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1. Introduction

The theory of dynamic equation on time scales (or measure chains) was initi-
ated by Stefan Hilger in his PhD thesis in 1988 [13] (supervised by Bernd Aulbach)
as a means of unifying the structure for the study of differential equations in the
continuous case and the study of finite difference equations in the discrete case. In
recent years, it has gained a considerable amount of interest and attracted the at-
tention of many researchers. It is still a new area, and the research in this area is
rapidly growing. The study of time scales [6] has led to several important applica-
tions, e.g., in the study of insect population models, heat transfer, neural networks,
phytoremediation of metals, wound healing and epidemic models.

Multi-point boundary value problems (BVPs) for ordinary differential or differ-
ence equation arise in different areas of applied mathematics and physics such as
the deflection of a curved beam having a constant or varying cross section, three
layers beam, electromagnetic waves or gravity driven flow and so on. For example,
the vibrations of a guy wire of a uniform cross-section and composed of N parts of
different densities can be set up as a multi-point BVP [27] and many problems in
the theory of elastic stability can also be handled as multi-point problems [31]. The
study of multi-point BVPs for second order differential equations was introduced by
II’in and Moiseev [22, 23]. The few papers that motivated this work are as follows
Agarwal et al. [3], Anderson [4, 5], Benchohra et al. [7], Chyan [8], Huang [20],
Kameswararao et al. [24] and Prasad et al. [30] on time scales.
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In this paper, we consider the system of nonlinear boundary value problems on
time scales

u∆∆ + λp(t)f(u(t), v(t)) = 0, t ∈ [t1, tm],

v∆∆ + µq(t)g(u(t), v(t)) = 0, t ∈ [t1, tm],
(1)

satisfying the multi-point boundary conditions

u(t1) = 0, αu(σ(tm)) + βu∆(σ(tm)) =
m−1∑
k=2

u∆(tk),

v(t1) = 0, αv(σ(tm)) + βv∆(σ(tm)) =
m−1∑
l=2

v∆(tl),

(2)

where T is the time scales with t1, σ
2(tm) ∈ T, 0 ≤ t1 < t2 < t3 < .... < tm−1 <

σ(tm), α > 0, β > m− 2 are real numbers and m ≥ 3.
We assume the following conditions hold throughout the paper:

(A1) The functions f, g : R+ → R+
are continuous,

(A2) The functions p, q : [t1, σ(tm)] → R+
are continuous and p, q do not vanish

identically on any closed subinterval of [t1, σ(tm)],

(A3) α > 0, β > m− 2 and α > β
t2−t1

.

The rest of the paper is organized as follows. In Section 2, we construct the
Green’s function for the homogeneous problem corresponding to (1)-(2) and estimate
bounds for the Green’s function. In Section 3, we consider the conditions of the
nonexistence of a positive solution. Finally, in Section 4, we give an example to
illustrate our result.

2. Green’s function and bounds

In this section, we construct the Green’s function for the homogeneous problem
corresponding to (1)-(2) and estimate bounds for the Green’s function.

Let G(t, s) be the Green’s function of a homogeneous boundary value problem

−y∆∆(t) = 0, t ∈ [t1, tm] (3)

y(t1) = 0, αy(σ(tm)) + βy∆(σ(tm)) =
m−1∑
k=2

y∆(tk), m ≥ 3. (4)

Lemma 1. Let d = α(σ(tm)− t1)+β−m+2 ̸= 0. Then the Green’s function G(t, s)
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for the homogeneous boundary value problem (3)-(4) is given by

G(t, s) =



G1(t,s)
t∈[t1,t2]

=



G11(t, s), t1 ≤ σ(s) ≤ t ≤ t2 < ... < σ(tm),
G12(t, s), t1 ≤ t ≤ s ≤ t2 < t3 < ... < σ(tm),
G13(t, s), t1 < t ≤ t2 ≤ s ≤ t3 < ... < σ(tm),
.
.
.
G1m−1(t, s), t1 < t ≤ ... ≤ s ≤ tm−1 < σ(tm),
G1m(t, s), t1 < t ≤ ... ≤ tm−1 ≤ s ≤ σ(tm),

G2(t,s)
t∈[t2,t3]

=



G21(t, s), t1 ≤ σ(s) ≤ t2 ≤ t < ... < σ(tm),
G22(t, s), t1 < t2 ≤ σ(s) ≤ t ≤ t3 < ... < σ(tm),
G23(t, s), t1 < t2 ≤ t ≤ s ≤ t3 < ... < σ(tm),
.
.
.
G2m−1(t, s), t1 < t2 < t ≤ ... ≤ s ≤ tm−1 < σ(tm),
G2m(t, s), t1 < t2 < t ≤ ... ≤ tm−1 ≤ s ≤ σ(tm),

.

.

.

Gm−1(t,s)
t∈[tm−1,σ(tm)] =



Gm−11(t, s), t1 ≤ σ(s) ≤ ... ≤ t < σ(tm),
Gm−12(t, s), t1 < t2 ≤ σ(s) ≤ ... ≤ t < σ(tm),
Gm−13(t, s), t1 < t2 < t3 ≤ ... ≤ t < σ(tm),
.
.
.
Gm−1m−1

(t, s), t1 < ... ≤ σ(s) ≤ t ≤ σ(tm),
Gm−1m(t, s), t1 < ... < tm−1 ≤ t ≤ s ≤ σ(tm),

(5)
where

Gij (t, s) =
1

d

[
(α(σ(tm)− t) + β −m+ j + 1)(σ(s)− t1)

+ (j − 1)(t− σ(s))
]
, 1 ≤ j ≤ i,

Gij+1(t, s) =
1

d
(t− t1)

[
α(σ(tm)− σ(s)) + β −m+ j + 1

]
,

i ≤ j ≤ m− 1, for all i = 1, 2, ...,m− 1.

