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On perfect 1-E-error-correcting codes∗
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Abstract. We generalize the concept of perfect Lee-error-correcting codes, and present
constructions of this new class of perfect codes that are called perfect 1-E-error-correcting
codes. We also show that in some cases such codes contain quite a few perfect 1-error-
correcting q-ary Hamming codes as subsets.
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1. Introduction

The first perfect 1-error-correcting codes were constructed by Hamming [8]. They
were binary and, as being null-spaces of matrices H, subspaces of vector spaces Zn

2

of dimension n over the finite field with two elements. Hamming’s construction
was generalized to perfect codes over alphabets of any size equal to a power of a
prime number (see Section 6). In that case, the errors also appear in coordinate
positions, and any word can be uniquely corrected to a word in the perfect code
C by changing at most one coordinate position. More precisely: Let S = GF(q)n

be the direct product of n copies of the finite field GF(q) with q elements. A subset
C of S is a perfect 1-error-correcting code in the Hamming metric if to every word
x̄ = (x1, . . . , xn) in S there is a unique word ē = (0, . . . , 0, ϵi, 0, . . . , 0) of weight one
and with ϵi ∈ GF(q) such that

x̄+ ē ∈ C.

There are important, useful, and well-known generalizations of the error-correcting
model introduced by Hamming to the cases when the error ei belongs to a subset
E of the alphabet used to form the codewords. A well-studied example is when
the alphabet is the ring Zn and E = {1,−1}. Such codes are recognized as perfect
1-error-correcting codes in the Lee metric [17]. They are important for many rea-
sons, such as serving as models for codes correcting synchronization errors, to use
phaseshift keying (PSK) modulation, see e.g. [23, pp. 298 – 333] or [20], and getting
nice so called tilings of the real n-dimensional space Rn, see e.g. [6]. In the most
general case, when E can be any given subset of the alphabet in use, we call this
kind of codes perfect 1-E-error-correcting codes. Fan and Gao gave a construction
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of a certain class of perfect 1-E-error-correcting codes. They proved the following
theorem in Section D of [5].

Theorem 1. To every subgroup E of the multiplicative group GF(q)⋆ of a finite
field GF(q) with q elements, there is a perfect 1-E-error-correcting code C over the
alphabet GF(q). The code C has length n = (q − 1)/|E| and is linear of dimension
n− 1 over GF(q).

Simply, Fan and Gao define the code C to be the null-space of a matrix

H =
(
d1 d2 · · · dt

)
, (1)

where d1, d2, ..., dt are coset representatives to E in the multiplicative group of
GF(q).

In Section 2, we present a general result, which gives necessary and sufficient
conditions for a construction similar to that of Fan and Gao, to result in a perfect
code. In that section, we also present perfect codes, such that both the error set E
and the alphabets can differ in distinct coordinate positions. We call these codes
perfect 1-E-error correcting codes.

In Section 3, we show how perfect 1-E-error-correcting codes can be combined to
obtain new 1-E-error-correcting codes, both linear and non-linear. Thereby, perfect
codes in the Hamming metric are used to describe the combining process. In Section
4, we generalize Theorem 1 by showing how to construct 1-E-error-correcting codes
of length n(k) and dimension n(k)−k, for any positive integer k. Finally, in Section
5, we show that if t = logp(|E| + 1) divides logp(q), then there are linear 1-E-error-
correcting codes C of length n and dimension n−1 that contain n! distinct Hamming
codes of length n over GF(pt).

2. Basic definitions and results

The original purpose of this study was to investigate how far the construction of
Fan and Gao could be strengthened. Therefore, let us begin with the following
observation:

Assume that we consider words in some kind of algebraic context, and assume
that the error-correcting code C is the null-space of a matrix H on the form (1).
For using the technique with syndromes when correcting errors occurring during
transmissions of codewords, it is necessary that the distributive rule holds. That is,

Hx̄T = H(c̄T + ϵ̄T ) = Hc̄T +Hϵ̄T = Hϵ̄T . (2)

Here, c̄ is the codeword, ϵ̄ is an error vector, x̄ is the received word, and Hx̄T is
the syndrome of the word x̄. The received word x̄ = c̄ + ϵ̄ is corrected to the sent
codeword x̄− ϵ̄.

