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Abstract. Complete convergence and the Marcinkiewicz-Zygmund
strong law of large numbers for sequences of m-pairwise negatively quad-
rant dependent (m-PNQD) random variables is studied in this paper. The
results obtained extend and improve the corresponding theorems of Choi
and Sung ([4]) and Hu et al. ([9]). A version of the Kolmogorov strong
law of large numbers for sequences of m-PNQD random variables is also
obtained.

1. Introduction

The following concept of negatively quadrant dependent random variables
was introduced by Lehmann ([12]).

Definition 1.1. Two random variables X and Y are said to be negatively
quadrant dependent (NQD) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y) for all x and y ∈ R.

A finite or infinite sequence of random variables is said to be pairwise
NQD (PNQD) if every two random variables in the sequence are NQD. It is
well known and easy to show that random variables X and Y are NQD if and
only if

P (X > x, Y > y) ≤ P (X > x)P (Y > y) for all x and y ∈ R.

In many stochastic models, an independence assumption among the ran-
dom variables in the model is not a reasonable assumption since they may be
“repelling” in the sense that increases in any of the random variables often
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correspond to decreases in the others. Thus the assumption of PNQD is often
more suitable than the classical assumption of independence.

A major survey article concerning a general “theory of negative dependen-
ce” was prepared by Pemantle ([20]). That article discussed the relationship
between various definitions of “negative dependence”, outlines some possible
directions that the theory can take, and provides some interesting conjectures.

We now define a more general dependence structure which contains PNQD
as a special case. This dependence structure was introduced by Anh ([2]) for
a finite set of random variables. Definition 1.2 is the same as that of Anh ([2])
except that it is for a sequence of random variables rather than for a finite
set.

Definition 1.2. Let m ≥ 1 be a fixed integer. A sequence of random
variables {Xn, n ≥ 1} is said to be m-PNQD if for all positive integers j and
k with |j − k| ≥ m, Xj and Xk are NQD.

Clearly, PNQD is the special case m = 1 of the concept of m-PNQD.
Indeed, if {Xn, n ≥ 1} is m-PNQD for some m ≥ 1, then {Xn, n ≥ 1} is
m′-PNQD for all m′ > m.

Li et al. ([13]) showed that for every sequence of continuous distribution
functions {Fn, n ≥ 1}, a sequence of PNQD random variables {Xn, n ≥ 1}
can be constructed such that the distribution function of Xn is Fn, n ≥ 1 and
such that for all k ≥ 1, {Xn, n ≥ k} is not a sequence of independent random
variables.

We now provide two examples of sequences ofm-PNQD random variables.

Example 1.3. Let {Yn, n ≥ 1} be a PNQD sequence of random variables
and let m ≥ 2. For n ≥ 1, let r ≥ 1 be such that (r − 1)m+ 1 ≤ n ≤ rm and
let Xn = Yr. Then {Xn, n ≥ 1} is a sequence of m-PNQD random variables.

Example 1.4. Let {Yn, n ≥ 1} be a PNQD sequence of random variables,
let m ≥ 2, and let {Zij, 1 ≤ j ≤ m−1, i ≥ 1} be an array of random variables

such that for all i 6= i
′

and all 1 ≤ j, j
′

≤ m−1, Yi and Zi′j′ are NQD and Zij

and Zi′ j′ are NQD. For n ≥ 1, let r ≥ 1 be such that (r − 1)m+ 1 ≤ n ≤ rm
and let

Xn =

{

Yn, if n = (r − 1)m+ 1,

Zr,n−(r−1)m−1, if (r − 1)m+ 2 ≤ n ≤ rm.

Then {Xn, n ≥ 1} is a sequence of m-PNQD random variables.

Years after the appearance of Lehmann ([12]), a large literature of in-
vestigation concerning the convergence properties of PNQD random variables
has emerged. We refer the reader to Matula ([16]), Qi ([21]), Patterson and
Taylor ([19]), Kim and Kim ([10]), Kim and Kim ([11]), Taylor et al. ([25]),
Wu ([27]), Ordóñez Cabrera and Volodin ([18]), Li et al. ([13]), Gan and Chen
([6]), Li and Yang ([14]), Meng and Lin ([17]), Gerasimov ([7]), Xing ([31]),
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Wu and Jiang ([28]), Wu and Guan ([29]), Wu and Wang ([30]), and Sung
([22]) among others.

