
GLASNIK MATEMATIČKI
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FACTORIZATION OF UNIFORMLY CONTINUOUS MAPS

THROUGH UNIFORM SHAPE FIBRATIONS

Takahisa Miyata

Kobe University, Japan

Abstract. It is well-known that every continuous map is the compos-
ite of a homotopy equivalence and a fibration. In this paper, we introduce
the notion of uniform shape fibration, and show that every uniformly con-
tinuous map is the composite of a uniform shape equivalence and a uniform
shape fibration.

1. Introduction

In algebraic topology one often replaces continuous maps by fibrations,
using the well-known fact that every continuous map f : X → Y between
spaces is the composite of a homotopy equivalence and a fibration. However,
the homotopy lifting property is not a suitable property for continuous maps
between spaces with bad local properties. To overcome the deficiency, S.
Mardešić and T. B. Rushing introduced in [5] the notion of shape fibration
between compact metric spaces, extending the notion of the approximate
homotopy lifting property introduced by D. S. Coram and P. F. Duvall ([1],
see also [4] for the definition of shape fibration between arbitrary topological
spaces).

It is natural to raise the question: is every continuous map between spaces
the composite of a shape equivalence and a shape fibration? However, when
one tries to solve the problem, one easily faces a difficulty in handling product
spaces of the form Y ×C(I,X) where C(I,X) is the space of continuous maps
from I = [0, 1] to X with the compact-open topology, since the function space
is almost never compact. In fact, the factorization of f : X → Y is given
by a homotopy equivalence h : X → Ef and a fibration g : Ef → Y , where
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Ef = {(x, ω) ∈ X × C(I, Y ) : f(x) = ω(0)}, and h and g are defined by
h(x) = (x, ef(x)) and g(x, ω) = ω(1), respectively. Here, for each y ∈ Y ,
ey : I → Y is the path defined by ey(t) = y for all t ∈ I.

In this paper, to overcome this difficulty, we consider this problem in
the framework of uniform metric spaces. We introduce the notion of uniform
shape fibration for uniformly continuous maps and prove that every uniformly
continuous map between metric spaces is the composite of a uniform shape
equivalence (in the sense of [7]) and a uniform shape fibration.

For any category C, let inv- C denote the category of inverse systems in
C. If X = (Xi, pi,i+1) is a tower, let pij = pi,i+1 ◦ pi+1,i+2 ◦ · · · ◦ pj−1,j for
i < j and pii = 1Xi

, the identity morphism on Xi. For any subcategory D of
C, a tower X = (Xi, pi,i+1) in inv- C is called a D-tower if all Xi are objects
of D and all pi,i+1 are morphisms of D. A level morphism (fi) : X → Y

between towers X = (Xi, pi,i+1) and Y = (Yi, qi,i+1) consists of morphisms
fi : Xi → Yi such that fi ◦ pi,i+1 = qi,i+1 ◦ fi+1. Let pro-C denote the pro-
category of C. For more details on inv- C and pro- C, the reader is referred to
[6, Chapter 1, §1.1].

In this paper, we consider the category UM of metric spaces and uni-
formly continuous maps. Unless otherwise stated, metric spaces are assumed
to possess the uniformities induced by their metrics.

Here is our main result.

Theorem 1.1. Every uniformly continuous map f : X → Y between

metric spaces admits a metric space E and uniformly continuous maps h :
X → E and g : E → Y with the following properties:

(1) f = g ◦ h,
(2) h induces a uniform shape equivalence, and

(3) g is a uniform shape fibration.

2. Uniform absolute neighborhood retracts and uniform

resolutions

For any ε > 0, two points y, y′ of a metric space Y are ε-near provided
d(y, y′) < ε, and any two uniformly continuous maps f, g : X → Y of a
topological space X into a metric space Y are ε-near provided ρ(f, g) =
sup{d(f(x), g(x)) : x ∈ X} < ε.