Consequently, if we consider words in a direct product S = G1 ×G2 × · · · ×Gn

of alphabets Gi, for i ∈ [n], and codes as null-spaces of a matrix H on the form (1),
and an error-correcting procedure using syndromes, then, presuming some algebraic
structure, it is necessary that the following two conditions are satisfied:
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(i) the alphabets Gi, for i ∈ [n], are subgroups of an Abelian group G,

(ii) for each i ∈ [n], the subgroup Gi is a left module over a ring Ri such that the
matrix entry di of H belongs to Ri.

Thus, in this note, we will always assume that a code is a subset C of a direct
product S = G1 × · · · ×Gn of a family of n finite left modules Gi, for i ∈ [n], over
rings Ri. We also assume that these modules Gi are subgroups of the same Abelian
group G.

By ēi,ϵ we denote the word that has weight one with its only non-zero entry
ϵi ∈ Gi in position i. If, for i ∈ [n] Ei, is a subset of the module Gi, then by E we
denote the set

E = {ēi,ϵ | i ∈ [n], ϵ ∈ Ei}. (3)

A code C is a perfect 1-E-error-correcting code in S if to every word x̄ ∈ S \ C
there is a unique codeword c̄ ∈ C such that

x̄ = c̄+ ēi,ϵ ,

for a unique coordinate position i ∈ [n] and a unique ϵ ∈ Ei. We denote and define
an E-sphere centered at a word c̄ by

SE(c̄) = {c̄+ ēi,ϵ | i ∈ [n], ϵ ∈ Ei}.

The next proposition is an immediate consequence of the definitions above.

Proposition 1. If C is a perfect 1-E-error-correcting code in the direct product
G1 × · · · ×Gn of Abelian groups, then every code in the family of codes

F = {C + ēi,ϵ | i ∈ [n], ϵ ∈ Ei} ∪ {C}

is a perfect 1-E-error-correcting code. The codes in F are pairwise disjoint and∪
C∈F

C = G1 × · · · ×Gn.

We say that the codes in F constitute a perfect partition or a tiling of G1×· · ·×Gn

into 1-E-error-correcting codes. Such partitions are one of the main ingredients in
the combining construction of perfect 1-E-error-correcting codes given in the next
section.

The sum of a family of subgroups Gi, i ∈ [n], of an Abelian group G is defined
here and denoted as follows:

G1 +G2 + · · ·+Gn = {g1 + g2 + · · ·+ gn ∈ G | gi ∈ Gi, i ∈ [n]}.

Now we are ready to state the main theorem of this section the proof of which
consists of trivial verifications.
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Theorem 2. Assume that the groups Gi, for i ∈ [n], are subgroups of the same
Abelian group G. For i ∈ [n], let Ei be any subset of Gi and let φi be any automor-
phism of Gi. Define the code C in the direct product S = G1 ×G2 × · · · ×Gn to be
the set

C = {(x1, . . . , xn) ∈ S | φ1(x1) + · · ·+ φn(xn) = 0}.

Then C is a perfect 1-E-error-correcting code in S if and only if the following two
conditions are satisfied:

{0} ∪ φ1(E1) ∪ . . . ∪ φn(En) = G1 +G2 + · · ·+Gn, (4)

i ̸= j =⇒ φi(Ei) ∩ φj(Ej) = ∅. (5)

The code C is a subgroup of S.

The theorem above generalizes a construction of perfect codes given by Herzog
and Schönheim [15]. They considered partitions of the set of non-zero elements of
Abelian groups G into the set of non-zero elements of a family of subgroups Gi,
i ∈ [n], of G:

G = G1 ∪G2 ∪ . . . ∪Gn, with Gi ∩Gj = {0} if i ̸= j.

Simply, if in Theorem 2, for i ∈ [n], we let φi be the identity map and Ei = Gi \ {0},
then we get the construction of Herzog and Schönheim. Their construction is a
generalization of the construction of Hamming [8]. For details, see Section 2.1.

In our constructions of perfect codes below, we mainly use the following corollary
of Theorem 2.

