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Abstract. For solving a broad class of complex symmetric linear systems, Salkuyeh et
al. have recently recast the system in a real formulation and studied a generalized succes-
sive overrelaxation (GSOR) iterative method. In this paper, we introduce an accelerated
GSOR (AGSOR) iterative method which involves two iteration parameters. Then, we the-
oretically study its convergence properties and determine its optimal iteration parameters
and corresponding optimal convergence factor. Finally, some numerical computations are
presented to validate the theoretical results and compare the performance of the AGSOR
method with those of the GSOR and MHSS methods.
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1. Introduction

Consider a complex system of linear equations of the form

(W + iT )(x+ iy) = b1 + ib2, x, y, b1, b2 ∈ R
n, (1)

where i =
√
−1 and W,T ∈ Rn×n are symmetric matrices with at least one of them

being positive definite. In this paper, without loss of generality, we assume that
W is symmetric positive definite. We can see such systems in many problems such
as diffuse optical tomography [1], an FFT-based solution of certain time-dependent
PDEs [9], quantum mechanics [10], molecular scattering [13], structural dynamics
[11], and lattice quantum chromodynamics [12]. The reader can refer to [8] for more
examples and additional references.

In [3], Bai, Benzi and Chen considered the disadvantages arising from the use
of the Hermitian and skew-Hermitian splitting (HSS) method [5] straightforwardly,
and presented a modified version of the HSS iteration method (MHSS) as follows:

The MHSS iteration method: Given an initial guess u(0) ∈ Cn and positive constant
α, for k = 0, 1, 2, . . . , until {u(k)} converges, compute

{

(αI +W )u(k+ 1
2 ) = (αI − iT )u(k) + b,

(αI + T )u(k+1) = (αI + iW )u(k+ 1
2 ) − ib,

(2)
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where u(k) = x(k) + iy(k), b = b1 + ib2 and I is the identity matrix.

They have also showed that for any positive constant α the MHSS method con-
verges unconditionally to the unique solution of the system of linear equations and
considered an MHSS-preconditioner to accelerate Krylov subspace methods such as
GMRES or its restarted variant GMRES(l)[14]. The two half-steps at each MHSS
iterate require solutions of two systems whose coefficient matrices are αI +W and
αI+T . Since both of these matrices are symmetric positive definite, one can exactly
solve the corresponding systems by the Cholesky factorization and in the inexact
version, by the conjugate gradient (CG) method.

In recent years, much work has been done in solving linear systems with a 2× 2
block structure, especially in the context of saddle point problems. For example, see
the Uzawa method [7], the generalized SOR (GSOR) method [6], and the accelerated
HSS (AHSS) method [4]. It is possible to avoid complex arithmetic by rewriting the
complex system (1) in the following real-valued form

[

W −T
T W

] [

x
y

]

=

[

b1
b2

]

. (3)

In [15], by splitting the coefficient matrix of the system (3) into
[

W −T
T W

]

=

[

W 0
0 W

]

−
[

0 0
−T 0

]

−
[

0 T
0 0

]

, (4)

Salkuyeh, Hezari and Edalatpour have recently applied the generalized SOR iterative
method to the equivalent real system (3) and introduced the following iterative
method

{

Wx(k+1) = (1 − α)Wx(k) + αTy(k) + αb1,

Wy(k+1) = −αTx(k+1) + (1 − α)Wy(k) + αb2,
(5)

where 0 6= α ∈ R. The two half-steps at each GSOR iterate require solutions with
the matrix W that can be solved exactly by the Cholesky factorization or inexactly
by the CG method. This is different from the MHSS method, in which two linear
sub-systems with different coefficient matrices αI+W and αI+T need to be solved
at every iteration step. Besides its use as a solver, the GSOR iteration has also been
used as a preconditioner to accelerate Krylov subspace methods such as GMRES(l).

