-group obtained in the previous paragraph is
in fact isomorphic to the special group of order 2° from part (il) of our proof.
Indeed, set ¢’ = gt and v’ = uz. Then we have

(9")° = (9t)* = u(uz) = z = h?,
[917 h] = [gt7 h] =z,
¢ t] = [gt,t] = uz = /.
In addition we have [¢',u’] = [h,t] = 1 and so writing again g, u instead of
g',u’, respectively, we see that we have obtained the relations for the special
group of order 2° defined in (i1).

From now on we shall always assume that K > L.

(ii) Suppose that G/L is cyclic of order > p?. Let g € G — K so that (g)
covers G/L. But g € Z(G) and (¢gP) covers K/L # {1}. Since K/H is cyclic
of order > p?, it follows that (gP) covers K/H and so K = H{gP) is abelian.
Since G’ = U = E,2, Lemma 1.1 in [1] implies that |G : Z(G)| = p®. On the
other hand, (h?,¢?) < Z(G) and |K; : (h?, ¢gP)| = p, where K; = (h, gP) and
K = (t) x K1 is of rank 3. It follows that Z(G) = (h?, gP). In particular, (since
U < Z(G)) we must have U < (h?, gP) so that (K1) = U and h & Z(G).
We may set [g,h] = z. There are exactly p conjugate classes of non-central
subgroups of order p in G with the representatives (tz), 0 < i < p — 1.
It follows (using also Proposition 6) that any abelian maximal non-normal
subgroup in G of type (p”,p), r > 2 is contained in Cg(tz') = K.
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Suppose that K, is of exponent p”, where > s. Let k be an element of
order p” in K7 and consider the subgroup (t) x (k). If (t) x (k) is non-normal
in G, then (t) x (k) is maximal non-normal in G of order > |H| = p°, contrary
to our assumptions. Hence we have () x (k) < G. Since [g,t] € U — (2),
it follows that Q4 ((k)) = (u) with v € U — (z). Since [g,h] = 2z, we have
[g9, K1) = (z) and so the fact that k € K; implies that [g,k] € (z). But we
have Q4 ((t, k)) = (t,u) and so [g, k] = 1 and therefore k € Z(G). Now consider
the subgroup (t) x (hk), where hk € K; o(hk) = p” and Qq((hk)) = (u). If
(t) x (hk) is not normal in G, then (t) x (hk) is maximal non-normal in
G of order > |H|, a contradiction. Hence we have (t) x (hk) < G. But
lg, hk] = [g,h]]g, k] = z and z &€ Q1({t) x (hk)) = (t,u), a contradiction. We
have proved that exp(K) = exp(K1) = p* and therefore o(g) < p**! and all
elements in G — K are of order < p**+1!.

There are elements of order p* or p**! in G — K. Indeed, assume that
o(g) < p*~! for some g € G — K. In that case we must have s > 3 since
01(G) = U x (t). Then we compute

(gh)p571 _ gpsflhpsfl[h,g](zi R ) _ h/psfl — 2,
where (z) = Q1((h)) and so we get o(gh) = p®.

If there is an element g € G — K of order p**!, then all elements in G — K
are of order p**!. Indeed, for any € K and and any integer i 2 0 (mod
p)we have:

(g') = ()2 r,97](2) = (g')"" # 1.

(ii1) Suppose that G — K contains elements of order p°. Let g be an
element of the minimal possible order p” in G — K. Then we have 3 <r <'s.
Indeed, (g) covers G/L (which is cyclic of order > p?) and there are no
elements of order p in G — L and so o(g) > p>.

The element g”ri1 is of order p and is contained in U. Assume that

r—1

g? = z, where (z) = Q1((h)). Let A’ be an element in (h) such that
(W)?"" = 27!, Then we compute (noting that r > 3):
r—1
(o) =Wy g g )2 ) =27le =1,

and so o(h/g) < p"~!, a contradiction. We have proved that (g) splits over
(h) and so we have Q1({(g)) = (u) with u € U — ().