The purpose of this article is to investigate complete convergence and
the strong law of large numbers (SLLN) for sequences of m-PNQD random
variables.

The concept of the complete convergence was introduced by Hsu and
Robbins ([8]). A sequence of random variables {Un, n ≥ 1} is said to converge
completely to a constant θ if

∞
∑

n=1

P (|Un − θ| > ε) < ∞ for all ε > 0.

In view of the Borel-Cantelli lemma, the above result implies that Un → θ
almost surely (a.s.). Therefore, complete convergence is an important tool
which is often used in establishing a.s. convergence of sums of random vari-
ables.

Choi and Sung ([4]) studied the SLLN for sequences of pairwise indepen-
dent random variables and obtained the following Marcinkiewicz-Zygmund
type result.

Theorem 1.5. Let {Xn, n ≥ 1} be a sequence of pairwise independent
random variables. Suppose that {Xn, n ≥ 1} is stochastically dominated by a
random variable X (this technical definition is given in the next section). If

(1.1) E(|X |r(log+ |X |)2) < ∞ for some 1 < r < 2,

then

(1.2) lim
n→∞

n−1/r
n
∑

k=1

(Xk − EXk) = 0 a.s.

Hu et al. ([9]) also studied the SLLN for sequences of PNQD random
variables and obtained the following Marcinkiewicz-Zygmund type result.

Theorem 1.6. Let {Xn, n ≥ 1} be a sequence of PNQD random variables
with EXn = 0 for all n ≥ 1. Suppose that {Xn, n ≥ 1} is stochastically
dominated by a random variable X. If there exist constants 1 ≤ r < 2 and
α > r + 1 such that

(1.3) E(|X |r(log+ |X |)α) < ∞,

then

(1.4) lim
n→∞

n−1/r
n
∑

k=1

Xk = 0 a.s.

If we assume that EXk = 0 for all k ≥ 1 in Theorem 1.5, then (1.2) is
exactly (1.4). To some extent, Theorem 1.6 extends Theorem 1.5 from the
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pairwise independent case to the PNQD case. However, when r > 1, the
moment condition (1.3) is not optimal since it is stronger than (1.1).

In the current work, we obtain some results on complete convergence
and the Marcinkiewicz-Zygmund SLLN for sequences of m-PNQD random
variables which improve and extend Theorems 1.5 and 1.6 to the m-PNQD
case. We also establish the Kolmogorov SLLN for sequences of m-PNQD
random variables. We point out that the method used in this article differs
from those in Choi and Sung ([4]) and Hu et al. ([9]).

Throughout this paper, the symbol C is used to represent positive con-
stants whose values may change from one place to another.

2. Preliminaries

To prove our main results, we need the following technical lemmas.

Lemma 2.1 ([12]). Let X and Y be NQD random variables. Then

(i) Cov(X, Y ) ≤ 0,

(ii) If f and g are Borel functions which are both monotone increasing (or

both monotone decreasing), then f(X) and g(Y ) are NQD.

Lemma 2.2 ([27]). Let {Xn, n ≥ 1} be a sequence of PNQD random

variables with mean zero and EX2
n < ∞, n ≥ 1, and let Tj(k) =

∑j+k
i=j+1 Xi,

j ≥ 0, k ≥ 1. Then

E
(

max
1≤k≤n

(Tj(k))
2
)

≤ C
(

log2 n
)

j+n
∑

i=j+1

EX2
i , n ≥ 1

where log n = loge max{e, n}, n ≥ 1.

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of m-PNQD random variables
with mean zero and EX2

n < ∞, n ≥ 1. Then there exists a positive constant
C depending only on m such that

E

(

max
1≤j≤n

( j
∑

k=1

Xk

)2)

≤ C
(

log2 2n
)

n
∑

k=1

EX2
k , n ≥ 1.

where log n = loge max{e, n}, n ≥ 1.