A metric space Y is a uniform absolute neighborhood retract (uniform
ANR, in short) (resp., uniform absolute retract (uniform AR, in short)) if,
whenever Y is uniformly embedded in a metric space X , there exist a uniform
neighborhood U of Y and a uniform retraction r : U → Y (resp., there exists
a uniform retraction r : X → Y ). This is equivalent to the condition that
whenever A is a subset of a metric space and a uniformly continuous map
f : A → Y , there exist a uniform neighborhood U of A and a uniformly
continuous map f : U → Y (resp., f : X → Y ) which extends f . Every metric
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space that is a uniform ANR (resp., uniform AR) in its metric uniformity is
an ANRU (resp., ARU) in the sense of Isbell’s book [3].

For any metric spaces (X, dX) and (Y, dY ), let the Cartesian product X×
Y have the metric d defined by d((x, y), (x′, y′)) = max{dX(x, x′), dY (y, y

′)}.
Then X × Y is a product in the category UM. We call X × Y with the
metric uniformity the uniform product of X and Y in order to distinguish this
from another type called semi-uniform product, which will be explained in
the following section.

The following properties will be used later in this paper. Their proofs are
similar to that for ANR’s (see Propositions 4.1, 6.1, and Theorems 3.1, 3.2 of
[2]).

Proposition 2.1. (1) If X and Y are uniform ANR’s, then so is

X × Y .

(2) If X is a uniform ANR, then every uniform neighborhood in X is a

uniform ANR.

Let UANR denote the full subcategory of UM whose objects are uniform
ANR’s. Let N denote the set of positive integers.

A uniform UANR-resolution p : X → X of a metric space X consists of a
UANR-tower X = (Xi, pi,i+1) and a morphism p = (pi) : X → X in inv-UM
satisfying the following two conditions:

(R1) For every uniformly continuous map f : X → P to a uniform ANR P
and for every ε > 0, there exist i ∈ N and a uniformly continuous map
h : Xi → P such that ρ(f, h ◦ pi) < ε, and

(R2) For every uniform ANR P and for every ε > 0, there exists δ > 0 such
that whenever f, f ′ : Xi → P are uniformly continuous maps with
ρ(f ◦ pi, f

′ ◦ pi) < δ, then there exists i′ ∈ N such that i′ ≥ i and
ρ(f ◦ pii′ , f

′ ◦ pii′ ) < ε.

A uniform resolution of a uniformly continuous map f : X → Y between
metric spaces X and Y is a triple (p, q,f) which consists of uniform UANR-
resolutions p = (pi) : X → X and q = (qi) : Y → Y of X and Y , respectively,
and a level morphism f = (fi) : X → Y such that qi ◦ f = fi ◦ pi for each
i ∈ N.

For any set S, let ℓ∞(S) denote the set of all real valued bounded functions
f : S → R with the metric d defined by d(f, g) = sup{|f(x)− g(x)| : x ∈ S}.

Theorem 2.2. (1) Every metric space admits a uniform UANR-reso-

lution.

(2) Every uniformly continuous map between metric spaces admits a uni-

form resolution.

Proof. (1): Every metric space X is isometrically embedded in ℓ∞(X),
which is a uniform AR (see Proposition 14 and Theorem 15 of [3]). For each
i ∈ N, let Xi be the 1/3i-neighborhood of X in ℓ∞(X), and let pi : X →֒ Xi
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and pi,i+1 : Xi+1 →֒ Xi be the inclusion maps. Then a morphism p = (pi) :
X → X = (Xi, pi,i+1) is a uniform UANR-resolution of X . Indeed, each Xi is
a uniform ANR since it is a uniform neighborhood in a uniform AR. Condition
(R1) easily follows from the definition of uniform ANR. To verify condition
(R2), let P be a uniform ANR, and let ε > 0. Let f, f ′ : Xi → P be uniformly
continuous maps such that ρ(f ◦ pi, f

