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ON QUASI-GREEDY BASES ASSOCIATED WITH UNITARY

REPRESENTATIONS OF COUNTABLE GROUPS

Morten Nielsen†

Aalborg University, Denmark

Abstract. We consider the natural generating system for a cyclic
subspace of a Hilbert space generated by a dual integrable unitary repre-
sentation of a countable abelian group. We prove, under mild hypothesis,
that whenever the generating system is a quasi-greedy basis it must also be
an unconditional Riesz basis. A number of applications to Gabor systems
and to general Vilenkin systems are considered. In particular, we show
that any Gabor Schauder basis that also forms a quasi-greedy system in
L
2 is in fact a Riesz basis, and therefore satisfies the classical Balian-Low

theorem.

1. Introduction

Let G be a discrete countable abelian group, and suppose that g → Tg
is a unitary representation of G on a Hilbert space H. For fixed ψ ∈ H, we
are interested in properties of the system Q := {Tgψ : g ∈ G} in the cyclic
subspace

(1.1) S := 〈ψ〉 = Span{Tgψ : g ∈ G}
H
.

Cyclic subspaces are important in many areas of both pure and applied math-
ematics. One example is in harmonic analysis where systems of the type Q
form the foundation for generating wavelet and Gabor systems, see [1, 5].

For representation systems such as wavelet and Gabor systems, the stabil-
ity and approximation properties of Q are important, see e.g. [2,6,12,13]. In
this paper we study approximation properties of systems Q given that Q has
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some stability properties. More precisely, we suppose that Q, with some fixed
ordering, forms a Schauder basis for S with Q having the additional property
that decreasing rearrangements of expansions relative to Q are norm conver-
gent. Put another way, we assume that the approximants obtained from Q
by thresholding an expansion in the system converge. Thresholding is a very
natural way to build approximants, and for Riesz bases it is known to be (up
to a constant) the optimal way to build m-terms approximants.

Systems for which decreasing rearrangements are norm convergent are
known as quasi-greedy bases. Every unconditional basis is also a quasi-greedy
basis, but it is known that conditional quasi-greedy bases exist not only in
Banach spaces but also in infinite dimensional Hilbert spaces, see [10] and
[17]. However, our main result shows that under mild hypothesis there are no
conditional quasi-greedy bases of the type Q generated by a unitary represen-
tation of a countable group. Put another way, if thresholding approximation
is convergent, then Q is an unconditional Riesz basis for S.

One special case related to this setup has been studied earlier. For a
cyclic subspace of L2(Rd) generated by integer translates of a single function,
it was shows in [13] that no conditional quasi-greedy bases of integer translates
exists. However, the abstract approach in the present paper will show that
the result in [13] is just one instance of a more general theory that applies
to many other “popular” systems in harmonic analysis such as Gabor and
Vilenkin systems. Our general result relies on the notion of a dual integrable
representation introduced in [9].

The structure of the paper is as follows. In Section 2 we review some
needed background material on quasi-greedy systems in a Hilbert space and
on dual integrable representations of locally compact groups. Section 3 con-
tains our main result, Theorem 3.3. Finally, Section 4 and Section 5 contain
examples related to Gabor and Vilenkin systems, respectively.

2. Quasi-greedy systems in a Hilbert space

The present section reviews some needed background material on quasi-
greedy systems and on dual integrable representations. The dual integrable
representations provide a suitable abstract framework for our study in Section
3 of quasi-greedy systems in cyclic subspaces of the type given by Eq. (1.1).

2.1. Quasi-greedy systems in a Hilbert space. An ordered family B = {xn :
n ∈ N} of vectors in a Hilbert space H is called a Schauder basis for H if there
exists a unique sequence of continuous linear functionals {αn}n∈N on H such
that for every x ∈ H,

lim
N→∞

N∑

n=1

αn(x)xn = x
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in the norm topology of H. By the Riesz representation theorem there exists
a unique vector yn such that αn(x) = 〈x, yn〉. It follows that

(2.1) 〈xm, yn〉 = δm,n, m, n ∈ N.

and that there exists a smallest constant C = C(B) ≥ 1 such that, for every
n ∈ N,

(2.2) 1 ≤ ‖xn‖ · ‖yn‖ ≤ C.