Theorem 3. Assume that, for i ∈ [n], each of the subgroups Gi of the Abelian group
G is a left module over a ring Ri. Let H =

(
d1 · · · dn

)
, where the entries di, for

i ∈ [n], belong to Ri. Let C consist of the elements x̄ = (x1, . . . , xn) in the direct
product S = G1 × · · · ×Gn such that

Hx̄T = 0̄T ,

that is, C is the null-space in S of H. Let E be defined as in (3).
Then, C is a perfect 1-E-error-correcting code if and only if the following three

conditions are satisfied:

{0} ∪ d1E1 ∪ . . . ∪ dnEn = {Hx̄T | x̄ ∈ S}, (6)

i ̸= j =⇒ diEi ∩ djEj = ∅, (7)

|diEi| = |Ei| i = 1, 2, . . . , n. (8)

The size of C is

|C| = |G1| · · · · · |Gn|
1 + |E1|+ · · ·+ |En|

.

The code C is a subgroup of the group S. If the rings Ri, for i ∈ [n], are the same
commutative ring R, then C is also a left module over R.
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The theorem above follows from Theorem 2, as for each di, i ∈ [n], the map

φi : xi 7→ dixi, i = 1, 2, . . . , n,

is a homomorphism of the left module Gi over the ring Ri.

The next example shows how we can use Theorem 3 to construct perfect 1-E-
error-correcting codes over mixed alphabets and with mixed error sets.

Example 1. Let F be any finite field and let F1 and F2 be two distinct non-trivial
subfields of F . Assume that F2 ⊆ F1, and let E2 denote the multiplicative group of
F2. Let E1 be any subgroup of the multiplicative group of F1 such that E1 contains
E2. Let E3 be any subgroup of E2.

Then

F = {0} ∪ d1E1 ∪ . . . ∪ dtE1, E1 = f1E2 ∪ . . . ∪ fsE2, E2 = g1E3 ∪ . . . ∪ grE3

for families of coset representatives di ∈ F , for i ∈ [t], fi ∈ F1, for i ∈ [s], and
gi ∈ F2, for i ∈ [r], where t = (|F | − 1)/|E1|, s = |E1|/|E2| and r = |E2|/|E3|. We
can split each coset diE1 into cosets of E2 and each coset fiE2 into cosets of E3. For
example: if d1E1 = E1 and f1E2 = E2, then we get the following partition of the
non-zero elements of F :

F \ {0} = g1E3 ∪ . . . ∪ grE3 ∪ f2E2 ∪ . . . ∪ fsE2 ∪ d2E1 ∪ . . . ∪ dtE1. (9)

Thus we have many possibilities to construct perfect 1-E-error-correcting codes.
For example, using the split of F \ {0} in (9) we get a perfect 1-E-error-correcting
code C in the direct product S = F r

2 × F s−1
1 × F t−1, by letting C be the null-space

of the matrix
H =

(
g1 · · · gr f2 · · · fs d2 · · · dt

)
.

As F , F1 and F2 are fields, the necessary conditions of Theorem 3 are satisfied.
Hence, C is a perfect 1-E-error-correcting code.

In most cases of applications, in Theorem 3 we can assume that Ri = R, for
i ∈ [n]. For the reader’s convenience and for the future need of references we state
the theorem in that case:

Theorem 4. Let R be a finite ring. Assume that E is a subset of R and that d1,
d2, ..., dn are elements in R such that

R = {0} ∪ d1E ∪ . . . ∪ dnE , (10)

i ̸= j =⇒ diE ∩ djE = ∅, (11)

and
|E| = |d2E| = |d3E| = · · · = |dnE|. (12)

Then the null-space C of the 1× n-matrix

H =
(
d1 d2 · · · dn

)
, (13)

is a perfect 1-E-error-correcting code in the direct product Rn. The size of C is
|C| = |R|n−1.
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We note that if each of the elements di, for i ∈ [n], commutes with every element
in R, then the code C in the theorem is a left ideal in the ring Rn. The code C is
always a right ideal in Rn.

In a special case, the construction above coincides with the construction provided
by Fan and Gao, see the next example.

Example 2 (Fan and Gao, [5]). Let E be any subgroup of the multiplicative group
G of the finite field GF(q), and let d1, d2,..., dn, where n = |G|/|E|, be any family
of coset representatives to E in G. Then we can apply Theorem 4, as (10), (11) and
(12) hold.