Set h?" ' = z, s > 3, and then replacing g with ¢’ for some integer
j # 0 ( mod p), we see that we may set [g,h] = 2. Replacing t with ' for
some suitable integer [ Z 0 ( mod p), we may assume that [g,t] = uz® for
some integer ¢ ( mod p). If [¢g,t] = u (i.e.,i = 0 ( mod p)), then we have
(g.t) = Myr+1, 7> 3. But [g,h] = 2 € (g,t) and so (g,t) is not normal in G,
contrary to our assumptions. Hence we have i Z 0 ( mod p) .

1

Assume that » = s and so o(g) = p°. We set g”k1 = u and then changing
t with a suitable power 7, j # 0 ( mod p), we may set [g,t] = uz® with i # 0
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( mod p). Let i/ € (h) be such that (/)?" ' = z*. Then we have (noting that
s> 3):

. . s—1 .
(gn)" " =zl g)("e ) = ua,

and since [gh',t] = [g,t] = uz’, we obtain that (gh’,t) = My.+1. On the

other hand, we have 1 # [gh/,h] € (z) and so (gh’,t) is non-normal in G, a

contradiction. We have proved that we must have o(g) = p” with 3 <r < s

and this gives s > 4. We have obtained the groups stated in part (c) of our

proposition which obviously satisfy our condition (x).
(ii2) Suppose that all elements in G — K are of order p**!.

(ii2a) First assume that there is ¢ € G — K such that (g) splits over (h).
We may choose a generator g in (g) so that [g,h] = z = hpkl, s > 2. Then
we set u = gP € U — (z) and we may choose a generator t € (z) so that
[g,t] = uz®, where i is an integer mod p. Suppose that i = 0 (mod p). Then

~J

we have (g,t) = M,.+2. But [g,h] = 2 € (g,t) and so (g,t) is not normal in
G, contrary to our assumptions. Hence we have ¢ Z 0 (mod p). Note that the
socle Q1 ((z)) is equal (u) for each z € G — K.
Consider the subgroup X = (¢,h%¢?) = C,, x Cps, where g? € Z(G) and
a is any fixed integer with o #Z 0 (mod p). We have for every integer j (mod
p):
(Fhogh)” = (W )" = 2,

and so (t/h*gP) = C,- is a maximal cyclic subgroup in G since its socle is
(z%u). We have Q1(X) = (¢, 2%u) and

l9.h%g"] =g, h"] = 2" ¢ X
implies that X is not normal in G. This gives

Ng(X) =Ng(h (X)) =K.

We have [g,t] = uz® and so ziu ¢ Q1(X) = (¢, 2%). In particular, i Z o (mod
p) for any integer a Z 0 (mod p). But this implies that we must have i = 0
(mod p), a contradiction.

(ii2b) We have proved that for each g € G — K, (g) does not split over
(h). Hence we have:
(g) N () = (2), (g, 1) = (2) = Qu((h))
and therefore
{9) < (g, h) with p < (g, h) : (g)] < p*~".
Since (gP) is of order p® = exp({¢?, h)), it follows that (g?) splits in (g?, h)
and so we have:

{g" h) = (k) x (g") with K = (t) x ((k) x (¢")) and
(k)(g) = (g, h) with (k) N (g) = {1}.
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Because ([k, g]) = (z) and Q1 ({k){g)) = U < Z(G), we get o(k) =p", 2 <r <
s—1andsos >3 Wemayset u=k" €U~ (z)and [g,k] =2z =g
Also note that the socle i ({x)) for each z € G — K is equal (z).

We may choose a suitable generator ¢ in (t) so that [g,t] = uz® for some
integer ¢ mod p. Consider the subgroup Y = (k) x (t) = Cp,xCpr, 2 <r < s—1,
which is not normal in G since [g,k] = z ¢ Y. We have Ng(Y) = K and so
Ng((t,u)) = K, where (t,u) = Q1(Y). We have [g,t] = uz* ¢ Q1(Y) and so
we must have ¢ Z 0 (mod p).

