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SUMS OF ZEROS OF SOLUTIONS TO SECOND ORDER

DIFFERENTIAL EQUATIONS WITH POLYNOMIAL

COEFFICIENTS

Michael Gil’

Ben Gurion University of the Negev, Israel

Abstract. We consider the equation u′′ = P (z)u, where P (z) is a
polynomial. Let zk(u), k = 1, 2, . . . be the zeros of a solution u(z) to that

equation. Inequalities for the sums
∑j

k=1
1

|zk(u)|
(j = 1, 2, . . .) are derived.

They considerably improve the previous result of the author. Some appli-
cations of the obtained bounds are also discussed. An illustrative example
is presented. It shows that the suggested results are sharp.

1. Introduction and statement of the main result

In the present paper we consider linear differential equations with polyno-
mial coefficients in the complex domain. The literature devoted to the zeros of
solutions of such equations is very rich. Here the main tool is the Nevanlinna
theory. An excellent exposition of the Nevanlinna theory and its applications
to differential equations is given in the book [22]. In that book, in particu-
lar, the well-known results of Bank ([3]), Brűggemann ([5]), Hellerstein ([18])
and other mathematicians are featured. The classical comparison principle
for zeros of ODE in the complex plane is presented in [20]. The real zeros
of solutions to equations with polynomial coefficients were investigated in the
very interesting papers by Gundersen ([17]), Eremenko and Merenkov ([9]),
and by C. Z. Huang ([21]). In connection with recent results see also the
papers [4,10,11], [23]-[27]. In particular, in the paper [26], the authors study
the convergence of the zeros of a non-trivial (entire) solution to the linear
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differential equation

f ′′ +
{

Q1(z)e
P1(z) +Q2(z)e

P2(z) +Q3(z)e
P3(z)

}

f = 0

where Pj are polynomials of degree n ≥ 1 and Qj(6≡ 0) are entire functions
of order less than n (j = 1, 2, 3). In the paper [11], by certain separation and
comparison results, estimates for the counting functions of the zeros of solu-
tions to nth-order linear differential equations are deduced. It is proved that
these estimates are in any possible case the sharpest ones, and they general-
ize known results for the zeros of solutions to third- and fourth-order linear
differential equations. The remarkable results on the zeros of a wide class of or-
dinary differential equations with polynomial coefficients whose solutions are
classical orthogonal polynomials were established by N. Anghel ([1]). Besides,
he had derived results connected with the equations of mathematical physics.
In addition, N. Anghel ([2]), investigated the following question: when is an
entire function of finite order, solution to a complex 2nd order homogeneous
linear differential equation with polynomial coefficients? He gives two (equiv-
alent) answers to this question, one of which involves certain Stieltjes-like
relations for the zeros of solutions, the second one requires the vanishing of
all but finitely many suitable expressions constructed via the relations of the
sums of the zeros of the function derived in [13].

Certainly, we could not survey the whole subject here and refer the reader
to the above listed publications and references given therein. In the above
cited works mainly the asymptotic distributions of zeros and counting func-
tions of zeros are investigated. At the same time, bounds for the zeros of
solutions are very important in various applications. But to the best of our
knowledge, they have been investigated considerably less than the asymptotic
distributions. In the paper [14] the author has established bounds for the
sums of the zeros of solutions for the second order equations with polynomial
coefficients. In the interesting paper [6], some results from [14] have been
extended to the equation u(m) = P (z)u, where P is a polynomial and m > 2.
In [16] the main result from [14] is extended to the second order ODE with
non-polynomial coefficients. Perturbations of the zeros of solutions to second
order differential equations with polynomial coefficients were investigated in
the paper [16].

In the present paper, we considerably refine the main result from [14].
Note that, the proof of the main result of the present paper-Theorem 1.1 is
considerably different from the proof of the one from [14]. In addition, we
estimate the zero free domains. That estimation supplements the well-known
results from [20] as well as the results from the paper of Eloe and Henderson [8]
on the positivity of solutions for higher order ordinary differential equations,
since the positivity of solutions implies the absence of zeros.