The multiplicative group of a finite field with q elements is cyclic, and, for every
divisor h of q − 1, it has a unique subgroup H of size h, see e.g. [16]. Every such
subgroup H is also cyclic. Thus we may use Theorem 4 to construct many perfect
1-E-error-correcting codes. They are linear codes of dimension n − 1 and length n,
where n = (q − 1)/h.

If h = 2, then the subgroup E consists of the elements {1,−1}, and the code
constructed in this way is a perfect 1-error-correcting code in the Lee metric.

Note that we can change the roles of the error set E and its coset representatives,
as shown in the next example.

Example 3. The multiplicative group of the finite field Z13 has the non-trivial sub-
groups H2 = {1,−1}, H3 = {1, 3, 9}, H4 = {1, 5, 8,−1} and H6 = {1, 4, 3,−1, 9, 10}.
As for instance,

Z13 \ {0} = H6 ∪ 2H6, and H6 ∩ 2H6 = ∅,

we get that with E = {1, 2} and {di | i ∈ [6]} = H6, the conditions in (10), (11) and
(12) are fulfilled. Hence, by Theorem 4 there is a perfect 1-{1, 2}-error-correcting
code in Z6

13.
If we use H2 instead, we get a perfect 1-{1, 2, 3, 4, 5, 6}-error-correcting code in

Z2
13 consisting of the words (a, a), for a ∈ Z13.

2.1. Mixed perfect codes and vector space partitions

A subspace partition of the finite vector space V (n, q) of dimension n over the finite
field GF(q) is a collection of subspaces U1, U2, ..., Ut satisfying the two conditions

V (n, q) =
t∪

i=1

Ui and Ui ∩ Uj = {0̄}, if i ̸= j. (14)

Herzog and Schönheim [15] observed that the kernel of the map f

f : (u1, u2, . . . , ut) 7→ u1 + u2 + · · ·+ ut (15)

from the direct product S = U1 × U2 × · · · × Ut to V (n, q), is a perfect 1-error-
correcting code in S equipped with the Hamming metric. If the dimensions of
the subspaces Ui, i ∈ [n], are not equal, then this kind of codes is called mixed
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perfect 1-error-correcting codes. Such codes are used in some of the examples below
in order to demonstrate the combining construction of perfect 1-E-error-correcting
codes described in the next section.

In just a very limited number of vector spaces V = V (n, q), it is completely
clarified which possibilities there are for the dimensions that appear in a subspace
partition of V . For a survey of the known results in this area, see [13].

3. Combining codes

We consider a direct product S = S1×· · ·×St of direct products Si = Ri,1×· · ·×Ri,ti ,
where Ri,j , for j ∈ [ti] and i ∈ [t], are Abelian groups. We assume that the error
sets Ei, for i ∈ [t], are subsets of Rij , for j ∈ [ti].

The construction below has been presented for special cases partly independently
by several authors, like Zinoviev [30], Solov’eva [27] and Etzion [4].§

There are two fundamental ingredients in this construction of perfect 1-E-error-
correcting codes. One is a family of partitions of the direct products Si, for each
i ∈ [t], into perfect 1-Ei-error-correcting codes C(i, µ), for µ = 0, 1, . . . , pi − 1, where

pi =
|Si|

|C(i, µ)|
= 1 + ti|Ei|.

As the other ingredient we can take any (mixed) perfect 1-error-correcting code
M in the direct product

A1 × · · · × At

equipped with the Hamming metric, where |Ai| = pi, for i ∈ [t].
With the notation as above, we have the following theorem:

Theorem 5. The following union of codes

C =
∪

(d1...,dt)∈M

{(c̄1|c̄2| . . . |c̄t) | c̄i ∈ C(i, di) for i ∈ [t]},

is a perfect 1-E-error-correcting code in the direct product S.

Proof. Consider any word x̄ = (x̄1|x̄2| . . . |x̄t) of S. Then there are elements di ∈ Ai,
for i ∈ [t], such that

x̄i ∈ C(i, di).

If d̄ = (d1, d2, . . . , dt) belongs to M , then x̄ belongs to C. Else, d̄ differs in a unique
coordinate position from one and only one word in M . Let i denote that position,
and assume that (d1, . . . , di−1, d

′
i, di+1 . . . , dt) belongs toM . Then for a unique word

x̄′i ∈ C(i, d′i),
x̄i = x̄′i + ēj,ϵ ,

where j ∈ [ti] and ϵ ∈ Ei, and where ēj,ϵ is defined as in the previous section. Hence,
every word in S \ C belongs to at least one E-sphere centered at a word of C.