A pair of sequences ({un}n∈N, {vn}n∈N) in H is a bi-orthogonal system

if 〈um, vn〉 = δm,n, m,n ∈ N. We say that {vn}n∈N is a dual sequence to
{un}n∈N, and vice versa. A dual sequence is not necessarily uniquely defined.
In fact, it is unique if and only if the original sequence is complete in H (i.e.,
if the span of the original sequence is dense in H). A complete sequence
{xn : n ∈ N} with dual sequence {yn} is a Schauder basis for H if and only

if the partial sum operators SN (x) =
∑N
n=1〈x, yn〉xn are uniformly bounded

on H. Eq. (2.1) shows that every Schauder basis {xn : n ∈ N} for H has
an associated bi-orthogonal system ({xn}, {yn}) with a uniquely determined
dual sequence. Furthermore, the dual sequence {yn} is also a Schauder basis
for H.

We now fix a biorthogonal system (xn, x
∗
n)n∈N with {xn} complete in H.

We assume that the system is quasi-normalized, i.e., infn ‖xn‖H > 0 and
supn ‖x

∗
n‖H <∞, see (2.2). For each x ∈ H and m ∈ N, we define

Gm(x) :=
∑

n∈A

x∗n(x)xn,

where A is a set of cardinality m satisfying |x∗n(x)| ≥ |x∗k(x)| whenever n ∈ A
and k 6∈ A. Whenever A is not uniquely defined, we arbitrarily pick any such
set. The definition of Gm leads directly to the definition of a quasi-greedy
system, see [10].

Definition 2.1. A quasi-normalized biorthogonal system (xn, x
∗
n)n∈N ⊂

H × H, with spann(xn) dense in H, is called a quasi-greedy system if there

exists a constant Q such that

(2.3) ‖Gm(x)‖H ≤ Q‖x‖H, ∀x ∈ H.

If the system is also a Schauder basis for H, we will use the term quasi-greedy

basis.

Remark 2.2. It was proved by Wojtaszczyk in [17] that a system is quasi-
greedy if and only if for each x ∈ H, the sequence Gm(x) converges to x in
norm.
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2.2. Dual integrable representations of LCA groups. We now introduce a
suitable setting to study the quasi-greedy property in cyclic subspaces of the
type given by Eq. (1.1).

We will use the terminology and notation presented in [9]. Suppose that
G is a locally compact abelian (LCA) group. We shall use additive notation
for G. A character of G is a continuous map χ : G → {z ∈ C : |z| = 1} for
which

χ(g1 + g2) = χ(g1) · χ(g2), g1, g2 ∈ G.

The character group of G, denoted by Ĝ, is the multiplicative group of all
characters of G.

A representation of a LCA group G on a Hilbert space H is a strongly
continuous map g → Tg from G into L(H,H) of bounded linear operators
on H with bounded inverses such that Tg ◦ Th = Tg+h for all g, h ∈ G.
The representation is called unitary if all the operators Tg are unitary, i.e.,
〈Tgφ, Tgψ〉 = 〈φ, ψ〉 for all φ, ψ ∈ H and g ∈ G.

Fix a Haar measure dχ on Ĝ, and let g → Tg be a unitary representation
of G on a Hilbert space H. This representation is called dual integrable if
there exists a function

[·, ·] : H×H → L1(Ĝ, dχ)

such that

(2.4) 〈φ, Tgψ〉 =

∫

Ĝ

[φ, ψ]χ(g) dχ.

An abstract way to interpret dual integrability, which was pointed out
in [9], is through Stone’s theorem, see e.g. [3, Theorem 4.44]. According to

Stone’s theorem there is a regular measure P on Ĝ with values in the set of
self-adjoint projections on H such that

Tg =

∫

Ĝ

χ(g) dP (χ), g ∈ G.

For φ, ψ ∈ H, the function µφ,ψ(S) := 〈P (S)φ, P (S)ψ〉 defines a complex

valued measure on Ĝ such that

〈φ, Tgψ〉 =

∫

Ĝ

χ(g) dµφ,ψ(χ).