In the matrix-vector form, the GSOR iteration method can be equivalently
rewritten as

[

xk+1

yk+1

]

= Gα

[

xk

yk

]

+ Cα
[

b1
b2

]

, (6)

with

Gα =

[

I 0
αS I

]−1 [
(1− α)I αS

0 (1− α)I

]

, Cα = α

[

W 0
αT W

]−1

,

where S = W−1T . Here, Gα is the iteration matrix of the GSOR method.
In [15], the authors presented convergence analysis, the optimal iteration param-

eter and the corresponding optimal convergence factor of the method as follows

α∗ =
2

1 +
√

1 + γ2
max

, and ρ(Gα∗) = 1− α∗ =

√

1 + γ2
max − 1

√

1 + γ2
max + 1

, (7)
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where γmax are the largest eigenvalues of the matrix S in modulus.
In this paper, we propose a new version of the GSOR method to solve (3) in

which two parameters α and β are incorporated. Hereafter, the new method is
called the accelerated GSOR method which is equivalent to the GSOR method,
when α = β. Hence, it is expected that the AGSOR method will converge faster
than the GSOR method for suitable parameters. The two half-steps at each AGSOR
iterate, like the GSOR method, require solutions with the matrix W that can be
solved exactly by the Cholesky factorization or inexactly by the CG method. We
discuss the convergence analysis of the AGSOR method and obtain the optimal value
of iteration parameters and the corresponding optimal convergence factor.

The rest of the paper is organized as follows. In Section 2, we propose our method
and investigate its convergence properties. Section 3 is devoted to some numerical
experiments to show the effectiveness of the AGSOR iteration method. Finally, in
Section 4, some concluding remarks are given.

2. Main results

Let the parameters α and β be two nonzero real numbers and

Υ =

[

αI 0
0 βI

]

,

where I is the n × n identity matrix. Premultiplying both sides of Eq. (3) by Υ
gives

[

αW −αT
βT βW

] [

x
y

]

=

[

αb1
βb2

]

. (8)

For the coefficient matrix in (8), we make the splitting
[

αW −αT
βT βW

]

= D − E − F,

wherein

D =

[

αW 0
0 βW

]

, E =

[

0 0
−βT 0

]

, F =

[

0 αT
0 0

]

.

Then, similarly to the GSOR method, the AGSOR iterative scheme is constructed
as follows

[

x(k+1)

y(k+1)

]

= Gα,β

[

x(k)

y(k)

]

+ c, (9)

where

Gα,β =

[

W 0
βT W

]−1 [
(1− α)W αT

0 (1− β)W

]

=

[

I 0
βS I

]−1 [
(1 − α)I αS

0 (1− β)I

]

, (10)
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is the iteration matrix of the AGSOR method and

c =

[

W 0
βT W

]−1 [
αb1
βb2

]

,

with S = W−1T . It is easy to verify that Eq. (9) is equivalent to

{

Wx(k+1) = (1 − α)Wx(k) + αTy(k) + αb1,

Wy(k+1) = −βTx(k+1) + (1 − β)Wy(k) + βb2.
(11)

At each iteration of the AGSOR method, two sub-systems with coefficient matrix
W should be solved which can be done by the Cholesky factorization or inexactly by
the CG algorithm. Obviously, when α = β, the AGSOR iteration method reduces
to the GSOR iteration method. Next, we discuss the convergence properties of the
AGSOR method for solving system (3).

Lemma 1 ([15]). Let W ∈ R
n×n and T ∈ R

n×n be symmetric positive definite and
symmetric, respectively. Then the eigenvalues of matrix S = W−1T are all real.

The next lemma provides a functional relation between the eigenvalues of the
matrix S = W−1T and the iteration matrix Gα,β of the AGSOR method.

Lemma 2. Let α and β be two real numbers and Gα,β the iteration matrix of the
AGSOR method. Then, the eigenvalues of Gα,β are determined by the functional
equation

(1− α− λ)(1 − β − λ) = −λαβγ2, (12)

where γ and λ are the eigenvalues of S = W−1T and Gα,β, respectively.

Proof. Let α 6= β and let λ be an eigenvalue of Gα,β . Then, we must have

0 = det(Gα,β − λI) = det

([

(1− α)I αS
0 (1− β)I

]

− λ

[

I 0
βS I

])

= det

([

(1 − α− λ)I αS
−λβS (1 − β − λ)I

])

. (13)

Now, if λ 6= 1− α, then

det(Gα,β − λI) = det((1 − α− λ)I) det((1− β − λ)I +
λ

1− α− λ
αβS2)

= (1− α− λ)n det((1− β − λ)I +
λ

1− α− λ
αβS2).