Proof. It is clear that exists a suitably chosen C satisfying the inequality
in the conclusion for 1 ≤ n ≤ m since this set of values of n is finite. Therefore,
we only need to consider the case n > m. Given any 1 ≤ j ≤ n, let ν = [ j

m ]
and τ = [ nm ]. Define

V
(j)
k =

{

Xk, if 1 ≤ k ≤ j
0, if k > j

for 1 ≤ j ≤ n
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and

Tjl =
ν
∑

i=0

V
(j)
mi+l for 1 ≤ l ≤ m.

Clearly
∑j

k=1 Xk =
∑m

l=1 Tjl =
∑m

l=1

∑ν
i=0 V

(j)
mi+l. Hence by the Cr-

inequality and Lemma 2.2,

E

(

max
1≤j≤n

( j
∑

k=1

Xk

)2)

≤ E

(

max
1≤j≤n

( m
∑

l=1

Tjl

)2)

≤ m

m
∑

l=1

E

(

max
1≤j≤n

T 2
jl

)

≤ m

m
∑

l=1

E

(

max
0≤ν≤τ

( ν
∑

i=0

V
(j)
mi+l

)2)

≤ Cm

m
∑

l=1

(

log2 2τ
)

τ
∑

i=0

E
(

V
(n)
mi+l

)2

= C
(

log2 2n
)

m
∑

l=1

τ
∑

i=0

E
(

V
(n)
mi+l

)2
= C

(

log2 2n
)

n
∑

k=1

EX2
k .

The proof is completed.

Lemma 2.4 ([3]). Let {Xn, n ≥ 1} be a sequence of nonnegative random
variables with Var(Xn) < ∞, n ≥ 1 and let {f(n), n ≥ 1} be a sequence such
that 0 < f(n) ↑ ∞. Assume that

(i) sup
n≥1

f−1(n)
∑n

k=1 EXk < ∞;

(ii) there is a double sequence ρij of nonnegative real numbers such that

Var

( n
∑

k=1

Xk

)

≤
n
∑

i=1

n
∑

j=1

ρij for each n ≥ 1;

(iii)

∞
∑

i=1

∞
∑

j=1

ρij
f2(i ∨ j)

< ∞, where i ∨ j = max(i, j), i ≥ 1, j ≥ 1.

Then

f−1(n)

n
∑

k=1

(Xk − EXk) → 0 a. s. as n → ∞.

The following concept of stochastic domination is a generalization of the
concept of identical distributions. A sequence of random variables {Xn, n ≥
1} is said to be stochastically dominated by a random variable X if there
exists a constant C > 0 such that

(2.1) sup
n≥1

P (|Xn| > x) ≤ CP (|X | > x) for all x ≥ 0.

Stochastic dominance is of course automatic with X = X1 and C = 1
if {Xn, n ≥ 1} is a sequence of identically distributed random variables. It
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follows from Lemma 5.2.2 of Taylor ([24], p. 123) (or Lemma 3 of [26]) that
stochastic dominance of a sequence of random variables can be accomplished
by the random variables in the sequence having a bounded absolute r-th
moment (r > 0). Specifically, if supn≥1 E|Xn|

r < ∞ for some r > 0, then
there exists a random variable X with E|X |s < ∞ for all 0 < s < r such that
(2.1) holds with C = 1. (The provision that r > 1 in Lemma 5.2.2 of Taylor
([24, p. 123]) (or [26, Lemma 3]) is not needed as was pointed out by Adler
et al. ([1])).

Lemma 2.5. Let {Xn, n ≥ 1} be a sequence of random variables which is
stochastically dominated by a random variable X. Then there exists a constant
C such that, for all q > 0 and x > 0,

(i) E(|Xk|
qI(|Xk| ≤ x)) ≤ C{E(|X |qI(|X | ≤ x)) + xqP (|X | > x)},

(ii) E(|Xk|
qI(|Xk| > x)) ≤ CE(|X |qI(|X | > x)).

This lemma can be easily proved by using integration by parts. We omit
the details.