Comparing this formula to (2.4), we see that dual integrability happens ex-
actly when dµφ,ψ is absolutely continuous wrt. the Haar measure dχ in which
case [φ, ψ] is the Radon-Nikodym derivative of dµφ,ψ.

It follows from [9, Corollary 2.4] that [·, ·] is always a sesqui-linear form

and a Hermitian symmetric map. In particular, for a.e. χ ∈ Ĝ,

[Tgφ, ψ](χ) = χ(g)[φ, ψ](χ) = [φ, T−gψ](χ).
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For ψ ∈ H\{0} one defines Ωψ = {χ ∈ Ĝ : [ψ, ψ](χ) > 0}. Consider the

cyclic space 〈ψ〉 = {Tgψ : g ∈ G}
H
. It is proved in [9] that Sψ defined by

(2.5) Sψ(φ) := χΩψ

[φ, ψ]

[ψ, ψ]

is a one-to-one isometry from 〈ψ〉 onto the weighted space

L2
(
Ωψ, [ψ, ψ](χ) dχ

)
.

2.3. Countable abelian groups. We now focus on the restricted case where
G is a countable abelian group with the discrete topology. We assume that G
is ordered according to G = {gn}

∞
n=1, and we let g → Tg be a dual integrable

representation of G on a Hilbert space H.
For fixed ψ ∈ H, we consider the system Q := {Tgnψ : n ∈ N} in the

cyclic subspace

S := 〈ψ〉 = {Tgnψ : n ∈ N}
H
.

We now suppose Q forms a Schauder basis for S. Then Q has a uniquely
determined bi-orthogonal system and it follows from [9, Proposition 6.1] that

[ψ, ψ](χ) > 0 for a.e. χ ∈ Ĝ. However, the Schauder basis property is not
characterized by positivity of [ψ, ψ](χ) > 0, see [14]. We will discuss the
special setup where we have either a Gabor system or a shift invariant system
in Section 4.

Now we use the isometry Sψ given by (2.5) to translate properties of the
system Q to properties of characters.

Lemma 2.3. Suppose G = {gn}n∈N is a countable abelian group with

g → Tg a dual integrable representation of G on a Hilbert space H. Let Sψ be

defined by (2.5). For any finite scalar sequence {an}
N
n=1, we have

Sψ

( N∑

n=1

anTgnψ

)
(χ) =

N∑

n=1

anχ(gn).

Proof. According to (2.4), we have

Sψ(Tgkψ)(χ) = χ(gk)
[ψ, ψ]

[ψ, ψ]
= χ(gk),

and the result now follows from sesqui-linearity of the bracket [·, ·].

Since Sψ is a one-to-one isometry it follows immediately that Q is a

Schauder basis for S if and only if Q̃ := {χ(gn)}
∞
n=1 is a Schauder basis for

L2
(
Ĝ, [ψ, ψ](χ) dχ

)
. Moreover, Q is quasi-greedy in S if and only if Q̃ is

quasi-greedy in

L2
(
Ĝ, [ψ, ψ](χ) dχ

)
.
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The Dirichlet kernel associated with Q̃ is given by

DN(χ) =

N∑

n=1

χ(gn),

and it follows that the partial sum operator S̃N associated to Q̃ is given by

S̃N (f)(α) =

∫

Ĝ

DN (α− χ)f(χ) dχ.

The following property will be essential to prove Theorem 3.3.

Definition 2.4. With the notation considered in Section 2.3, we say that

Q̃ has the Fejér property provided that the kernels {FN (χ) := |DN (χ)|2/N}N∈N

satisfy the following condition. There exists an increasing sequence {Nj}
∞
j=1 ⊂

N such that for every n ∈ N and for a.e. α ∈ Ĝ,

(2.6) lim
j→∞

∫

Ĝ

FNj (α− χ)χ(gn) dχ = α(gn).

Notice that since FN is non-negative with
∫
Ĝ
FNdχ = 1, and the char-

acters {χ(gn)}n form a complete system in L1(Ĝ, dχ), the Fejér property

implies that {FNj}j is an approximate identity for L1(Ĝ, dχ).