Therefore, in this case we have

det((1− β − λ)I +
λ

1− α− λ
αβS2) = 0,

and the desired result is obtained. If λ = 1 − α, then it follows from α 6= β that
λ 6= 1−β, and similarly to the previous case, we can deduce the desired result. When
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α = β, as mentioned, the AGSOR method reduces to the GSOR method. Hence
according to [15, Theorem 1], we see that the eigenvalues of Gα,α are determined by
the functional equation

(1 − α− λ)2 = −λα2γ2, (14)

which is the same as equation (12), when α = β. This completes the proof.

Lemma 3 ([2, 16]). Both roots of the real quadratic equation λ2 − rλ + s = 0 are
less than one in modulus if and only if |s| < 1 and |r| < 1 + s .

Concerning the convergence of the stationary AGSOR iteration method, we have
the following theorem.

Theorem 1. Let W,T ∈ Rn×n be symmetric positive definite and symmetric, re-
spectively. Then the AGSOR method (9) is convergent for all b and c satisfying

0 < c < b < c
1− γ2

max

2
+ 2, (15)

where b = α+β, c = αβ and γmax is the largest eigenvalue of S = W−1T in modulus.

Proof. Suppose that λ is an arbitrary eigenvalue of Gα,β. Using Lemma 2, there is
an eigenvalue γ of S which satisfies Eq. (12). Since b = α + β and c = αβ, then α
and β are the real roots of the quadratic equation x2 − bx+ c = 0, and Eq. (12) can
be rewritten as

λ2 + (cγ2 + b− 2)λ+ c− b+ 1 = 0. (16)

Now from Lemma 3, |λ| < 1 if and only if

|c− b+ 1| < 1, (17)

and

|cγ2 + b − 2| < c− b+ 2. (18)

From (17) and (18), it is easy to obtain 0 < c < b < c 1−γ2

2 + 2. But, by noticing

that c 1−γ2

2 + 2 is monotonically decreasing with respect to |γ|, and from Lemma 1,
we must have

0 < c < b < c
1− γ2

max

2
+ 2,

which completes the proof.

In general, it is difficult to find the optimal values of α and β satisfying Eq.
(15). Instead, we determine these parameters in a subset of the convergence region
(15), such that besides their optimality in this subset, the corresponding convergence
factor of the AGSOR method is smaller than that of the GSOR method. Let γ be
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an eigenvalue of S = W−1T . In the proof of Theorem 1, as can be seen, Eq. (12) is
equivalent to Eq. (16) which can be rewritten as

λ2 = (2− b− cγ2)λ+ b− c− 1,

where b = α + β, c = αβ and λ is an eigenvalue of the iteration matrix Gα,β . Set
f(λ) = λ2 and gb,c,γ(λ) = (2 − b − cγ2)λ + b − c − 1. So, the intersections of f(λ)
and gb,c,γ(λ) are the roots of Eq. (16) and we have

λ1,2(b, c, γ) =
(2− b− cγ2)±

√

b2 − 4c+ cγ2(cγ2 + 2b− 4)

2
. (19)

λ
2 λ

1

f(λ)

g
b,c,γ(λ)

Figure 1: Graph of f(λ) and gb,c,γ(λ)

Now, suppose that γmin and γmax are the smallest and largest eigenvalues of the
matrix S in modulus, respectively. Moreover, let b̄ and c̄ be in the convergence
region (15) such that gb̄,c̄,γ(λ) is tangent to f(λ) for γ = γmax. Then, from Eq. (19)
we observe that

b̄2 − 4c̄+ c̄γ2
max(c̄γ

2
max + 2b̄− 4) = 0. (20)

Furthermore, suppose that b̄ and c̄ satisfy

(γ2
max + γ2

min)c̄+ 2b̄− 4 ≥ 0. (21)

From Eq. (20) we have

b̄ = −c̄γ2
max + 2

√

c̄(1 + γ2
max). (22)