§The authors rediscovered this construction inspired by the construction in [10]. There, the first
known variant of this construction appears, although in a very special case.
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Simple counting arguments show that

|C|+
∑
c̄∈C

|SE(c̄)| = |S|.

Hence, two E-spheres centered at codewords cannot intersect, as otherwise there
would exist a word of S \ C not belonging to an E-sphere centered at a word of C.

The conclusion is that C must be a perfect 1-E-error-correcting code.

The construction described above is called the combining construction. The
perfect code M is said to be the outer code in this construction.

3.1. Non-linear perfect 1-E-error-correcting codes

Shapiro and Slotnic [25] conjectured that every perfect code in the Hamming metric
is linear. A few years later, the first non-linear perfect code in the Hamming metric
was found by Vasil’ev [29]. By using the combining construction, we are now able to
construct non-linear perfect 1-E-error-correcting codes. In fact, the original purpose
of the combining construction was to produce non-linear perfect 1-error-correcting
codes in the Hamming metric.

By taking a non-linear perfect 1-error-correcting code in the Hamming metric
as the outer code M , we almost always get a non-linear perfect 1-E-error-correcting
code. (There are quite a few non-linear perfect 1-error-correcting codes in the Ham-
ming metric, see the references in Section 6.)

Now consider the situation when all rings Ri,j are equal to the same ring R, the
error sets Ei can be distinct in distinct coordinate positions. Then pi,j = q = |R|,
for all i ∈ [t] and j ∈ [ti]. For i ∈ [t], the components C(i, µ) in the partition of Si

are the sets

C(i, µ) = {x̄ ∈ Rti | Hx̄T = µ},

for µ ∈ R and some 1× ti-matrix H =
(
di1 · · · diti

)
. Then

C(i, µ) + C(i, µ′) = C(i, µ+ µ′).

Consequently, if the outer code M is linear, the obtained code is linear.

There are many ways to destroy this linearity. For instance, we can choose the
outer code M to be non-linear. Another possibility is to make some permutation of
the components C(i, µ). The easiest way to obtain a non-linear code might be to
switch in S1 to a “new” partition into perfect 1-E-error-correcting codes:

F ′ = {C(1, µ)′ | µ ∈ R},

where, for µ ∈ R,

C(1, µ)′ = C(1, π(µ)),

for some permutation π of the elements of R such that π(0) = 0.
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3.2. Some examples

We give three examples that show the applicability of the combining construction.

Example 4. (Mixed perfect 1-error-correcting codes in the Lee-metric) Let E =
{1,−1}, and let R = Z25. Then the conditions of Theorem 4 are satisfied with
di = i, for i ∈ [12], as well as in the case R = Z5 with d1 = 1 and d2 = 2. Thus
there are perfect 1-error-correcting codes in Z12

25 and Z2
5, respectively, equipped with

the Lee metric.
From a construction of Herzog and Schönheim [15], and independently Beu-

telspacher [2] and Bu [3], we know that the vector space V (3, 5) of dimension 3 over
the finite field with five elements admits a subspace partition into one subspace of di-
mension 2 and 25 subspaces of dimension 1. From Section 2.1, we thus get that there
is a mixed perfect 1-error-correcting code M in the direct product GF(25)×GF(5)25.

By combining Proposition 1 and Theorem 5, whereby we use the code M as the
outer code, we obtain a perfect 1-error-correcting mixed code C in the direct product

Z12
25 × Z50

5

equipped with the Lee metric. Note that this code C is not linear, as the additive
groups of GF(25) and Z25 are not isomorphic.

Observe that linear perfect 1-error-correcting mixed codes in the Lee metric are
considered by AIBdaiwi et al. in [1]. However, they do not mention the word
“mixed”.

From [9] we know that if there is a mixed perfect 1-error-correcting code in a
direct product S1×S2×· · ·×Sn equipped with the Hamming metric, and the prime
number p divides one of the cardinalities of the sets Si, then p divides the size of
every Si, i ∈ [n]. This fact limits the number of possibilities to use the combining
construction in order to produce mixed perfect 1-error-correcting Lee codes.