′ ◦ pi) < ε/3, and choose i′ ∈ N with

i′ > i so that if x, x′ ∈ Xi and d(x, x′) < 1/3i
′

, then d(f(x), f(x′)) < ε/3
and d(f ′(x), f ′(x′)) < ε/3. Then ρ(f ◦ pii′ , f

′ ◦ pii′ ) < ε follows. For, for each

x ∈ Xi′ , d(x, x
′) < 1/3i

′

for some x′ ∈ X , and d(f ◦pii′(x), f
′ ◦pii′(x)) < d(f ◦

pii′(x), f ◦pii′(x
′))+d(f ◦pii′(x

′), f ′ ◦pii′(x
′))+d(f ′ ◦pii′(x

′), f ′ ◦pii′ (x)) < ε.
(2): Let p = (pi) : X → X = (Xi, pi,i+1) and q = (qi) : Y → Y =

(Yi, qi,i+1) be the uniform UANR-resolutions as above, and let f : X → Y be
a uniformly continuous map. Then, since ℓ∞(Y ) is a uniform AR, there exists
a uniformly continuous map f : ℓ∞(X) → ℓ∞(Y ) such that f(x) = f(x) for
x ∈ X . We can find an increasing sequence {ki : i ∈ N} so that the restrictions
fi : Xki

→ Yi of f are well-defined. Let X ′ = (X ′
i, p

′
i,i+1), where X ′

i = Xki

and p′i,i+1 = pkiki+1
. Then we have a level morphism f = (fi) : X ′ → Y .

The restriction p′ = (p′i) : X → X ′ of p, where p′i = pki
, forms a uniform

UANR-resolution. The morphism f together with p′ and q forms a uniform
resolution of f as required.

3. Uniform homotopies

A map f : X × Y → Z for metric spaces X and Y to a uniform space
Z is semi-uniform if the family {f(·, y) : y∈Y } is equiuniformly continuous
on X and for each x∈X , f(x, ) is a uniformly continuous map on Y . The
semi-uniform product X ∗ Y is the Cartesian product X×Y with the weak
uniformity induced by all the semi-uniform maps on X×Y to uniform spaces
(see [3, p. 44]).

Let U(X,Y ) denote the set of all uniformly continuous maps f : X → Y
with the metric d defined by d(f, g) = sup{d(f(x), g(x)) : x ∈ X}.

The following properties of semi-uniform products are useful (see Propo-
sitions 23, 26 of [3]).

Proposition 3.1. (1) There is a uniform equivalence U(X,U(Y, Z))≈
U(X ∗ Y, Z).

(2) The uniformity of X ∗Y is generated by the uniform covers of the form

{Uα×V α
β }, where {Uα} is a uniform cover of X and for each α, {V α

β }
is a uniform cover of Y .

The following property is also used later in this paper.

Proposition 3.2. If Y is a uniform ANR, then for every metric space

X, U(X,Y ) is a uniform ANR.
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Proof. The proof is similar to that for ANR’s (see Theorem 4, p. 38, of
[6]). Here we use the following two facts:

• Each uniformly continuous map f : A → U(X,Y ), where A is a subset
of a metric space Z, corresponds to a uniformly continuous map F :
A ∗X → Y (see Proposition 3.1 (1)).

• For each uniform neighborhood W of A ∗ X in Z ∗ X , there exists
a uniform neighorhood U of A in Z such that A ∗ X ⊂ U ∗ X (see
Proposition 3.1 (2)).

Let f, g : X→Y be uniformly continuous maps between metric spaces.
Then a uniform homotopy from f to g is a uniformly continuous map H :
X∗I → Y such that H(·, 0) = f and H(·, 1) = g. f is uniformly homotopic

to g if there is a uniform homotopy from f to g. This definition differs from
that of Isbell [3, p. 82], who defines a uniform homotopy as a uniformly
continuous map H : X × I → Y on the uniform product. Since the semi-
uniform product is finer than the uniform product, every uniform homotopy
in Isbell’s definition is a uniform homotopy in our sense but not conversely. In
the case that X is compact, those definitions coincide. An important fact for
our uniform homotopy is that there is a uniform equivalence U(X,U(I, Y )) ≈
U(X ∗ I, Y ) (see Proposition 3.1 (1)).