Note that b̄ 6= −c̄γ2
max − 2

√

c̄(1 + γ2
max), since b̄ and c̄ satisfy Eq. (15). Having in

mind that the eigenvalues of A are all real, from Eq. (21) we see that

(γ2
max + γ2)c̄+ 2b̄− 4 ≥ 0, ∀γ ∈ σ(S),
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where σ(S) denotes the spectrum of the matrix S. But, multiplying both sides of
the latter inequality by (γ2

max − γ2) results in

(γ4
max − γ4)c̄+ 2b̄(γ2

max − γ2)− 4(γ2
max − γ2) ≥ 0, ∀γ ∈ σ(S),

which is equivalent to

b̄2−4c̄+ c̄γ2(c̄γ2+2b̄−4) ≤ b̄2 − 4c̄+ c̄γ2
max(c̄γ

2
max + 2b̄− 4) = 0, ∀γ ∈ σ(S). (23)

So, by (19) for any γ ∈ σ(S), the eigenvalues λ1,2 corresponding to γ, b̄ and c̄ are
obtained as

λ1,2(b̄, c̄, γ) =
(2− b̄− c̄γ2)± i

√

4c̄− b̄2 − c̄γ2(c̄γ2 + 2b̄− 4)

2
, (24)

wherein 4c̄−b̄2−c̄γ2(c̄γ2+2b̄−4) ≥ 0, and the modulus of the eigenvalues λ1,2(b̄, c̄, γ)
are given by

|λ1,2(b̄, c̄, γ)| =
√

1 + c̄− b̄, ∀γ ∈ σ(S), (25)

which is independent of the eigenvalues of S. Then, by substituting (22) into (25)
we obtain

|λ1,2(b̄, c̄, γ)| = |1−
√

c̄(1 + γ2
max)|, ∀γ ∈ σ(S). (26)

Next, by combining the relations (15), (20) and (21), we define a subset Ωb,c of the
convergence region of the AGSOR method as follows

Ωb,c =

{

b, c ∈ R

∣

∣

∣

∣

0<c<b<c
1−γ2

max
2 +2,

b=−cγ2
max+2

√
c(1+γ2

max),

(γ2
max+γ2

min)c+2b−4≥0

}

.

Now, since b = α+ β and c = αβ, we define the subset Ψα,β as

Ψα,β = Ωb,c. (27)

From the above discussion we conclude that if the parameters ᾱ, β̄ ∈ Ψα,β, or
equivalently b̄, c̄ ∈ Ωb,c, then the spectral radius ρ(Gᾱ,β̄) of the iteration matrix Gᾱ,β̄

of the AGSOR method is equal to |1−
√

c̄(1 + γ2
max)|.

In the next theorem, we introduce the optimal iteration parameters of the AG-
SOR method in Ψα,β. Then, we determine the corresponding convergence factor of
the iterative method.

Theorem 2. Let W,T ∈ Rn×n be symmetric positive definite and symmetric, re-
spectively. Also, suppose that Gα,β is defined by Eq. (10). Set b = α+β and c = αβ.
Moreover, let γmin and γmax be the smallest and largest eigenvalues of the matrix
S = W−1T in modulus, respectively. Then, the optimal iteration parameters α∗ and
β∗ of the AGSOR method in Ψα,β defined by (27) are given by

α∗ =
b∗ +

√

b∗2 − 4c∗

2
, β∗ =

b∗ −
√

b∗2 − 4c∗

2
, (28)
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wherein

b∗ = 4
1 +

√

(1 + γ2
min)(1 + γ2

max)

(
√

γ2
max + 1 +

√

γ2
min + 1)2

, c∗ = 4
1

(
√

γ2
max + 1 +

√

γ2
min + 1)2

. (29)

Also, the corresponding optimal convergence factor of the AGSOR method is given
by

ρ(Gα∗,β∗) =

√

γ2
max + 1−

√

γ2
min + 1

√

γ2
max + 1+

√

γ2
min + 1

, (30)

where ρ(Gα,β) is the spectral radius of the iteration matrix.

Proof. Consider b̄, c̄ ∈ Ωb,c and let us define Hb,c = Gα,β . Therefore, Hb∗,c∗ =
Gα∗,β∗ and obtaining the optimal parameters α∗ and β∗ of the AGSOR method is
equivalent to obtaining b∗ and c∗ satisfying

(b∗, c∗) = argmin
(b̄,c̄)∈Ωb,c

|1−
√

c̄(1 + γ2
max)|. (31)

Combining (20) and (21) results in

(γ2
max − γ2

min)
2c̄2 − 8(γ2

max + γ2
min + 2)c̄+ 16 ≤ 0,

and therefore, we must have

4
1

(
√

γ2
max + 1 +

√

γ2
min + 1)2

≤ c̄ ≤ 4
1

(
√

γ2
max + 1−

√

γ2
min + 1)2

, (32)

and problem (31) is converted to the following one

(b∗, c∗) = argmin
4 1

(

√
γ2
max+1+

√
γ2
min

+1)2
≤c≤4 1

(

√
γ2
max+1−

√
γ2
min

+1)2

|1−
√

c(1 + γ2
max)|.