3. Main results

Now we present our main results and their proofs.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of m-PNQD random vari-
ables which is stochastically dominated by a random variable X. If (1.1) holds,
then for all ε > 0,

(3.1)

∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> n1/rε

)

< ∞.

Proof. For fixed n ≥ 1, let

Ynk = −n1/rI(Xk < −n1/r) +XkI(|Xk| ≤ n1/r) + n1/rI(Xk > n1/r),

Znk = (Xk + n1/r)I(Xk < −n1/r) + (Xk − n1/r)I(Xk > n1/r).

Then Ynk+Znk = Xk, and it follows by the definition ofm-PNQD and Lemma
2.1(ii) that {Ynk, k ≥ 1} is a sequence of m-PNQD random variables. Then

∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> n1/rε

)

≤
∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

(Znk − EZnk)

∣

∣

∣

∣

> n1/rε/2

)

+

∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

(Ynk − EYnk)

∣

∣

∣

∣

> n1/rε/2

)

= : I1 + I2.
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To prove (3.1), it only needs to be shown that I1 < ∞ and I2 < ∞. Note
that |Znk| ≤ |Xk|I(|Xk| > n1/r). By the Markov inequality, Lemma 2.5(ii)
and (1.1), we have

I1 ≤ C

∞
∑

n=1

n−1−1/r
n
∑

k=1

E|Znk − EZnk|

≤ C

∞
∑

n=1

n−1−1/r
n
∑

k=1

E
(

|Xk|I(|Xk| > n1/r)
)

≤ C

∞
∑

n=1

n−1/r
∞
∑

s=n

E
(

|X |I(s < |X |r ≤ s+ 1)
)

= C

∞
∑

s=1

E
(

|X |I(s < |X |r ≤ s+ 1)
)

s
∑

n=1

n−1/r

≤ C

∞
∑

s=1

s1−1/rE
(

|X |I(s < |X |r ≤ s+ 1)
)

≤ CE|X |r < ∞.

Next we prove I2 < ∞. By the Markov inequality, Lemma 2.3, and
Lemma 2.5(i), we have

I2 ≤ C

∞
∑

n=1

n−1−2/r
(

log2 n
)

n
∑

k=1

EY 2
nk

≤ C

∞
∑

n=1

n−1−2/r
(

log2 n
)

n
∑

k=1

E(X2
kI(|Xk| ≤ n1/r))

+ C

∞
∑

n=1

n−1
(

log2 n
)

n
∑

k=1

P (|Xk| > n1/r)

≤ C

∞
∑

n=1

n−2/r
(

log2 n
)

E(X2I(|X | ≤ n1/r))

+ C

∞
∑

n=1

(

log2 n
)

P (|X | > n1/r)

= : I3 + I4.



252 Y. WU AND A. ROSALSKY

Since the function log2 x is slowly varying at ∞, by applying Theorem VIII.
9.1 of Feller ([5, p. 281]), we have

I3 = C

∞
∑

n=1

n−2/r
(

log2 n
)

n
∑

s=1

E(X2I(s− 1 < |X |r ≤ s))

= C

∞
∑

s=1

E
(

X2I(s− 1 < |X |r ≤ s)
)

∞
∑

n=s

n−2/r log2 n

≤ C
∞
∑

s=1

s1−2/r
(

log2 s
)

E
(

X2I(s− 1 < |X |r ≤ s)
)

≤ CE
(

|X |r(log+ |X |)2
)

< ∞

and

I4 ≤ C

∞
∑

n=1

n−1/r
(

log2 n
)

E
(

|X |I(|X | > n1/r)
)

= C

∞
∑

n=1

n−1/r
(

log2 n
)

∞
∑

s=n

E
(

|X |I(s < |X |r ≤ s+ 1)
)

= C
∞
∑

s=1

E
(

|X |I(s < |X |r ≤ s+ 1)
)

s
∑

n=1

n−1/r log2 n

≤ C

∞
∑

s=1

s1−1/r
(

log2 s
)

E
(

|X |I(s < |X |r ≤ s+ 1)
)

≤ CE
(

|X |r(log+ |X |)2
)

< ∞.

The proof is completed.