For each δ > 0, a uniform homotopy f : X ∗ I → Y is a uniform δ-
homotopy if for each x ∈ X , the diameter of the set {H(x, t) : t ∈ I} is less
than δ.

A uniformly continuous map f : X → Y is a uniform homotopy equiva-

lence if there exists a uniformly continuous map g : Y → X such that g◦f and
f ◦ g are uniformly homotopic to the identity maps on X and Y , respectively.

Proposition 3.3. Let Y be a uniform ANR. Then for each ε > 0, there
exists δ > 0 such that any two δ-near uniformly continuous maps into Y are

uniformly ε-homotopic.

Proof. Embed Y isometrically in ℓ∞(Y ), and let r : U → Y be a uniform
retraction from a uniform neighborhood U of Y . Let δ > 0 be such that the
δ-neighborhood of Y is contained in U , and for any x, x′ ∈ U , if d(x, x′) < δ,
then d(r(x), r(x′)) < ε. If f, f ′ : X → Y are δ-near uniformly continuous
maps, then the map H : X∗I → Y defined by H(x, t) = r((1−t)f(x)+tf ′(x))
is a uniform ε-homotopy from f to f ′.

Using this uniform homotopy, one can define the corresponding shape cat-
egory as the abstract shape category for the pair of categories (HUM,HUANR),
where HUM is the category of metric spaces and uniform homotopy classes,
and HUANR is the full subcategory of HUM whose objects are metric spaces
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that have the uniform homotopy type of a uniform ANR. Thus obtained ab-
stract shape category is called the uniform shape category (see [7] for more
details).

4. Uniform fibrations and uniform shape fibrations

Based on the notion of uniform homotopy, there is a corresponding notion
of fibration.

A uniformly continuous map p : E → B between metric spaces is said to
have the uniform homotopy lifting property (UHLP) with respect to a metric
space X provided if h : X → E and H : X ∗ I → B are uniformly continuous
maps such that

p ◦ h = H(·, 0),

there is a uniformly continuous map H̃ : X ∗ I → E such that

H̃(·, 0) = h, and

p ◦ H̃ = H.

A uniformly continuous map with the UHLP with respect to any metric space
is called a uniform fibration. Analogously to Hurewicz fibration, the factor-
ization axiom holds for the uniform fibration.

Proposition 4.1. Every uniformly continuous map f : X → Y between

metric spaces is the composite of a uniform homotopy equivalence h : X → E
and a uniform fibration g : E → Y for some metric space E.

Proof. Let Ef be the subspace of X × U(I, Y ) consisting of all pairs
(x, ω) such that f(x) = ω(0), where X × U(I, Y ) is the uniform product.
Define maps h : X → Ef and g : Ef → Y by h(x) = (x, ef(x)) and g(x, ω) =
ω(1), respectively. Then h is a uniform homotopy equivalence since the map
p : Ef → X defined by p(x, ω) = x is a uniform homotopy inverse of h. To
see that the map g is a uniform fibration, consider the commutative diagram

Ef

g

Z ∗ {0}
ϕ

⊆

Y Z ∗ I
Φ

Ψ

where ϕ and Φ are uniformly continuous maps. Write ϕ(z) = (ϕ1(z), ϕ2(z)) ∈
X × U(I, Y ). Then the map Ψ is defined by Ψ(z, t) = (Ψ1(z, t),Ψ2(z, t)) ∈
X × U(I, Y ), where

Ψ1(z, t) = ϕ1(z),

Ψ2(z, t) =

{

ϕ2(z)(s(1 + t)) 0 ≤ s ≤ 1
1+t

,

Φ(z, (1 + t)s− 1) 1
1+t

≤ s ≤ 1.
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That Ψ is a uniformly continuous map follows from the bijection U(X∗I, Y ) ≈
U(X,U(I, Y )) (see Proposition 3.1 (1)).