To solve this problem, according to Fig. 2, we conclude that

c∗ = 4
1

(
√

γ2
max + 1 +

√

γ2
min + 1)2

; (33)

also, by (22) and (33) we obtain

b∗ = 4
1 +

√

(1 + γ2
min)(1 + γ2

max)

(
√

γ2
max + 1 +

√

γ2
min + 1)2

. (34)

It is easy to verify that the values of b∗ and c∗ are in Ωb,c. Also, α∗ and β∗ are
determined by the equations b∗ = α∗ + β∗ and c∗ = α∗β∗, as given in (28). Finally,
from Eq. (24) the optimal convergence factor of the AGSOR method in Ψα,β is
obtained as

ρ(Gα∗,β∗) =

√

γ2
max + 1−

√

γ2
min + 1

√

γ2
max + 1 +

√

γ2
min + 1

, (35)

which completes the proof.
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1/(1+ρ2)

c=4/((1+ρ2)0.5+(1+u
1
2)0.5)2

c=4/((1+ρ2)0.5− (1+u
1
2)0.5)2

c
opt

λ=|1− (c(1+ρ2))2|

Figure 2: Graph of the function λ = |1−
√

c(1 + γ2
max)| and the optimal value of c

An immediate implication of this theorem is that the spectral radius of the itera-
tion matrix corresponding to optimal parameters depends on the extreme eigenvalues
of the matrix S = W−1T , for both the GSOR and AGSOR methods. In addition,
in case the smallest eigenvalue of S is nonzero, from Eqs. (7) and (30) it follows
that the corresponding optimal convergence factor of the AGSOR iteration method
is smaller than that of the GSOR method.

Remark 1. Under assumptions of Theorem 2, if the matrix S = W−1T is singular,
then γmin = 0 and from Eqs. (29) and (28) it follows that

α∗ = β∗ =
2

1 +
√

1 + γ2
max

and the AGSOR method reduces to the GSOR method.

3. Numerical experiments

In this section, we use three test problems from [3] and an example of [9], to il-
lustrate the feasibility and effectiveness of the AGSOR iteration method when it is
employed as a solver to solve the equivalent real system (3). We also compare the
performance of the AGSOR method with those of the GSOR and the MHSS method,
in terms of both the number of iterations (denoted as IT) and the total computing
times (in seconds, denoted by CPU). In each iteration of both the AGSOR and the
GSOR iteration method, we use the Cholesky factorization of coefficient matrices
to solve the sub-systems. The reported CPU times are the sum of the CPU times
for the convergence of the method and the CPU times for computing the Cholesky
factorization.

All numerical experiments presented in this section were computed in double
precision and the algorithms were implemented in MATLAB 7.12.0 and tested on a
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64-bit 1.73 GHz intel Q740 core i7 processor and 4GB RAM running Windows 7.
We use a null vector as an initial guess and the stopping criterion

‖b−Au(k)‖2
‖b‖2

< 10−6,

where u(k) = x(k) + iy(k).

Example 1 (See [3]). Consider the system of linear equations

[(

K +
3−

√
3

τ
I

)

+ i

(

K +
3 +

√
3

τ
I

)]

x = b, (36)

where τ is the time step-size and K is the five-point centered difference matrix ap-
proximating the negative Laplacian operator L = −∆ with homogeneous Dirichlet
boundary conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with the
mesh-size h = 1

m+1 . The matrix K ∈ Rn×n possesses the tensor-product form

K = I ⊗ Vm + Vm ⊗ I, with Vm = h−2tridiag(−1, 2,−1) ∈ R
m×m. Hence, K is an

n× n block-tridiagonal matrix, with n = m2. We take

W = K +
3−

√
3

τ
I and T = K +

3−
√
3

τ
I,

and the right-hand side vector b with its jth entry bj being given by

bj =
(1− i)j

τ(j + 1)2
, j = 1, 2, . . . , n.