Example 5. (Lipschitz metric) The Lipschitz metric was introduced by Martinez et
al. in [19]. In short: Consider the ring H(Z) consisting of the “integer
quaternions”

H(Z) = {a0 + a1e1 + a2e2 + a3e3 | a0, a1, a2, a3 ∈ Z} ,

where e2i = −1, e1e2 = −e2e1 = e3, e3e2 = −e2e3 = −e1, e1e3 = −e3e1 = −e2. Let
π be a Lipschitz prime, that is,

π = a0 + a1e1 + a2e2 + a3e3,

where N(π) = a20 + a21 + a22 + a23 is a prime number. The equivalence relation x ∼ y
if x− y = λπ, for some λ ∈ H(Z), gives rise to a set of N(π)2 equivalence classes,
that constitute an Abelian group H(Z)π, see [19]. Let

E = {±1,±e1,±e2,±e3}.

In [7], constructions of many perfect 1-E-error-correcting codes in direct products of
these Abelian groups H(Z)π are presented. For example, with π = 2 + e1 + e2 + e3,
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an 1-E-error-correcting code in the direct product H(Z)6π is constructed. Now we can
further construct such codes by combining Proposition 1 with Theorem 5, whereby
we use any perfect 1-error-correcting code over an alphabet with 49 symbols as an
outer code.

Example 6. (Both Lipschitz and Hurwitz metrics.) The Hurwitz metric is intro-
duced in [7]. In short, if we define an equivalence relation on the ring of Hurwitz
integers H = H(Z) ∪ H( 12 + Z) similarly to the equivalence relation we defined in
the previous example, then the number of equivalence classes will be the same as in
H(Z), see [7]. Let

E ′ = {±1,±e1,±e2,±e3,
1

2
(±1± e1 ± e2 ± e3)}.

Let π = 2+ e1 + e2 + e3, and let Hπ denote the set of equivalence classes that occur
under the equivalence relation induced by π. Then |Hπ| = 49. In [7], a perfect 1-
E ′-error-correcting code in H2

π is presented. If as an outer code we use any perfect
1-error-correcting code in the Hamming metric over an alphabet with 49 symbols,
then we may construct perfect 1-{E , E ′}-error-correcting codes. With such a code, in
some coordinate positions we can correct errors belonging to the set E, and, in other
coordinate positions, correct errors belonging to the set E ′.

Indeed, the number of possibilities to construct codes by combining Proposition 1
and Theorem 5 is large. However, one restriction is the existence of perfect 1-error-
correcting codes in the Hamming metric. For a survey of these codes see Section 6.

4. Linear perfect 1-E-error-correcting codes of length n(k) and
dimension n(k)− k

Let the n′ × k-matrix H′ be a parity-check matrix to a perfect 1-error-correcting
code CH′ in the Hamming metric of length n′ over the alphabet GF(q). Then
n′ = (qk − 1)/(q − 1) and

H′ =

 | |
k̄1 · · · k̄n′

| |

 ,

where k̄1, ..., k̄n′ are elements of the vector space V = GF(q)k such that the 1-
dimensional spaces k̄iGF(q), for i ∈ [n′], constitute a subspace partition of V .
(Equivalently, the columns ofH′ represent the points in the finite (k−1)-dimensional
projective geometry PG(k − 1, q).)

The code CH′ is the null-space of H′, but CH′ can also be defined as the kernel
of the map f defined in (15) with the spaces kiGF(q), for i ∈ [n′], forming the
subspace partition of V . The dimension of C ′

H is n′ − k, as the rows of H′ are
linearly independent.