Similarly to the topological case, one can consider two kinds of homotopy
lifting property, which we call the uniform homotopy lifting property and the
approximate uniform homotopy lifting property, respectively.

A level morphism (gi) : E → B between UANR-towers E = (Ei, qi,i+1)
and B = (Bi, ri,i+1) is said to have the uniform homotopy lifting property

(UHLP) with respect to a metric space X provided for every i ∈ N, there
exists a j = j(i) ≥ i such that whenever hj : X → Ej and Hj : X ∗ I → Bj

are uniformly continuous maps satisfying

gj ◦ hj = Hj(·, 0),

then there is a uniformly continuous map H̃i : X ∗ I → Ei satisfying

H̃i(·, 0) = qij ◦ hj , and

gi ◦ H̃i = rij ◦Hj .

Ei

gi

Ej

gj

qij
X ∗ {0}

⊆

hj

Bi Bjrij
X ∗ I

Hj

H̃i

A level morphism (gi) : E → B is said to have the approximate uniform

homotopy lifting property (AUHLP) with respect to a metric spaceX provided
for every i ∈ N and for every ε > 0, there exist a j = j(i) ≥ i and δ > 0 such
that whenever hj : X → Ej and Hj : X ∗ I → Bj are uniformly continuous
maps satisfying

d(gj ◦ hj , Hj(·, 0)) < δ,

then there is a uniformly continuous map H̃i : X ∗ I → Ei satisfying

d(H̃i(·, 0), qij ◦ hj) < ε, and

d(gi ◦ H̃i, rij ◦Hj) < ε.

Obviously, the UHLP implies the AUHLP. However, the UHLP is not
invariant for level morphisms between UANR-towers that induce the same
uniformly continuous map, while the AHLP is invariant. More precisely, we
have

Proposition 4.2. If (q, r, g) and (q′, r′, g′) are uniform resolutions of a

uniformly continuous map g : E → B between metric spaces, then whenever

g has the AHLP, so does g′.

Proof. The assertion is proved by an argument similar to Theorem 1 of
[5].
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A uniformly continuous map g : E → B between metric spaces is a uni-

form shape fibration provided it admits a uniform resolution (q, r, g) such that
q : E → E and r : B → B are UANR-resolutions of E and B, respectively,
and the level morphism g : E → B has the AUHLP with respect to any met-
ric space X . Proposition 4.2 guarantees that the property of being a uniform
shape fibration does not depend on the choice of the uniform resolution.

A uniform shape fibration is a generalization of a uniform fibration be-
tween uniform ANR’s. Indeed, if g : E → B is a uniformly continu-
ous map between uniform ANR’s which has the UHLP, the level morphism
(g) : (E) → (B) between rudimentary systems has the UHLP. A uniformly
continuous map between metric spaces that admits a uniform resolution
(q, r, g) such that the level morphism g = (gi) consists of the uniform fi-
brations gi is a uniform shape fibration.

5. Proof of the main theorem

Let f : X → Y be a uniformly continuous map between metric spaces X
and Y , and let (p, q,f) be the uniform resolution of f defined in Theorem 2.2.
Let Ef be as in the proof of Proposition 4.1, and for each ε > 0, let Eε

f be the

subset of X × U(I, Y ) consisting of all pairs (x, ω) so that d(f(x), ω(0)) < ε,
where X × U(I, Y ) is the uniform product.

Let {εi : i ∈ N} be a sequence of positive numbers satisfying the following
properties:

ε1 < 1/2, and εi+1 < min{1/2i+1, εi} for i ∈ N, and(5.1)

any εi+1-near uniformly continuous maps into Yi are(5.2)

uniformly εi-homotopic.