The following corollary provides a Marcinkiewicz-Zygmund type SLLN for
a sequence of m-PNQD random variables. Corollary 3.2 is indeed a weaker
version of Corollary 2.2 in [2] (see Remark 3.7 below).

Corollary 3.2. Under the conditions of Theorem 3.1, (1.2) holds.

Proof. Let Sj =
∑j

k=1(Xk − EXk), j ≥ 1. From (3.1), we have for
arbitrary ε > 0,

∞ >

∞
∑

n=1

n−1P
(

max
1≤j≤n

∣

∣Sj

∣

∣ > n
1
r ε
)

=
∞
∑

i=0

2i+1
−1

∑

n=2i

n−1P
(

max
1≤j≤n

∣

∣Sj

∣

∣ > n
1
r ε
)

≥
1

2

∞
∑

i=1

P
(

max
1≤j≤2i

∣

∣Sj

∣

∣ > 2
i+1

r ε
)

.
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Then by the Borel-Cantelli Lemma and the arbitrariness of ε > 0,

lim
i→∞

2−
i+1

r max
1≤j≤2i

∣

∣Sj

∣

∣ = 0 a.s.

For every positive integer n, there exists a positive integer i0 such that 2i0−1 ≤
n < 2i0 . Then i0 → ∞ as n → ∞ and

n− 1
r

∣

∣Sn

∣

∣ ≤ max
2i0−1≤j<2i0

j−
1
r

∣

∣Sj

∣

∣

≤ 2
2
r 2−

i0+1

r max
1≤j<2i0

∣

∣Sj

∣

∣ → 0 a.s. as n → ∞.

The proof is completed.

Remark 3.3. Since pairwise independence implies m-PNQD and since
(3.1) implies (1.2) as has been shown in the proof of Corollary 3.2, Theorem
3.1 and Corollary 3.2 improve and extend Theorem 1.5. In addition, since
PNQD implies m-PNQD and since (1.1) is weaker than (1.3) when r > 1,
Theorem 3.1 and Corollary 3.2 also improve and extend Theorem 1.6.

Remark 3.4. Martikainen ([15]) showed for a sequence of pairwise i.i.d.
random variables that (1.2) holds under a weaker moment condition than
that in Theorem 1.5. He proved that the condition (1.1) can be improved
to E|X1|

r(log |X1|)
τ < ∞ for 1 < r < 2 and τ > max{0, 4r − 6}. Sung

([23]) improved the result of Martikainen ([15]) under the much weaker mo-
ment condition E|X1|

r(log log |X1|)
2(r−1) < ∞ where 1 < r < 2. We find

that the truncation method used in Sung ([23]) is not suitable for obtaining
PNQD or m-PNQD results. Therefore, it is an open problem as to whether
or not Theorem 3.1 and Corollary 3.2 hold with Sung’s ([23]) weaker moment
condition.

The next theorem provides a Kolmogorov type SLLN for a sequence of
m-PNQD random variables.

Theorem 3.5. Let {Xn, n ≥ 1} be a sequence of m-PNQD random
variables which is stochastically dominated by a random variable X. If
E
(

|X | log+ |X |
)

< ∞, then

(3.2) lim
n→∞

n−1
n
∑

i=1

(Xk − EXk) → 0 a.s.

Proof. Without loss of generality, we may assume that EXk = 0, k ≥ 1.

For k ≥ 1, let

Yk = −kI(Xk < −k) +XkI(|Xk| ≤ k) + kI(Xk > k),

Y ∗
k = (Xk + k)I(Xk < −k) + (Xk − k)I(Xk > k).
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Then it follows by the definition ofm-PNQD and Lemma 2.1(ii) that {Yk, k ≥
1} is a sequence of m-PNQD random variables. From E|X | < ∞, we have

∞
∑

n=1

P (Xn 6= Yn) =

∞
∑

n=1

P (|Xn| > n) ≤ C

∞
∑

n=1

P (|X | > n) ≤ CE|X | < ∞.

Thus by the Borel-Cantelli lemma, we have

(3.3) n−1
n
∑

k=1

(Xk − Yk) → 0 a.s. n → ∞.