3. Properties of quasi-greedy systems for cyclic subspaces

This section contains our main result, Theorem 3.3. The main idea behind

Theorem 3.3 is to obtain pointwise information on Ĝ for the function [ψ, ψ]
by “probing” the function by a suitable approximation of the identity. This
idea was introduced in this context in [13]. For another application of this
approach see [8, Theorem 4.7]. We first consider some general properties of
quasi-greedy system that will be used later to obtain information about the
function [ψ, ψ] associated with the cyclic subspace S given by (1.1). Quasi-
greedy bases are known to be unconditional relative to sign-changes in the
following sense.

Lemma 3.1 ([17]). Suppose {ek}k∈N is a quasi-greedy system in a Hilbert

space H. Then there exist constants 0 < c1 ≤ c2 < ∞ such that for every

choice of signs ǫk = ±1 and any finite subset A ⊂ N we have

(3.1) c1
∥∥∑

k∈A

ek
∥∥
H

≤
∥∥∑

k∈A

ǫkek
∥∥
H

≤ c2
∥∥∑

k∈A

ek
∥∥
H
,

where c1 and c2 depend only on the quasi-greedy constant for the system.

For our purpose, Lemma 3.1 is not quite enough. When we consider
translates of the Dirichlet kernel, we need to be able to handle arbitrary
unimodular complex coefficients and not only ±1 as covered by Lemma 3.1.
For that purpose, we consider the following proposition, which will be essential
for the proof of Theorem 3.3.
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Proposition 3.2. Suppose that {ek}k∈N is a quasi-greedy system in a

Hilbert space H. Then there exist constants 0 < c1 ≤ c2 < ∞ such that for

every finite unimodular sequence {αk}
N
k=1 ⊂ C, we have

(3.2) c1N
1/2 ≤

∥∥∥∥
N∑

k=1

αkek

∥∥∥∥
H

≤ c2N
1/2.

Proof. For technical reasons we define a new scalar sequence {βk}k∈N

by

βk =

{
αk 1 ≤ k ≤ N

1, k > N.

Now observe that {βkek}k∈N is also a quasi-greedy system in H. By inspec-

tion, we see that the greedy approximation operator G̃m for {βkek)}k∈N is
identical to the approximation operator Gm for {ek}k∈N. This follows from
the trivial observation that if fk is the dual element to ek, then βkfk is the
dual element to βkek, since |βk| = 1.

Next we recall that the Hilbert space H has Rademacher type and cotype
2, see [16, §III.A]. Hence, for any sequence {fℓ}ℓ∈N ⊂ H, we have the uniform
estimate

(3.3)

∫ 1

0

∥∥∥∥
n∑

ℓ=1

rℓ(t)fℓ

∥∥∥∥
2

H

dt ≍

n∑

ℓ=1

‖fℓ‖
2
H,

where {rℓ}ℓ∈N is the sequence of Rademacher functions on [0, 1]. In particular,

(3.4)

∫ 1

0

∥∥∥∥
N∑

k=1

rk(t)[βkek]

∥∥∥∥
2

H

dt = Avgǫk=±1

∥∥∥∥
N∑

k=1

ǫk[βkek]

∥∥∥∥
2

H

.

We use (3.4) and (3.3), together with Lemma 3.1 applied to the quasi-greedy
system {βkek}k∈N, to obtain

(3.5)

∥∥∥∥
N∑

k=1

αkek

∥∥∥∥
2

H

≍ Avgǫk=±1

∥∥∥∥
N∑

k=1

ǫk[βkek]

∥∥∥∥
2

H

≍
N∑

k=1

‖βkek‖
2
H

≍ N.

With Lemma 3.2 in hand we can now turn to our main result.

Theorem 3.3. Let G be a countable abelian group G with an ordering

given by G = {gn}
∞
n=1. Let gn → Tgn be a dual integrable unitary representa-

tion on a Hilbert space H. Let ψ ∈ H, and suppose that Q = {Tgnψ : n ∈ N}
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is a quasi-greedy system in the cyclic space 〈ψ〉. Then Q is in fact a Riesz

basis for 〈ψ〉, i.e., there exist constants 0 < c ≤ C <∞ such that

(3.6) c‖{cn}‖ℓ2 ≤

∥∥∥∥
∑

n∈N

cnTgnψ

∥∥∥∥
H

≤ C‖{cn}‖ℓ2,

for every finite sequence {cn}n∈N.