For each i ∈ N, define uniformly continuous maps ri : Ef → Eεi
fi
, ri,i+1 :

E
εi+1

fi
→ Eεi

fi
, hi : Xi → Eεi

fi
, and gi : E

εi
fi

→ Yi as follows:

ri(x, ω) = (pi(x), qi ◦ ω) for each (x, ω) ∈ Ef ,(5.3)

ri,i+1(x, ω) = (pi,i+1(x), qi,i+1 ◦ ω) for each (x, ω) ∈ E
εi+1

fi
,(5.4)

hi(x) = (x, efi(x)) for each x ∈ Xi,(5.5)

gi(x, ω) = ω(1) for each (x, ω) ∈ Eεi
fi
.(5.6)

Each Eεi
fi

is a uniform ANR since it is a uniform neighborhood of Ef in

the uniform ANR Xi × U(I, Yi). To see that Eεi
fi

is a uniform neighborhood,

let δ > 0 be such that δ < εi/2 and such that for any x, x′ ∈ Xi, if f(x, x
′) < δ,

then d(fi(x), fi(x
′)) < εi/2. Then if (x′, ω′) ∈ Xi×U(I, Yi) and if d(x, x′) < δ

and d(ω, ω′) < δ for some (x, ω) ∈ Ef , then d(fi(x
′), ω′(0)) ≤ d(fi(x

′), fi(x))+
d(fi(x), ω(0)) + d(ω(0), ω′(0)) < εi, showing (x′, ω′) ∈ Eεi

fi
.
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The following diagram commutes:

(5.7) Xi

fi

hi

Xi+1

pi,i+1

fi+1

hi+1

Eεi
fi

gi

E
εi+1

fi+1

ri,i+1

gi+1

Yi Yi+1qi,i+1

Thus, the UANR-tower E = (Eεi
fi
, ri,i+1) is well-defined, and the following

diagram commutes:

(5.8) X

f

h
E

g

Y

Since ri,i+1 ◦ ri+1 = ri, the morphism r = (ri) : Ef → E is well-defined.

Claim 1. The morphism r = (ri) : Ef → E is a UANR-resolution.

To show Claim 1, it suffices to show that for each ε > 0, there exists i ∈ N

such that Eεi
fi

is contained in the ε-neighborhood of Ef . Then conditions (R1)

and (R2) easily follow from an argument similar to the proof of Theorem 2.2
(1).

Let ε > 0. Let r : ℓ∞(Y ) → Y be a uniform retraction, and take δ > 0
such that

δ < ε, and(5.9)

for any y, y′ ∈ ℓ∞(Y ), if d(y, y′) < δ, then d(r(y), r(y′)) < ε/4.(5.10)

There exists i ∈ N with the following properties (see (5.1)):

εi < δ/4, and(5.11)

if d(x, x′) < εi, then d(f(x), f(x′)) < δ/4.(5.12)

To see that Eεi
fi

is contained in the ε-neighborhood of Ef , let (x, ω) ∈ Eεi
fi
.

We must show that there exists (x′, ω′) ∈ Ef such that d(x, x′) < ε and
d(ω, ω′) < ε.

Take x′ ∈ X so that d(x, x′) < εi. Then d(x, x′) < ε by (5.11) and (5.9).
We define the path ω′ in Y as follows. Since d(fi(x

′), ω(0)) ≤
d(fi(x

′), fi(x)) + d(fi(x), ω(0)) < δ/4 + εi < δ/2 by (5.12) and (5.11), then
there is a path σ from fi(x

′) to ω(0) in ℓ∞(Y ) whose image lies in the δ/2-ball
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centered at ω(0). Define a path ω′′ in ℓ∞(Y ) by

ω′′(t) =







σ(nt) 0 ≤ t ≤ 1
n
,

ω

(

nt− 1

n− 1

)

1
n
≤ t ≤ 1,

where n is a positive integer satisfying the following two conditions:

• ω
([

0, 1
n

])

is contained in the δ/2-ball centered at ω(0),

• ω
([

i
n−1 ,

i+1
n−1

])

is contained in some open δ/2-ball.