Choose an element ¢’ in (gP) such that o(g') = p” and (¢')?" = z and
note that ¢’ € Z(G). Now we consider for each a # 0 ( mod p) the subgroup

V = (k“g’) x (t) = Cpr x C,, with (lc"‘g')pp1 = u%z so that Q1 (V') = (t,u®z).
Since [g, k%*g'] = 2* € Q1(V), we have Ng(V) = K and so also Ng/({(t,u%z)) =

K. Because [g,t] = uz’, it follows that uz’ ¢ (u®z) for each a # 0 ( mod p).
We can find an integer j Z 0 ( mod p) so that ij =1 ( mod p). We get

(uz'y = w2 =uwiz & (u®z)
for each o # 0 ( mod p), a contradiction.

(iii) We consider the remaining case, where G/L is not cyclic and G > L.
Since G/L is abelian and K/L # {1} is cyclic, it follows that G/L splits over
K/L and so we have G = KGy with K NGy = L and |Gy : L| = p. Also,
K/H is cyclic of order > p? and we have:

H = (h) x (t) = Cps x Cp, s > 2, where Cp: = (h) <G, (t) = C,,

W (H)=(z), G =U = E,;2, L =UH is abelian and U < Z(G).

(iiil) Suppose first that (h) £ Z(Go) so that we have U = G = E,»
and therefore by (i) we get p = 2 and G is the uniquely determined special
2-group of order 2° (stated in part (b) of our proposition):

L = (h) x (u) x (t) 2 Cy x Cy x Co, (h) = Cy, h? =z, (u) = (t) = Cy,
Go = L{g) with ¢* = z, [9.h] = 2, [g,u] = 1, and [g,#] = u.

Since Z(Gy) = U, it follows that for each x € K — L such 2* € L, we must
have 1 # 22 € U. Let k € K — L be such that (k) covers the cyclic group
K/H of order > 4. Thus Q4({k)) = (u) or (uz) and so K splits over H.

Because Cg,(g9) = U(g) and so |G : Cg,(g9)| = 4, we get together with
|G| = 4 that |G : Cg(g)] = 4. But we have G = K(g) and so Cg(g) =
Cxk(g){(g) which implies that |K : Cx(g)| = 4. On the other hand, we have
|H : Cr(g)| = 4 and therefore Cx(g) covers K/H. It follows that we may

choose our element k € Cg(g) such that (k) covers K/H. Hence we may
assume [g, k] = 1.

Case (1). Suppose that |K : L| > 2 so that o(k) > 8. Then there is an
element k' of order 4 in (k) such that k' € Z(G). Note that (tg)? = uz and so
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if (k')? = uz, then k/(tg) is an involution in G — K, a contradiction. Hence we
must have in this case (k')? = u. We set o(k) = 2", n > 3, and then we have
k2" = u. Assume for a moment that that [k, h] = [k,] = 1 which together
with [k,g] =1 (from the previous paragraph) then implies that k € Z(G). In
that case we have (gk)2" = u and [gk,t] = u so that (gk,t) = Mgn+1 with
n > 3. But [h, gk] = z &€ (gk,t) and so (gk,t) is not normal in G, contrary to
our assumptions. We have proved that k € Z(G).

Assume that [k,t] = 1. Then we have [k,h] = z. Consider in this case
the subgroup

(t) x (k), where o(k) = 2" = exp(G), n > 3.

Since [h, k] = z & (t,k), it follows that (¢,k) is a maximal non-normal sub-
group in G of order > |H|, contrary to our assumptions. We have proved that
we must have [k,t] = z (noting that we have K’ < (z)).

Now we consider the subgroup (t) x (hk’), where k' is an element of
order 4 in (k) and k¥’ € Z(G). Here we have Qq((t,hk')) = (t,uz). Because
[g,t] = u, it follows that (¢, hk’) =2 Cy x Cy is abelian non-normal in G. By the
maximality of |H|, it follows that (¢, hk’) is a maximal non-normal subgroup
in G. Then Proposition 6 implies that either (hk’) < G or (thk’) < G. But
[hE', g] = z and so (hk') is not normal in G. Hence we must have (thk’) < G.
From [thk', k] = z]h, k| follows that [h, k] = .