Proof. The idea is to consider suitably translated Dirichlet kernels

DN (χ) =
∑N
n=1 χ(gn), χ ∈ Ĝ, since they form “polynomials” with unimodu-

lar coefficients. In fact for fixed α ∈ Ĝ,

χ→ DN (α− χ) =

N∑

n=1

α(gn)χ(gn),

is a polynomial with unimodular coefficients since |α(gk)| = 1 for every gk ∈
G. Now, according to by Proposition 3.2,

SN :=

N∑

n=1

α(gn)Tgnψ

satisfies the norm estimate ‖SN‖2H ≍ N uniformly in N and α ∈ Ĝ. From the
linearity and sesqui-linearity of the bracket,

[SN , SN ](χ) = |DN (α− χ)|2[ψ, ψ](χ).

The system {Tgnψ : n ∈ N} is clearly complete in 〈ψ〉 since it forms a quasi-

greedy Schauder basis, and one easily checks that Ωψ = {χ ∈ Ĝ : [ψ, ψ](χ) >

0} = Ĝ. Hence, according to (2.5),

‖SN‖H = ‖Sψ(SN )‖L2(Ĝ,[ψ,ψ]dχ)
,

which implies that,

N ≍ ‖SN‖
2 =

∫

Ĝ

|DN (α− χ)|2[ψ, ψ](χ) dχ,

uniformly in N and α ∈ Ĝ. Then clearly,

(3.7) 1 ≍

∫

Ĝ

|DN(α− χ)|2

N
[ψ, ψ](χ) dχ, N ∈ N.

By the Fejér property (2.6), we have that for a.e. α ∈ Ĝ,

(3.8)

∫

Ĝ

|DNj(α− χ)|2

Nj
[ψ, ψ](χ) dχ−→[ψ, ψ](α), as j → ∞,

for some subsequence {Nj}j ⊂ N. It follows at once from (3.7), and the
pointwise convergence (3.8), that there exist c, C > 0 such that

(3.9) c ≤ [ψ, ψ](α) ≤ C, a.e. α ∈ Ĝ.
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It is known that (3.9) implies that {Tgnψ : n ∈ N} satisfies (3.6) and the
system therefore forms a Riesz basis for 〈ψ〉, see [9, Proposition 5.2].

4. Examples: the trigonometric system

We first consider two examples related to the trigonometric system in
L2(Td). The trigonometric system forms the dual group of continuous char-
acters for the group of integers Zd.

The trigonometric system forms an unconditional basis for L2(Td), but
when a weight is added the situation becomes more complicated. For weighted
spaces, the specific ordering of the system may become important. We will
focus on the following class of orderings of the trigonometric system.

For a ∈ Nd we define the corresponding rectangle by

Ra := {−a1, . . . , a1} × · · · × {−ad, . . . , ad} ⊂ Z
d.

We say that an ordering σ : N → Zd is adapted to rectangles if there exist
an increasing sequence {Nj}

∞
j=1 ⊂ N, and associated rectangles Ra1

⊂ Ra2
⊂

· · · , such that Zd =
⋃
j Raj

and

σ({1, 2, . . . , Nj}) = Raj
, j = 1, 2, . . .

It is not difficult to verify that a trigonometric system {e2πik·ξ}k∈Zd with an
ordering σ : N → Zd adapted to rectangles satisfies the Fejér condition (2.6).
In fact, the associated kernels are separable

FNj (x) =
1

Nj

∣∣∣∣
Nj∑

j=1

e2πiσ(j)·x
∣∣∣∣
2

=
1

Nj

d∏

k=1

Faj,k(xk),

with Fn the usual univariate Fejér kernel. Specific examples of orderings
σ : N → Zd adapted to rectangles can be found in [11], see also [12].

The Muckenhoupt A2 condition for rectangles plays a crucial role when it
come to stability of the trigonometric system in weighted L2-spaces. We say
that a function w : Td → (0,∞) is an A2,R(Td) weight provided that there
exists C <∞ such that for any rectangle R ⊂ Td,

(4.1)
1

|R|

∫

R

w(x) dx ·
1

|R|

∫

R

1

w(x)
dx ≤ C.