In our tests, we take τ = h. Furthermore, we normalize the coefficient matrix and
the right-hand side vector by multiplying both by h2.

Example 2 (See [3]). Consider the system of linear equations (W + iT )x = b, with

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ Vc + Vc ⊗ I) + 9(e1e
T
m + emeT1 )⊗ I,

where V = tridiag(−1, 2,−1) ∈ Rm×m, Vc = V − e1e
T
m − emeT1 ∈ Rm×m and e1 and

em are the first and the last unit vector in R
m, respectively. We take the right-hand

side vector b to be b = (1+i)A1, with 1 being the vector of all entries equal to 1. Here
T and W correspond to the five-point centered difference matrices approximating the
negative Laplacian operator with homogeneous Dirichlet boundary conditions and
periodic boundary conditions, respectively, on a uniform mesh in the unit square
[0, 1] × [0, 1] with the mesh-size h = 1

m+1 . Although this problem is an artificially
constructed one, it is quite challenging for iterative solvers and therefore we include
it in our tests.

Example 3 (See [3]). Consider the system of linear equations

[

(−ω2M +K) + i(ωCV + CH)
]

x = b,
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where M and K are the inertia and the stiffness matrices, CV and CH are the viscous
and the hysteretic damping matrices, respectively, and ω is the driving circular fre-
quency. We take CH = µK with µ a damping coefficient, M = I , CV = 10I, and K
the five-point centered difference matrix approximating the negative Laplacian opera-
tor with homogeneous Dirichlet boundary conditions, on a uniform mesh in the unit
square [0, 1]×[0, 1] with the mesh-size h = 1

m+1 . The matrix K ∈ Rn×n possesses the

tensor-product form K = I⊗Vm+Vm⊗I, with Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m.
Hence, K is an n× n block-tridiagonal matrix, with n = m2. In this example, for
µ = .5, µ = 1 and µ = 2, we set ω = π and the right-hand side vector b to be
b = (1 + i)A1, with 1 being the vector of all entries equal to 1. As before, we
normalize the system by multiplying both sides by h2.

Example 4 (See [9]). Helmholtz equations are of fundamental importance in the
modeling of wave propagation phenomena. In this example, we consider the finite-
difference discretization of the partial differential equation

−∇.(c∇u) + σ1u+ iσ2u = f, (37)

where the coefficients c, σ1 and σ2 are real-valued functions, u satisfies Dirichlet
boundary conditions and i =

√
−1. We consider Eq. (37) on the 2D domain [0, 1]×

[0, 1] with different values of c, σ1 = 1000 and σ2 = 10000. We discretize the problem
with finite differences on an m ×m grid with mesh size h = 1/(m+ 1). This leads
to a system of linear equations

((cK + σ1I) + iσ2I) x = b,

where K = I⊗Vm+Vm⊗I is a standard second-order finite-difference discretization
of the diffusion operator −△u, wherein Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m. The
right-hand side vector b is taken to be b = (1 + i)A1, with 1 being the vector of
all entries equal to 1. Furthermore, before solving the system we normalize the
coefficient matrix and the right-hand side vector by multiplying both by h2.

In Table 1, we report the optimal parameters of the MHSS, the GSOR and the
AGSOR method for Examples 1-4, for each choice of spatial mesh-sizes. Optimal
values of the parameter α (denoted by αexp) for the MHSS iteration method are
experimentally resulted in the least numbers of iterations for the method for each
of the numerical examples and for different values of m. Optimal values of the
parameters α and β (denoted by α∗ and β∗) for the GSOR and the AGSOR method
have been obtained from relations (7) and (28) in which the largest and smallest
eigenvalues of matrix S can be estimated by a few iterations of the power method.
The optimal convergence factor corresponding to optimal parameters of the methods
is listed in Table 2. Also, the iteration number and the CPU times of the MHSS,
the GSOR and the AGSOR iteration method for the examples are shown in Tables
3-6.