Finally assume that n > 3 so that the subgroup (¢) x (k%) 2 Cy x Cgn-1 is
non-normal in G ( since [t, k] = z), contrary to the maximality of |H|. Hence
we get n = 3, o(k) = 8 and |G| = 27. We have obtained the group stated in
part (d1) of our proposition.

Case (2). Suppose that |K : L| = 2 and k € Z(G). Here we have o(k) = 4
and k? € {u,uz}. If k? = uz, then (gt)? = uz together with [k, gt}=1 implies
that gtk is an involution in G — K, a contradiction. Hence in this case we
have k% = u and we have obtained the group of order 2° stated in part (d2)
of our proposition.

Case (3). Assume that |K : L| = 2 and k ¢ Z(G). We have
E? = wuzf, e € {0,1}, [k, t] = 2", [k,h] = 2°, 0,6 € {0,1},

and 7 =6 = 0 is not possible.
Then the fact that there are no involutions in G — K gives a unique
solution

e=1,n=16=0

and so we have obtained the special group of order 2° stated in part (d3) of
our proposition.

Conversely, all groups from part (d) of our proposition satisfy the condi-
tion (x).
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(iii2) Suppose that (h) < Z(Gp). We have for each g € Go—L, G{, = ([g, t])
with [g,t] =u € U — (z) and (z) = Q1({h)). We have

Z(Go) = (h) x (u) 2 Cps x Cp, s> 2.

Since 1 # gP € Z(Gy) and there are no elements of order p in G— K, it follows
that A = Z(Go)(g) is abelian of rank 2. Hence A is either of type (p®,p?) or
(ps+1 , p).

Suppose, by way of contradiction, that A is of type (p®,p?). In that case
there is an element go € A — Z(Gp) such that g2 = u, where (u) = G}. If
p = 2, then (go, t) = Dg and so got is an involution in Gy — K, a contradiction.
Hence we must have p > 2 and M = (go,t) = M,s. By our assumptions, we
have M < G. Note that G’ "M =U N M = (u) and set C = Cg(M) so that
CNM = (u). If C+M < G, then G/C = S(p*) (which is an S,-subgroup
of Aut(M)), contrary to U = G’ < C. Hence we have G = M x C. Since
(h) < C, (h) <G and t centralizes C, we have C' < K and so K = C x (t).
Because C' < K and K’ < (z), we have C' < (z) . If C' = {1}, then
G' = C'M’ = (u), a contradiction. Hence we have C' = (z). Note that
{1} # K/L is cyclic, where L = ((h)U) x (t) and K = CL with CNL = (h)U.
Thus {1} # C/({h) x (u)) is cyclic. Let ¢ € C be such that (c) covers
C/({h) x (u)) and so we must have ([h, ¢]} = (z). Since K/H is cyclic of order
> p?, (c) also covers K/H and so {(c) covers C/(HNC) = C/(h). It follows
that C' is metacyclic minimal nonabelian without a cyclic subgroup of index
p (noting that E,» = Q,(C) = U < Z(G) ). Hence we may set

C = (a)(b) with (a) > (2) = C", (a) N () = {1}, (b) = Cpr, 7> 2,
and Q;((b)) = (uz?), where i is an integer mod p. Consider the subgroup
(b) x (t) =2 Cpr x Cp,

which is non-normal in G since ([a,b]) = (z) and z & (b,t). We claim that
(b,t) is a maximal non-normal subgroup in G. Indeed, let X > (b,t) be a
maximal non-normal subgroup in G. If X N C > (b), then (z) < X and so
(z,uz')y = G’ < X, a contradiction. Hence we have X N C = (b). Because
G/C = E,, it follows that X must contain an element x € G — (C x (t)) =
G — K. On the other hand, Cg(t) = C x (t) = K and so [z,t] # 1 and X is
nonabelian, contrary to our assumptions. Finally, by Proposition 6, we have

(bt?) < G for some integer j mod p, where Q1 ((bt’)) = (uz?). On the other
hand, we have

[a,bt’] = [a,b], where ([a,b]) = (z) # (uz),
a final contradiction.