Consider the equation

(1.1) u′′ = P (z)u, u(0) = u0, u
′(0) = u1 (u0, u1 ∈ C;u0 6= 0),
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where

P (z) =

n
∑

k=0

ckz
k (cn 6= 0)

is a polynomial with complex coefficients. As it is well-known [22], the zeros
of solutions to (1.1) are simple. Enumerate the zeros zk(u) of u in order of
increasing modulus: |zk(u)| ≤ |zk+1(u)| (k = 1, 2, . . .). Put

s(P ) =

(

n
∑

k=0

|ck|
)1/2

, β(P ) = ((1 + n/2)s(P )e)2/(n+2)

and

C0(P ) := β(P )es(P ) +
|u1|
|u0|

(

1 + 4es(P )
)

.

Theorem 1.1. If u0 6= 0, then

j
∑

k=1

1

|zk(u)|
≤ C0(P ) +

√
2β(P )

j
∑

k=1

1

(k + 1)
2

n+2

(j = 1, 2, . . .).

The proof of this theorem is presented in the next two sections.
To estimate the sharpness of the theorem, consider the equation

u′′ + u = 0, u(0) = 1, u′(0) = 0.

Then u(z) = cos(z) and its zeros are π(k + 1/2) (k = 0,±1,±2, . . .). So

(1.2)

2j+1
∑

k=1

1

|zk(u)|
=

1

π

(

1

j + 1/2
+ 2

j−1
∑

k=0

1

k + 1/2

)

.

In the considered case n = 0, s(P ) = 1, β(P ) = e, C0(P ) = e2. Therefore,
Theorem 1.1 gives us the inequality

(1.3)

2j+1
∑

k=1

1

|zk(u)|
≤ e2 +

√
2e

2j+1
∑

k=1

1

k + 1
(j = 1, 2, . . .).

We can see that (1.2) and (1.3) are asymptotically equivalent.

2. Estimates for solutions

Consider the equation

(2.1)
d2u

dz2
= Q(z)u, u(0) = u0, u

′(0) = u1 (u0, u1 ∈ C),

where

Q(z) =

∞
∑

k=0

ckz
k (c0 6= 0)

is an entire function. Put Mf (r) = sup|z|≤r |f(z)| for a function f(z).
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Lemma 2.1. A solution u(z) of equation (2.1) satisfies the inequality

Mu(r) ≤ (|u0|+ r|u1|)cosh(r
√

q(r) ) (r ≥ 0; cosh(r) =
1

2
(er + e−r)),

where

q(r) =

∞
∑

k=0

|ck|rk.

Proof. For a fixed t ∈ [0, 2π) and z = reit we have

e−2it d
2u(reit)

dr2
= Q(reit)u(reit).

Integrating twice this equation in r, we obtain

e−2itu(reit) = e−2it(u0 + ru1) +

∫ r

0

(r − s)Q(seit)u(seit)ds.

Hence,

(2.2) |u(reit)| ≤ |u0|+ r|u1|+
∫ r

0

(r − s)q(s)|u(seit)|ds.

Due to the comparison lemma [7, Lemma III.2.1], we have |u(reit)| ≤ v(r),
where v(r) is a solution of the equation

(2.3) v(r) = w(r) +

∫ r

0

(r − s)q(s)v(s)ds = w(r) + V v(r),

where w(r) = |u0|+ r|u1| and V is the Volerra operator defined by

(V v)(r) =

∫ r

0

(r − s)q(s)v(s)ds.

So

(2.4) v =

∞
∑

k=0

V kw.

But for any positive nondecreasing h(r) we have

V h(r) =

∫ r

0

(r − s)q(s)h(s)ds ≤ h(r)q(r)

∫ r

0

(r − s)ds.

Hence,

V mh(r) ≤ qm(r)h(r)

∫ r

0

∫ r1

0

. . .

∫ rm−1

0

(r − r1) . . . (rm−1 − rm)dr1 . . . drm

= qm(r)h(r)
r2m

(2m)!
.

Thus from (2.4) it follows

v(r) ≤ (|u0|+ r|u1|)
∞
∑

k=0

qk(r)r2k

(2k)!
.
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But
∞
∑

k=0

qk(r)r2k

(2k)!
= cosh(r

√

q(r)).

This implies the required result.

It should be noted that the inequality stated in Lemma 2.1 can be proved
by Herold’s comparison theorem [19].

Consider again the equation

(2.5)
d2u

dz2
= P (z)u, u(0) = u0, u

′(0) = u1 (u0, u1 ∈ C).

In this case

q(r) = p̂(r) :=

n
∑

k=0

|ck|rk.

In addition

(2.6) r
√

p̂(r) ≤
√

p̂(1)(1 + rn/2+1) (r > 0)

and

cosh(r
√

p̂(r)) ≤ exp [
√

p̂(1)(1 + rn/2+1)].