Then

d(ω, ω′′) < δ.(5.13)

Indeed, for each t ∈ [0, 1
n
], d(σ(nt), ω(t)) < δ since σ(nt) and ω(t) are points

in the open δ/2-ball centered at ω(0); for each t ∈ [ 1
n
, 1], d(ω

(

nt−1
n−1

)

, ω(t)) <

δ since
∣

∣

∣
t− nt−1

n−1

∣

∣

∣
≤ 1

n−1 . Now define the path ω′ in Y by ω′ = r ◦ ω′′.

Then ω′(0) = f(x′). It remains to show that d(ω′, ω) < ε. Indeed, this
inequality follows from the inequality d(r ◦ ω, ω′) < ε/4 by (5.13) and (5.10),
and d(r ◦ ω, ω) < ε/2 (for each t ∈ I, d(ω(t), yt) < εi < δ/4 for some yt ∈ Y ,
so d(r ◦ ω(t), ω(t)) ≤ d(r ◦ ω(t), yt) + d(ω(t), yt) < ε/2 by (5.10) and (5.9)).
This proves the claim.

The level morphisms h = (hi) : X → E and g = (gi) : E → Y induce
uniformly continuous maps h : X → Ef : x 7→ (x, ef(x)) and g : Ef → Y :
(x, ω) 7→ ω(1), and diagram (5.8) induces the equality f = g ◦ h.

Claim 2. g is a uniform shape fibration.

This follows from the fact that each gi : Eεi
fi

→ Yi has the UHLP with
respect to any metric space Z, which is proved by the same argument as for
Proposition 4.1.

Claim 3. h induces a uniform shape equivalence.

It suffices to show that there is a uniformly continuous map βi : E
εi+1

fi+1 →
Xi that makes the following diagram commute up to uniform homotopy:

Xi

hi

Xi+1

pi,i+1

hi+1

Eεi
fi

E
εi+1

fi+1ri,i+1

βi

Let αi : E
εi
fi

→ Xi be the restriction of the projection of Xi × U(I, Yi) onto

Xi, and define the map βi : E
εi+1

fi+1
→ Xi by βi = αi ◦ ri,i+1. Then obviously

βi◦hi+1 = pi,i+1. To see that hi◦βi is uniformly homotopic to ri,i+1, note that
hi ◦ βi(x, ω) = (pi,i+1(x), efi◦pi,i+1(x)) and ri,i+1(x, ω) = (pi,i+1(x), qi,i+1 ◦ ω)
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for (x, ω) ∈ E
εi+1

fi+1
. Since d(fi+1(x), ω(0)) < εi+1 for each (x, ω) ∈ E

εi+1

fi+1
,

there is a uniform εi-homotopy K : E
εi+1

fi+1
× I → Yi such that K(x, ω, 0) =

pi,i+1 ◦ fi+1(x) and K(x, ω, 1) = qi,i+1 ◦ ω(0) (by (5.2)). Define a uniformly
continuous map H : Eεi

fi
∗ I → Eεi

fi
by

H((x, ω), t) =

{

(x, eK(x,ω,2t)) 0 ≤ t ≤ 1
2 ,

(x, qi,i+1 ◦ ω2t−1)
1
2 ≤ t ≤ 1.

Here, for each t ∈ I, the path ωt : I → Yi is defined by ωt(s) = ω(st) for
s ∈ I. Then this gives a uniform homotopy between hi ◦ βi and ri,i+1.
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[4] S. Mardešić, Approximate polyhedra, resolutions of maps and shape fibrations, Fund.

Math. 114 (1981), 53–78.
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