We have proved that A = Z(Gp){g) is abelian of type (p**!, p). It follows
that all elements of order p® in (h)U are central in G (noting that U < Z(G)).
Replacing H with H* = () x (hu') for some integer i mod p (which is also
a maximal non-normal abelian subgroup of type (p®, p)) so that {(gP) = (hu®)
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and then working with H* instead of H, we see that we may assume from the
start that there is g € G — K such that g = h, where (h) < Z(G) and we set
g?" =z If t € Z(K), then L < Z(K) and since K/L is cyclic, K would be in
that case abelian.

(iii2a) First assume that K is nonabelian, i.e., t &€ Z(K). Then we have
K’ = (z) and so if k € K — L is such that (k) covers K/H (which is cyclic
of order > p?), then we may set (by choosing a suitable generator t of (t))
[k, t] = =.

It is easy to see that (k) splits over H. Indeed, if (k) does not split over
H, then (k) N H = (k) N (h) since Z(G) N L = (h)U and so we have (k) > (z).
It follows that (k,t) = M,n+1 with n > 3 since [k, t] = z. On the other hand,
[9,t] € U — (z) and so [g,t] € (k,t) which implies that (k,t) is not normal
in G, contrary to our assumptions. Hence (k) splits over H and we may set
o(k)=p",r>2 and k¥ =ueU— (2).

If o(kP) > p®, then (t) x (kP) = C, x Cpr-1 is non-normal in G (since we
have [k,t] = 2 & (¢, kP)), contrary to the maximality of |[H| = p**!. Hence we
have r < s+ 1. We set [g,t] = u’2z/ with i # 0 (mod p).

We have here

®(G) = U1(G) = Z(G) = (¢gP) x (kP) and so |G : ®(G)| = p°.

By Lemma 146.7 in [4], G possesses a unique abelian maximal subgroup A*.
Because we have |G : Cg(t)| = p?, it follows that t € G — A* and

Ca-(t) = Z(G) = (h) x (k"), A"/Z(G) = G' =U = (A")

so that A* is of rank 2 and of type (p**!,p"), where s > 2 and 2 <r < s+ 1.
Indeed, the map a — [a,t] (a € A*) is a homomorphism from A* onto G’ and
so A*JZ(G) = G'.

Case (a): 7 < s+ 1. In this case we may set

1

A" = (a) x (b), where (a) = Ce41, (b) = Cpr, 2= a? u=0" .

—1

Take an element a’ € (a?) < Z(G) such that o(a’) = p" and (/)P = z.
Suppose that [b,t] € (z). Then we have [b,t] = z'u (i is an integer mod p) for
a suitable choice of a generator ¢ of (t). We get

(@) = z'w and [(@)'b, 8] = [b,1] = 2'u

and therefore we have either p = 2, r = 2 and {(a’)’b,t) = Dg or {(a’)'b,t) =
M,-+1 (where in case p = 2, we have r > 3). But |G : Cg(t)| = p? and so
for some g € G we get ([g,t]) # (z'u) and so ((a’)%b,t) is not normal in G,
contrary to our assumptions. Hence choosing a suitable generator ¢ of (t), we
must have [b,¢] = z. Then we also get [a,t] = u’z’ with i # 0 (mod p).

Case (b): 7 = s+ 1. Let b € A* — ®(G) be such that [b,t] = z and set
b = u, where (u) # (z). Let a € A* — ®(G) be such that a?” = z and then
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we have
A* = (a) x (b) =2 Cpet1 X Cpot1 and [a,t] = u'2?, i # 0 (mod p).

In this critical case we must also have j # & — £~ (mod p) for all
integers £ Z0 (mod p). Indeed, assume that for some £ #Z 0 (mod p), we
have j = £ —i¢~! (mod p). In that case we solve the congruence iy = ¢ (mod
p) with some p Z 0 (mod p). We compute (noting that s > 2):

(@b)” = (a?")o?" b, a"](3) = 21

and
[a"b, 1] = (uizd )z = 2yt = SAH(E—IET g 6 —

SAHEn—€ iy & IHEu—1, & Euy € (")t

It follows that (a*b,t) = Mp.+2, s > 2, and since [b,t] = z & (a*b,1), it
follows that (a*b,t) is not normal in G, contrary to our assumptions. We
have obtained the groups stated in part (e) of our proposition.