4.1. Integer translates. The map Zd ∋ k −→ Tk given by

(4.2) Tkf(x) := f(x+ k)



202 M. NIELSEN

is a unitary representation of the integer group (Zd,+) on L2(Rd). The rep-
resentation is dual integrable, which follows from the observation that

〈φ, Tkψ〉L2(Rd) =

∫

Rd

φ(x)ψ(x + k) dx

=

∫

Rd

φ̂(ξ)ψ̂(ξ)e2πik·ξ dξ

=

∫

[0,1]d

{ ∑

ℓ∈Zd

φ̂(ξ + ℓ)ψ̂(ξ + ℓ)

}
e2πik·ξ dξ,

so one may choose

[φ, ψ](ξ) :=
∑

ℓ∈Zd

φ̂(ξ + ℓ)ψ̂(ξ + ℓ), φ, ψ ∈ L2(Rd).

Now let ψ ∈ L2(Rd). It is known that a sequence of partial sum operators
for the trigonometric system T := {e2πik·ξ}k∈Zd adapted to rectangles is uni-
formly bounded on L2(Td, [ψ, ψ]) if [ψ, ψ] satisfies the product A2,R-condition
(4.1). With a suitable interpretation a converse statement also holds true, see
[11, 12] for details. It follows that for a class of orderings of Zd adapted to
rectangles, [ψ, ψ] ∈ A2,R is sufficient for the trigonometric system to form a
Schauder basis for

L2(Td, [ψ, ψ]).

If in addition, T forms a quasi-greedy basis for L2(Td, [ψ, ψ]), or equiva-
lently that S := {ψ(·−k)}k∈Zd is a quasi-greedy system in 〈ψ〉, then it follows
from Theorem 3.3 that T (resp. S) in fact forms a Riesz basis in L2(Td, [ψ, ψ])
(resp. in 〈ψ〉). This is exactly the main result obtained in [13].

4.2. Gabor systems. The Gabor representation of the LCA group (Zd ×
Z
d,+) on L2(Rd) is given by

Z
d × Z

d ∋ (m,n) −→ TmMnf(x) = f(x+m)e2πin·x,

with Tk given by (4.2) and Mℓ is the modulation operator Mℓf(x) =
f(x)e2πil·x. The Gabor representation is dual integrable through the Zak
transform. The Zak transform is an isometry Z : L2(Rd) → L2([0, 1]d×[0, 1]d)
given by

Zf(x, ξ) =
∑

k∈Zd

f(x+ k)e2πik·ξ, f ∈ L2(Rd).

One easily checks that

Z(MℓTkψ)(x, ξ) = e2πil·xe2πik·ξZψ(x, ξ),

and it follows that for φ, ψ ∈ L2(Rd),

〈φ,MℓTkψ〉L2(Rd) =

∫

[0,1]d

∫

[0,1]d
Zφ(x, ξ)Zψ(x, ξ)e−2πil·xe−2πik·ξ dx dξ.
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Consequently, we choose

[φ, ψ](x, ξ) := Zφ(x, ξ)Zψ(x, ξ), φ, ψ ∈ L2(Rd).

Fix ψ ∈ L2(Rd). It was demonstrated for d = 1 in [7], and for d > 1 in [11],
that |Zψ|2(x, ξ) ∈ A2,R(Td×Td) is sufficient for the associated Gabor system

G(ψ) := {MℓTkψ}ℓ,k∈Zd

with a suitable ordering adapted to rectangles to form a Schauder basis for
L2(Rd). We can now apply Theorem 3.3 to obtain the following result.

Corollary 4.1. Let ψ ∈ L2(Rd). Suppose that the associated Gabor

system G(ψ) forms a quasi-greedy basis for L2(Rd) with an ordering adapted

to rectangles. Then G(ψ) forms a Riesz basis for L2(Rd).