Sine p̂(1) = s2(P ), Lemma 2.1 yields

Corollary 2.2. A solution of equation (2.5) satisfies the inequality

Mu(r) ≤ (|u0|+ r|u1|)es(P )(1+rn/2+1).

The previous corollary is sharp: as it is well-known a solution of equation
(2.5) is an entire function of order no more than (n + 2)/2, see, e.g. [22,
Proposition 5.1]. Besides, our proof is absolutely different.

3. Proof of Theorem 1.1

Lemma 3.1. Let an entire function

f(z) =
∞
∑

k=0

fkz
k

satisfy the inequality

Mf(r) ≤ (D1 +D2r)exp[Brρ]

(3.1) (D1, D2 = const ≥ 0;B = const > 0; ρ ≥ 1; r > 0).

Then its Taylor coefficients are subject to the inequalities

(3.2) |fj | ≤ D1
(eBρ)j/ρ

(j!)1/ρ
+D2

(eBρ)(j−1)/ρ

[(j − 1)!]1/ρ
(j ≥ 2).
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Proof. By the well-known inequality for the coefficients of a power series

|fj | ≤
Mf(r)

rj
≤ (D1 +D2r)

eBrρ

rj
.

Employing the usual method for finding extrema it is easy to see that the
function r−jeBrρ (j ≥ 1) takes its smallest value in the range r > 0 for

rj = ( j
Bρ )

1/ρ and therefore

|fj| ≤
Mf (rj)

rjj
≤ D1

(

eBρ

j

)j/ρ

+D2

(

eBρ

j − 1

)(j−1)/ρ

(j ≥ 2).

Hence, due to the well known inequality, jj ≥ j! (j ≥ 1), we have (3.2), as
claimed.

Note that Lemma 3.1 can be proved also by the classical Valiron-Wiman
theory, cf. [25, page 11,Q. 67 (1)].

Now let us consider the entire function

(3.3) f(z) =

∞
∑

k=0

dkz
k

(k!)1/ρ
(ρ ≥ 1, λ ∈ C, d0 = 1, dk ∈ C).

Assume that

(3.4) θ(f) := [

∞
∑

k=1

|dk|2]1/2 < ∞.

Theorem 3.2. Let f be defined by (3.3) and condition (3.4) hold. Then

j
∑

k=1

1

|zk(f)|
≤ θ(f) +

j
∑

k=1

1

(k + 1)1/ρ
(j = 1, 2, . . .).

This theorem is proved in [12] (see also [13, Section 5.1]).
Denote

b := (eBρ)1/ρ and τρ :=





∞
∑

j=2

j2/ρ

2j





1/2

.

Lemma 3.3. Let an entire function f satisfy the conditions (3.1) and
f(0) = 1. Then

j
∑

k=1

1

|zk(f)|
≤ |f1|+D1b+

√
2D2τρ +

√
2b

j
∑

k=1

1

(k + 1)1/ρ
(j = 1, 2, . . .).

Proof. Due to Lemma 3.1

|fk| ≤
D1b

k

(k!)1/ρ
+

D2b
k−1

[(k − 1)!]1/ρ
=

1

(k!)1/ρ
(D1b

k +D2b
k−1k1/ρ) (k ≥ 2).
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Consider the function

fχ(z) = f(χz) = 1 +

∞
∑

k=1

fkχ
kzk

(k!)1/ρ

with χ = 1
b
√
2
. We have

θ2(fχ) =

∞
∑

j=1

|χjfj |2 ≤ |f1|2χ2 +

∞
∑

j=2

1

(b
√
2)2j

(D1b
j +D2b

j−1j1/ρ)2

= |f1|2χ2 +

∞
∑

j=2

1

2j
(D1 +

D2

b
j1/ρ)2.

Hence, by the triangle inequality

θ(fχ) ≤ |f1|χ+D1(
∞
∑

j=2

1

2j
)1/2 +

D2τρ
b

= |f1|χ+
D1√
2
+

D2τρ
b

.

Thus due to Theorem 3.2 we obtain

j
∑

k=1

1

|zk(fχ)|
≤ |f1|χ+

D1√
2
+D2

τρ
b

+

j
∑

k=1

1

(k + 1)1/ρ
(j = 1, 2, . . .).

Since χzk(fχ) = zk(f), the lemma is proved.