Conversely, we see that in any group G from part (e) of our proposition,
for each z € A* — Z(G), (z) is not normal in G and so Dg or M, cannot
be subgroups of GG, where A* is the unique abelian maximal subgroup of G.
Furthermore, let X be any maximal non-normal abelian subgroup of G of
order > p? which has more than one subgroup of order p. Since G has exactly
one conjugacy class of noncentral subgroups of order p with the representative
(t), we may assume that ¢t € X. It follows that X = (¢) x Xy, where X is
any maximal cyclic subgroup in Z(G). Hence our condition (*) holds.

(iii2b) It remains to consider the case t € Z(K) so that K is abelian and
K > L. Since K/Ck(g9) = G’ (Lemma 1.1 in [1]), there is k € K — L such
that (k) covers K/H and [g,k] = z = g, s > 2, where [¢g,t] € U — (2)
with p" = o(k) > p?. Since K = (t) x (h, k) and Z( ) = (h,kP), it follows
that U < (h,kP) because U < Z(G). Hence we have Qi ((h,k)) = U = G".
Consider the subgroup

(t) x (k) 2 Cp x Cpr, 7> 2.

If Q1((k)) = (z), then [g,t] € U — (z) shows that (¢,k) is not normal in G.
If we have Qi ((k)) = (u) with u € U — (z), then [g, k] = z shows that again
(t,k) is not normal in G. The maximality of |H| shows that we must have
r < s and so we have exp (K)=p®. It follows that (h) splits in (h, k) and so
we have

(h, k) = (h) x (K} with Qi ((K')) = (), u€ U — (z) and o(K') > p*.

Since [g,t] € U — (2), there is an integer j mod p so that [g,t/k’] = 2. Because
Q1 ((HK")) = (u), we may assume from the start that (replacing k with /&’
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and writing k again):
K = {t) x (h) x (k), o(k) =p", 2<r <s,
T =ueU-— (z) and [g, k] = 2z = 7.

Replacing ¢ with some other generator of (t) (if necessary), we may assume
from the start that [g,t] = uz® for some integer i mod p.

For any integer v Z 0 (mod p) and any x € K, we have (noting that
$>2)

(g%x)P" = zo‘[ac,g“]@) = 2@

and so 21(G) = (t) x U = Eps and the socle of each cyclic subgroup of G
which is not contained in K is equal (z).

Let h/ be an element of order p” in (k) such that (h/)?" ' = z. For any
fixed a #Z 0 (mod p) we consider the subgroup

(t) x (W)*k) = C, x Cpr, where (B)*k)" = 2%

and note that ((h')*k) = Cpr, r > 2, is a maximal cyclic subgroup in G with
the socle (z*u). We have [g,(h)¥k] = z & (¢, (h')*k) so that (¢, (h')¥k) is
a maximal non-normal subgroup in G. By Proposition 6, there is a unique
integer j ( mod p ) such that (t/(h')*k) < G. Hence we must have:

9.7 (W)*k] = (uz) 2 = 20! € (2"u),
which shows that j #Z 0 (mod p) and we get
2y = 2%y7 so that 1445 = o or j(a —i) =1 (mod p).

Hence for any fixed a@ Z 0(mod p), there must exist j # 0(mod p) such that
jla—14) =1 (mod p) and this gives that we must have ¢ = 0 (mod p). We
have obtained the relation [g, t] = u.

Because [g,k] = z and (k) = C,r, r > 2, is a maximal cyclic subgroup
in G with the socle (u), it follows that (t) x (k) = C, x Cpr is a maximal
non-normal subgroup in G. By Proposition 6, there is a unique integer m (
mod p ) such that (t™k) < G. But we have

[g’tmk] = [gvt]m[gak] =u"z,

a final contradiction (since Q1 ((t™k)) = (u)). Our proposition is completely
proved. O

PrOOF OF THEOREM C. By inspection of all Propositions 1 to 12, we see
that all possible cases have been investigated and so our theorem is proved.
O
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