Note that |Y ∗
k | ≤ |Xk|I(|Xk| > k), k ≥ 1. By EXk = 0, k ≥ 1 and

Lemma 2.5(ii), we have

∞
∑

k=1

k−1|EYk| =

∞
∑

k=1

k−1|EY ∗
k | ≤ C

∞
∑

k=1

k−1E
(

|X |I(|X | > k)
)

= C
∞
∑

k=1

k−1
∞
∑

j=k

E
(

|X |I(j < |X | ≤ j + 1)
)

= C
∞
∑

j=1

E
(

|X |I(j < |X | ≤ j + 1)
)

j
∑

k=1

k−1

≤ C
∞
∑

j=1

(

log j
)

E
(

|X |I(j < |X | ≤ j + 1)
)

≤ CE
(

|X | log+ |X |
)

< ∞.

Hence by the Kronecker lemma, we have

n−1
n
∑

k=1

|EYk| → 0 a.s. n → ∞,

which implies

(3.4) n−1
n
∑

k=1

EYk → 0 a.s. n → ∞.

Next, we will prove that

(3.5) n−1
n
∑

k=1

(Yk − EYk) → 0 a.s. n → ∞.

Let Zk = (Yk−EYk)
+, Rk = (Yk−EYk)

−, k ≥ 1, and f(n) = n, n ≥ 1, where
x+ = max{x, 0} and x− = max{−x, 0}. By the definition of m-PNQD and
Lemma 2.1(ii), {Zk, k ≥ 1} and {Rk, k ≥ 1} are each m-PNQD sequences.
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Now by Lemma 2.5(i), we have

(3.6)

sup
n≥1

n−1
n
∑

k=1

EZk ≤ sup
n≥1

n−1
n
∑

k=1

E|Yk − EYk|

≤ C sup
n≥1

n−1
n
∑

k=1

E
(

|X |I(|X | ≤ k)
)

+C

n
∑

k=1

P (|X | > k)

≤ CE|X | < ∞.

Define

ρij =

{

Var(Zi), if j = i,

0, if j 6= i.

Given any 1 ≤ k ≤ n, take τ = [ nm ]. Let

Z∗
k =

{

Zk, if 1 ≤ k ≤ n,
0, if k > n.

Clearly
∑n

k=1 Zk =
∑m

j=1

∑τ
i=0 Z

∗
mi+j . Therefore,

Var

( n
∑

k=1

Zk

)

= Var

( m
∑

j=1

τ
∑

i=0

Z∗
mi+j

)

=
m
∑

j=1

Var

( τ
∑

i=0

Z∗
mi+j

)

+ 2
∑

1≤l<s≤m

Cov

( τ
∑

i=0

Z∗
mi+l,

τ
∑

t=0

Z∗
mt+s

)

= : A+B.

For A, by the definition of m-PNQD and Lemma 2.1(i), we have

A =

m
∑

j=1

( τ
∑

i=0

Var(Z∗
mi+j) + 2

∑

0≤u<v≤τ

Cov(Z∗
mu+j , Z

∗
mv+j)

)

≤
m
∑

j=1

τ
∑

i=0

Var(Z∗
mi+j) =

n
∑

k=1

Var(Zk).

For B, by a property of covariance, the definition of m-PNQD, and Lemma
2.1(i), we have

B = 2
∑

1≤l<s≤m

τ
∑

i=0

τ
∑

t=0

Cov(Z∗
mi+l, Z

∗
mt+s) ≤ 0.

Hence we get

(3.7) Var

( n
∑

k=1

Zk

)

≤

n
∑

k=1

Var(Zk) =

n
∑

k=1

n
∑

j=1

ρkj , n ≥ 1.
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Note that
∞
∑

k=1

k−2E
(

X2I(|X | ≤ k)
)

=

∞
∑

k=1

k−2
k
∑

s=1

E
(

X2I(s− 1 < |X | ≤ s)
)

=

∞
∑

s=1

E
(

X2I(s− 1 < |X | ≤ s)
)

∞
∑

k=s

k−2

≤

∞
∑

s=1

s−1E(X2I(s− 1 < |X | ≤ s)) ≤ E|X |.