In Example 2, the smallest eigenvalue of S = W−1T is small for all values of
m (about 0.1) and, as expected, optimal convergence factors of the GSOR and the
AGSOR method are almost the same (see Table 2) and, as a result, it is also true
in terms of both the number of iterations and the CPU times (see Table 4). In
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Example Method Grid

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

No. 1 MHSS (αexp) 1.06 0.75 0.54 0.40 0.30

GSOR (α∗) 0.550 0.495 0.457 0.432 0.428

AGSOR (α∗,β∗) (0.880, 0.276) (0.828, 0.244) (0.791, 0.221) (0.764, 0.209) (0.749, 0.203)

No. 2 MHSS (αexp) 0.21 0.08 0.04 0.02 0.01

GSOR (α∗) 0.908 0.776 0.566 0.353 0.199

AGSOR (α∗,β∗) (0.924, 0.892) (0.798, 0.754) (0.588, 0.545) (0.369, 0.339) (0.209, 0.189)

No. 3, µ = 0.5 MHSS (αexp) 0.56 0.31 0.16 0.08 0.04

GSOR (α∗) 0.376 0.377 0.377 0.377 0.377

AGSOR (α∗,β∗) (0.543, 0.248) (0.541, 0.251) (0.539, 0.252) (0.539, 0.253) (0.539, 0.253)

µ = 1 MHSS (αexp) 0.77 0.41 0.21 0.11 0.06

GSOR (α∗) 0.317 0.318 0.318 0.319 0.319

AGSOR (α∗,β∗) (0.614, 0.144) (0.611, 0.146) (0.611, 0.146) (0.610, 0.146) (0.610, 0.146)

µ = 2 MHSS (αexp) 0.98 0.53 0.28 0.15 0.08

GSOR (α∗) 0.241 0.242 0.242 0.242 0.242

AGSOR (α∗,β∗) (0.707, 0.062) (0.703, 0.063) (0.702, 0.063) (0.702, 0.063) (0.702, 0.063)

No. 4, c = 1 MHSS (αexp) 6.33 2.21 0.93 0.42 0.13

GSOR (α∗) 0.184 0.184 0.184 0.184 0.184

AGSOR (α∗,β∗) (0.737, 0.031) (0.430, 0.072) (0.246, 0.137) (0.199, 0.171) (0.190, 0.178)

c = 0.1 MHSS (αexp) 4.01 1.19 0.71 0.50 0.10

GSOR (α∗) 0.181 0.181 0.181 0.181 0.181

AGSOR (α∗,β∗) (0.990, 0.012) (0.911, 0.018) (0.624, 0.041) (0.341, 0.092) (0.219, 0.150)

c = 0.01 MHSS (αexp) 4.01 1.19 0.71 0.50 0.10

GSOR (α∗) 0.181 0.181 0.181 0.181 0.181

AGSOR (α∗,β∗) (1, 0.010) (0.998, 0.011) (0.980, 0.013) (0.845, 0.023) (0.507, 0.055)

Table 1: Optimal parameters of the GSOR and the AGSOR iteration method for Examples 1-4
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Figure 3: The smallest eigenvalue of S = W−1T for different values of m and c for Example 4

Examples 1 and 3, the results show that the AGSOR method is in general superior
to other methods in terms of the optimal convergence factor, iteration count and
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Example Method Grid

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

No. 1 GSOR 0.450 0.505 0.543 0.568 0.572

AGSOR 0.294 0.360 0.404 0.432 0.448

No. 2 GSOR 0.092 0.224 0.434 0.647 0.801

AGSOR 0.091 0.223 0.433 0.646 0.800

No. 3, µ = 0.5 GSOR 0.624 0.623 0.623 0.623 0.623

AGSOR 0.586 0.587 0.587 0.587 0.587

µ = 1 GSOR 0.683 0.682 0.682 0.681 0.681

AGSOR 0.575 0.576 0.577 0.577 0.577

µ = 2 GSOR 0.759 0.758 0.758 0.758 0.758

AGSOR 0.526 0.528 0.528 0.528 0.528

No. 4, c = 1 GSOR 0.816 0.816 0.816 0.816 0.816

AGSOR 0.504 0.730 0.807 0.815 0.816

c = 0.1 GSOR 0.819 0.819 0.819 0.819 0.819

AGSOR 0.099 0.296 0.600 0.774 0.815

c = 0.01 GSOR 0.819 0.819 0.819 0.819 0.819

AGSOR 0.011 0.041 0.142 0.389 0.682

Table 2: The optimal convergence factor corresponding to optimal parameters of the GSOR and
the AGSOR iteration method presented in Table 1