An immediate consequence of Corollary 4.1 is that whenever G(ψ) forms
a quasi-greedy basis for L2(Rd), with an ordering adapted to rectangles, then
ψ ∈ L2(Rd) must satisfy the Balian-Low theorem, namely

(4.3)

∫

Rd

|x|2|ψ(x)|2 dx ·

∫

Rd

|ξ|2|ψ̂(ξ)|2 dξ = +∞,

due to the fact that G(ψ) is a Riesz basis.
It is also interesting to note that there exists a conditional Gabor Schauder

basis for L2(Rd) for which the generator does not satisfy the strong form of the
Balian-Low theorem (4.3), see [7]. According to Corollary 4.1, such systems
cannot form a quasi-greedy basis for L2(Rd).

5. Example: Vilenkin groups

We now leave the trigonometric system setup and consider an example
related to another well known system of group characters, namely the Walsh
system.

Let m = (mk)k∈N be a sequence of positive integers, and let Zmk be
the mk-th discrete cyclic group with Haar measure defined by assigning mass
1/mk to each singleton. The associated Vilenkin group is the product group

Ĝm :=

∞∏

k=1

Zmk .

For each n ∈ N, and x = (xk)k∈N ∈ Ĝm, we set

ρn(x) := exp

(
2πixn
mn

)
.

Clearly, ρn is a character on Ĝm, and it can in fact be shown that any character

of Ĝm can be expressed in terms of the ρ′ns. Put M0 := 1 and for k ∈ N we



204 M. NIELSEN

define inductively Mk := mk−1Mk−1. Then for n ∈ N we have a unique finite
expansion

(5.1) n =

∞∑

k=0

nkMk,

where 0 ≤ nk < mk for k = 0, 1, 2, . . .. Define ψ0 := 1, and for n ∈ N given
by (5.1), we let

(5.2) ψn :=

∞∏

k=0

ρnkk .

The system Gm := {ψk}
∞
k=0 is called a Vilenkin system and forms a complete

orthonormal set of characters for Ĝm, see [15]. The well-known Walsh system
corresponds to the special case mk := 2, k ∈ N.

The associated Dirichlet kernel are given by Dn :=
∑n−1

k=0 ψk. The exact
pointwise values of DMn

are known, see [15, Appendix 0.7], and it can be
deduced that Gm satisfies the Fejér property for the subsequence with indices
{Mn}n. The question about pointwise convergence a.e. relative to a Vilenkin
system (i.e., not only for a subsequence) is more delicate, especially in the
so-called unbounded case where supkmk = ∞, see [4].

The modular representation of N0 := N ∪ {0} on L2(Ĝm, dχ) is given by
modulation operators

(5.3) N0 ∋ n→Mnf := ψnf, f ∈ L2(Ĝm, dχ).

The modular representation is dual integrable with [φ, ψ]M := φψ, since the

product of any two L2(Ĝm, dχ)-functions is in L
1(Ĝm, dχ). Moreover,

〈φ,Mnψ〉 =

∫

Ĝ

[φ, ψ]Mψn(χ) dχ, n ∈ N0.

We now apply Theorem 3.3 to obtain the following result, which concludes
the paper.

Corollary 5.1. Let m = (mk)k∈N be a sequence of positive integers, and

let Ĝm be the associated Vilenkin group. Take ψ ∈ L2(Ĝm, dχ), and suppose

that the associated Vilenkin system Gm forms a quasi-greedy basis for 〈ψ〉
generated by the representation (5.3) with the ordering defined by (5.2). Then

Gm forms a Riesz basis for 〈ψ〉.

In particular, if Gm forms a quasi-greedy basis for L2(Ĝm, |ψ|
2dχ) then

Gm is a Riesz basis for L2(Ĝm, |ψ|
2dχ) and there exists c > 1 such that

c−1 ≤ |ψ(x)| ≤ c, a.e. x ∈ Ĝm.
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[14] M. Nielsen and H. Šikić, Schauder bases of integer translates, Appl. Comput. Harmon.
Anal. 23 (2007), 259–262.

[15] F. Schipp, W. R. Wade and P. Simon, Walsh series. An introduction to dyadic harmonic
analysis, With the collaboration of J. Pál, Adam Hilger Ltd., Bristol, 1990.

[16] P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, Cambridge,
1991.

[17] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory
107 (2000), 293–314.

M. Nielsen
Department of Mathematical Sciences
Aalborg University
DK-9220 Aalborg
Denmark
E-mail : mnielsen@math.aau.dk

Received : 20.6.2014.