Then by the definitions of ρij and f(n), we have by Lemma 2.5(i) that

(3.8)

∞
∑

k=1

∞
∑

j=1

ρkj
f2(k ∨ j)

=

∞
∑

k=1

Var(Zk)

k2
≤

∞
∑

k=1

EY 2
k

k2

=
∞
∑

k=1

k−2
(

E
(

X2
kI(|Xk| ≤ k)

)

+k2P (|Xk| > k)
)

≤ C

∞
∑

k=1

k−2E
(

X2I(|X | ≤ k)
)

+C

∞
∑

k=1

P (|X | > k)

≤ 2E|X | < ∞.

In view of (3.6), (3.7) and (3.8), we get by Lemma 2.4 that

(3.9) n−1
n
∑

k=1

(Zk − EZk) → 0 a.s. n → ∞.

An argument similar to that for establishing (3.9) gives

(3.10) n−1
n
∑

k=1

(Rk − ERk) → 0 a.s. n → ∞.

By (3.9) and (3.10), we get (3.5). Combining (3.3), (3.4) and (3.5) yields
(3.2). The proof is completed.

Remark 3.6. If m = 1, then the moment condition E
(

|X1| log
+ |X1|

)

<
∞ can be weakened to E|X1| < ∞ for a sequence {Xn, n ≥ 1} of PNQD iden-
tically distributed random variables as was proved by Matula ([16]). Matula’s
([16]) result was extended by Li et al. ([13]) to the case of weighted sums of
PNQD identically distributed random variables as a consequence of a much
more general result they obtained in the same article. It remains open as to
whether or not the moment condition E

(

|X | log+ |X |
)

< ∞ can be weakened
to E|X | < ∞ in Theorem 3.5.
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Remark 3.7. Some discussion is in order comparing our work with that of
Anh ([2]). Theorem 2.1 of Anh ([2]) is a Marcinkiewicz-Zygmund type SLLN
for a sequence of blockwise and m-PNQD random variables with respect to a
sequence of blocks {Bk, k ≥ 1}. The blocks are disjoint finite sets of positive
integers and each block is an index set for a finite set of random variables. As
we mentioned prior to Definition 1.2 above, it was Anh ([2]) who introduced
the m-PNQD structure for a finite set of random variables. Anh ([2]) did not
impose any dependence conditions between random variables with indices in
different blocks. In our Theorem 3.1 and Corollary 3.2, we establish, respec-
tively, a complete convergence theorem and a Marcinkiewicz-Zygmund type
SLLN under a moment condition which is identical to that of Theorem 2.1
and Corollary 2.2 of Anh ([2]) when 1 < r < 2. Since a sequence of m-PNQD
random variables is automatically a sequence of blockwise and m-PNQD ran-
dom variables with respect to the sequence of blocks {[2k−1, 2k), k ≥ 1}, our
Corollary 3.2 indeed follows immediately from Corollary 2.2 of Anh ([2]) but
their proofs are entirely different. On the other hand, the Kolmogorov type
SLLN provided by our Theorem 3.5 has a moment condition which is strictly
weaker than that of Corollary 2.2 of Anh ([2]) when r = 1.

Acknowledgements.

The authors are grateful to the referee for carefully reading the man-
uscript and for offering comments which enabled them to substantially im-
prove the paper. In particular, the referee called to the authors’ attention
the article by Anh ([2]). The research of Y. Wu was supported by the Hu-
manities and Social Sciences Foundation for the Youth Scholars of Ministry of
Education of China (12YJCZH217), the Natural Science Foundation of An-
hui Province (1308085MA03), the key Grant Project for Backup Academic
Leaders of Tongling University (2014tlxyxs21), and the Key NSF of Anhui
Educational Committee (KJ2014A255).

References

[1] A. Adler, A. Rosalsky and R. L. Taylor, Some strong laws of large numbers for sums

of random elements, Bull. Inst. Math. Acad. Sinica 20 (1992), 335–357.
[2] V. T. N. Anh, A strong limit theorem for sequences of blockwise and pairwise negative

quadrant m-dependent random variables, Bull. Malays. Math. Sci. Soc. (2) 36 (2013),
159–164.
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