Let E and d1, ..., dn be defined as in Example 2 and let n(k) = nn′. Now we can
construct a perfect 1-E-error-correcting code C of length n(k).
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The code C is the null-space of the k × n(k)-matrix

H =
(
d1H

′ d2H
′ · · · dnH′ ) ,

which is the concatenation of the matrices diH
′. The rows of the matrix H are

linearly independent, as the rows of the matrix d1H
′ are linearly independent. Hence,

the dimension of C is equal to n(k)− k.
For any x̄ ∈ GF(q)n(k) \C, the syndrome Hx̄T is an element in GF(q)k, and thus

equal to eik̄i for a unique column k̄i of H
′ and a unique ei ∈ GF(q) \ {0}. As ei is

equal to djϵi for a unique pair (dj , ϵi), where j ∈ [n] and ϵi ∈ E , we can find the
“nearest” codeword simply by subtracting the word x̄ with ϵi in the i-th coordinate
position in the block of the vector x̄ that corresponds to the block djH

′ in the matrix
H. Hence, C is a perfect 1-E-error-correcting code.

5. Linear perfect 1-E-error-correcting codes vs.Hamming codes

Assume that q = pm, for some prime number p and some positive integerm. Let E be
a subgroup of the multiplicative group of the finite field GF(q) such that |E| = pt−1
for some integer t. Then t divides m and E ∪ {0} is a subfield of GF(q) that we may
identify with GF(pt), see e.g. [16]. Thus we can regard GF(q) as a vector space over
the finite field E ∪ {0}.

Let d1, ..., dn be as in Example 2, and let C be the perfect 1-E-error-correcting
code obtained in that example. The sets Ui = diE ∪{0}, for i ∈ [n], are vector spaces
of dimension 1 over GF(pt) constituting a subspace partition (14) of GF(q).

We can thus describe the direct product S = GF(q)n as a direct product of
unions of the 1-dimensional subspaces diE ∪ {0}:

S = GF(q)n =

GF(q)
×
...
×

GF(q)

=

({0} ∪ d1E ∪ d2E ∪ . . . ∪ dnE)
×
...
×

({0} ∪ d1E ∪ d2E ∪ . . . ∪ dnE)

Let π be any permutation of the elements in the set [n]. Then, by Section 2.1,
the set of words (x1, . . . , xn) in GF(pt)n such that

dπ(1)x1 + · · ·+ dπ(n)xn = 0, (16)

constitutes a perfect 1-error-correcting code Cπ. Now, in each coordinate position
in the direct product S, we perform the following linear map from GF(q) to GF(q):

ψi : xi 7→
dπ(i)

di
xi, i ∈ [n].

Then the perfect 1-error-correcting code Cπ is mapped to a perfect 1-error-correcting
code ψ(Cπ) and

ψ(Cπ) ⊆
dπ(1)

d1
(E ∪ {0})× · · · ×

dπ(n)

dn
(E ∪ {0}) ⊆ S. (17)
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Finally, for any element (y1, . . . , yn) of ψ(Cπ), from (16) we get that

d1y1 + · · ·+ dnyn = d1
dπ(1)

d1
x1 + · · ·+ dn

dπ(n)

dn
xn = 0.

Thus, the perfect 1-error-correcting code ψ(Cπ) is a subset of C. Distinct permuta-
tions give distinct direct products in (17). As there are n! distinct permutations π
of the set [n], we can conclude that C contains at least n! perfect 1-error-correcting
codes.

6. Remarks

The combining construction of 1-E-error-correcting codes has some limitations. This
is because perfect codes in the Hamming metric used as outer codes in the combin-
ing construction, have so far been constructed just over alphabets of a size equal to
a power of a prime number. However, in that case there are several distinct con-
structions. A survey of perfect binary codes can be found in [11], or the book by
Solov’eva [28]. Below we give references to some of the main results in this area:

The first construction of a perfect code was given by Hamming [8]. His codes were
linear, binary and 1-error-correcting. The first non-linear perfect 1-error correcting
binary code was found by Vasil’ev [29] in 1961. Almost a decade later, Vasil’ev’s
construction was generalized to the q-ary case by Lindström [18] and independently
by Schönheim [24]. The first construction of mixed perfect codes not equivalent to
any linear code was given by Heden [10]. The construction in Section 3 was inspired
by Heden’s construction. The construction of Heden was also the second found
construction of non-linear perfect binary codes. Other nice and useful constructions
have been given by Solov’eva [26] and Phelps [21], [22]. A kind of classification of
perfect 1-error-correcting q-ary codes can be found in [14]. A very few known results
on perfect 1-error-correcting codes over non-prime power alphabets are surveyed in
[12].

In any way, it may be concluded that there indeed exist quite a few perfect
1-E-error-correcting codes.
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