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MHSS IT 40 54 73 98 133

CPU 0.034 0.114 0.612 3.468 21.273

GSOR IT 19 22 24 26 27

CPU 0.003 0.010 0.053 0.255 1.153

AGSOR IT 15 17 19 21 22

CPU 0.002 0.007 0.041 0.210 0.934

Table 3: Numerical results of Example 1

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MHSS IT 44 76 130 246 468

CPU 0.040 0.242 1.191 8.788 118.432

GSOR IT 7 11 20 35 71

CPU 0.002 0.011 0.064 0.474 3.970

AGSOR IT 7 11 20 34 70

CPU 0.002 0.011 0.063 0.470 3.971

Table 4: Numerical results of Example 2

CPU times (see Tables 2, 3 and 5). In Fig. 3, we have compared the smallest
eigenvalue of S = W−1T for different values of m and c for Example 4. As can
be seen, the AGSOR method outperforms GSOR, especially when the value of c
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µ Method Grid

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

µ = 0.5 MHSS IT 51 85 150 279 529

CPU 0.039 0.171 1.190 9.600 95.093

GSOR IT 37 35 33 31 30

CPU 0.007 0.015 0.066 0.321 1.19

AGSOR IT 33 31 30 30 30

CPU 0.005 0.013 0.064 0.308 1.20

µ = 1 MHSS IT 56 94 168 306 555

CPU 0.041 0.184 1.339 10.265 99.887

GSOR IT 46 43 41 38 37

CPU 0.008 0.027 0.086 0.386 1.569

AGSOR IT 32 31 31 31 31

CPU 0.006 0.018 0.066 0.304 1.293

µ = 2 MHSS IT 56 95 169 303 552

CPU 0.041 0.199 1.371 10.323 87.970

GSOR IT 64 60 57 53 51

CPU 0.012 0.034 0.112 0.494 2.120

AGSOR IT 28 27 28 28 28

CPU 0.005 0.015 0.060 0.259 1.290

Table 5: Numerical results of Example 3

c Method Grid

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

c = 1 MHSS IT 30 30 30 30 34

CPU 0.016 0.051 0.218 0.844 4.476

GSOR IT 97 94 93 92 91

CPU 0.013 0.039 0.179 0.914 4.298

AGSOR IT 29 62 88 92 91

CPU 0.005 0.028 0.169 0.916 4.278

c = 0.1 MHSS IT 31 31 31 31 31

CPU 0.017 0.052 0.222 0.926 4.066

GSOR IT 86 86 86 86 86

CPU 0.012 0.037 0.164 0.872 4.105

AGSOR IT 9 16 35 67 76

CPU 0.002 0.008 0.073 0.689 3.681

c = 0.01 MHSS IT 31 31 31 31 31

CPU 0.017 0.052 0.220 0.952 4.410

GSOR IT 87 87 87 86 86

CPU 0.012 0.037 0.180 0.880 4.144

AGSOR IT 5 7 11 21 49

CPU 0.002 0.005 0.028 0.262 2.462

Table 6: Numerical results of Example 4 when σ1 = 1000 and σ2 = 10000

decreases (see Table 6). The cause of such performance is predictable by considering
relation (30) and Fig. 3. However, this performance becomes weaker as m increases.

In the first three examples, the AGSOR method behaves much better than the
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MHSS method in terms of both the number of iterations and CPU times. In Exam-
ple 4, as seen from 6, for some values of m the number of iterations of the AGSOR
method is greater than that of the MHSS method. Nevertheless, the cost per itera-
tion of the AGSOR method is lower and leads to faster convergence in terms of the
CPU time.

4. Conclusion

By considering a new splitting of the coefficient matrix, we have presented a vari-
ant of the generalized SOR iterative method called the accelerated GSOR method
to solve the equivalent real formulation of complex linear system (3), where W
is symmetric positive definite and T is symmetric. Convergence properties of the
method has also been investigated. Some numerical examples have been presented
to show the effectiveness of the method. Our numerical examples show that our
method is significantly superior to the GSOR method when the smallest eigenvalue
of S = W−1T is not very small and relation (30) confirms this.
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