Proof of Theorem 1.1. Delete (1.1) by u(0). According to Corollary
2.2 we take B = s(P ), ρ = 1 + n/2,

D1 =
1

|u0|
es(P ) and D2 =

|u1|
|u0|

es(P ).

Then b = β(P ). In addition,

τ21+n/2 =

∞
∑

j=2

j4/(n+2)

2j
≤ 1

2

∞
∑

j=2

j(j − 1)

2j−2
= 8 (n ≥ 0).

Now Lemma 3.3 implies

j
∑

k=1

1

|zk(u)|
≤ β(P )es(P ) +

|u1|
|u0|

(

1 + 4es(P )
)

+
√
2β(P )

j
∑

k=1

1

(k + 1)2/(n+2)

= C0(P ) +
√
2β(P )

j
∑

k=1

1

(k + 1)2/(2+n)
(j = 1, 2, . . .),

as claimed.
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4. Applications of Theorem 1.1

Again u(z) is a solution of equation (1.1). Everywhere in this section we
assume that u(0) 6= 0 and for the brevity let

β̂ =
√
2β(P ) and γ =

2

n+ 2
.

Since |zk(u)| ≤ |zk+1(u)|, Theorem 1.1 implies that

j|zj(u)|−1 ≤ C0(P ) + β̂

j
∑

k=1

1

(k + 1)γ
(j = 1, 2, . . .).

But
j
∑

k=1

(k + 1)−γ ≤
∫ j+1

1

dx

xγ
=

(1 + j)1−γ − 1

1− γ
(0 < γ < 1).

Denote by ν(f, a) (a > 0) the counting function of the zeros of f in the circle
|z| ≤ a. We thus get

Corollary 4.1. Let u(0) 6= 0 and n > 0. Then with the notation

ηj(u) :=
j

C0(P ) + β̂ (1+j)1−γ−1
1−γ

,

the inequality |zj(u)| ≥ ηj(u) holds and thus ν(u, a) ≤ j for any positive
a ≤ ηj(u) (j = 1, 2, . . .).

Furthermore, put

ϑ1 = C0(P ) +
β̂

2γ
and ϑk =

β̂

(k + 1)γ
(k = 2, 3, . . .).

Theorem 1.1 and Lemma 1.2.1 from [13] yield

Corollary 4.2. Let φ(t) (0 ≤ t < ∞) be a continuous convex scalar-
valued function, such that φ(0) = 0. Then

j
∑

k=1

φ(|zk(u)|−1) ≤
j
∑

k=1

φ(ϑk) (j = 1, 2, . . .).

In particular, for any p ≥ 1 and j = 2, 3, . . ., we have

j
∑

k=1

1

|zk(u)|p
≤

j
∑

k=1

ϑp
k

and therefore
∞
∑

k=1

1

|zk(u)|p
< ∞,

provided that p > n+ 1/2.
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In addition, making use Theorem 1.1 and [13, Lemma 1.2.2], we obtain
our next result.

Corollary 4.3. Let Φ(t1, t2, . . . , tj) be a function defined on domain
Introduce a scalar-valued function Φ(t1, t2, . . . , tj) with an integer j defined
on the domain

−∞ < tj ≤ tj−1 . . . ≤ t2 ≤ t1 < ∞
and satisfying the condition

∂Φ

∂t1
>

∂Φ

∂t2
> . . . >

∂Φ

∂tj
> 0 for t1 > t2 > . . . > tj > −∞.

Then

Φ(
1

|z1(u)|
, . . . ,

1

|zj(u)|
) ≤ Φ(ϑ1, . . . , ϑj).

In particular, let {dk}∞k=1 be a decreasing sequence of positive numbers
with d1 = 1. Then the previous corollary and Theorem 1.1 yield the inequality

j
∑

k=1

dk
|zk(u)|

≤ C0(P ) + β̂

j
∑

k=1

dk
(k + 1)γ

(j = 1, 2, . . .).

Finally we improve Corollary 4.1 in the case j = 1. Besides, n ≥ 0. Due to
[13, Theorem 5.12.1], we can write

inf
j
|zj(u)| ≥ 1/(1 + max

j
|aj|),

where aj (j = 1, 2, . . .) are the Taylor coefficients at zero of v(z) = u(z)/u(0).
We have |aj | ≤ Mv(1). Now Corollary 2.2 implies

(4.1) inf
j
|zj(u)| ≥

1

(1 + |u1|
|u0| )e

2s(P )
.

The just obtained result gives us a bound for the zero-free domain.
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