Proof. It is easy to see that, if h(t) ∈ C([t1, σ(tm)],R+
), then the following bound-

ary value problem

−y∆∆(t) = h(t), t ∈ [t1, σ(tm)],

y(t1) = 0, and αy(σ(tm)) + βy∆(σ(tm)) =
m−1∑
k=2

y∆(tk), m ≥ 3,
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has a unique solution

y(t) =
1

d
(t− t1)

[∫ σ(tm)

t1

(α(σ(tm)− σ(s)) + β)h(s)∆s−
m−1∑
k=2

∫ tk

t1

h(s)∆s

]

−
∫ t

t1

(t− σ(s))h(s)∆s.

Rearranging the terms, it can be written as

y(t) =
1

d
(t− t1)

[∫ σ(tm)

t1

(α(σ(tm)− σ(s)) + β)h(s)∆s

−
m−2∑
j=1

(m− j − 1)

∫ tj+1

tj

h(s)∆s

]
+

∫ t

t1

(σ(s)− t)h(s)∆s.

Case (i) Let tj ≤ s ≤ σ(s) ≤ tj+1 for j = 1, 2, ...,m−2 and σ(s) ≤ t. Then we have

G(t, s) =
1

d
(t− t1)

[
α(σ(tm)− σ(s)) + β − (m− j − 1)

]
+ σ(s)− t

=
1

d

[
(α(σ(tm)− t) + β −m+ j + 1)(σ(s)− t1) + (j − 1)(t− σ(s))

]
.

Case (ii) Let tj ≤ s ≤ σ(s) ≤ tj+1 for j = 1, 2, ...,m− 2 and t ≤ s. Then we have

G(t, s) =
1

d
(t− t1)

[
α(σ(tm)− σ(s)) + β −m+ j + 1

]
.

Case (iii) Let tm−1 ≤ s ≤ σ(s) ≤ σ(tm) and σ(s) ≤ t. Then we have

G(t, s) =
1

d
(t− t1)

[
α(σ(tm)− σ(s)) + β

]
+ σ(s)− t

=
1

d

[
(α(σ(tm)− t) + β)(σ(s)− t1) + (m− 2)(t− σ(s))

]
.

Case (iv) Let tm−1 ≤ s ≤ σ(s) ≤ σ(tm) and t ≤ s. Then we have

G(t, s) =
1

d
(t− t1)

[
α(σ(tm)− σ(s)) + β

]
.

Lemma 2. Assume that condition (A3) is satisfied. Then the Green’s function
G(t, s) of (3)-(4) is positive for all (t, s) ∈ (t1, σ(tm))× (t1, tm),

Proof. By simple algebraic calculations, we can easily establish the positivity of the
Green’s function.

Theorem 1. Assume that condition (A3) is satisfied. Then the Green’s function
G(t, s) in (5) satisfies the following inequality:

g(t)G(σ(s), s) ≤ G(t, s) ≤ G(σ(s), s) for all (t, s) ∈ [t1, σ(tm)]× [t1, tm], (6)
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where

g(t) = min

{
σ(tm)− t

σ(tm)− t1
,

t− t1
σ(tm)− t1

}
.

Proof. The Green’s function G(t, s) is given in (5). In each case, we prove the
inequality as in (6).
Case (i) Let s ∈ [t1, tm] and σ(s) ≤ t. Then

G(t, s)

G(σ(s), s)
=

(α(σ(tm)− t) + β −m+ j + 1)(σ(s)− t1) + (j − 1)(t− σ(s))

(α(σ(tm)− σ(s)) + β −m+ j + 1)(σ(s)− t1)

≤ (α(σ(tm)− t) + β −m+ j + 1) + α(t− σ(s))

(α(σ(tm)− σ(s)) + β −m+ j + 1)
= 1

and also

G(t, s)

G(σ(s), s)
=

(α(σ(tm)− t) + β −m+ j + 1)(σ(s)− t1) + (j − 1)(t− σ(s))

(α(σ(tm)− σ(s)) + β −m+ j + 1)(σ(s)− t1)

≥ σ(tm)− t

σ(tm)− t1
.

Case (ii) Let s ∈ [t1, tm] and t ≤ s. Then

G(t, s)

G(σ(s), s)
=

t− t1
σ(s)− t1

≤ 1

and also
G(t, s)

G(σ(s), s)
=

t− t1
σ(s)− t1

≥ t− t1
σ(tm)− t1

.

From the above cases, we have

g(t)G(σ(s), s) ≤ G(t, s) ≤ G(σ(s), s) for all (t, s) ∈ [t1, σ(tm)]× [t1, tm],

where

g(t) = min

{
σ(tm)− t

σ(tm)− t1
,

t− t1
σ(tm)− t1

}
.

Lemma 3. Assume that condition (A3) is satisfied and s ∈ [t1, tm]. Then the Green’s
function G(t, s) in (5) satisfies

min
t∈[tm−1,σ(tm)]

G(t, s) ≥ γG(σ(s), s),

where

γ =
β −m+ 2

α(σ(tm)− t1) + β −m+ 2
< 1.
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Proof. The Green’s function G(t, s) is given in (5). Then, by Theorem 1, we obtain

min
t∈[tm−1,σ(tm)]

G(t, s) ≥ γG(σ(s), s),

where

γ =
β −m+ 2

α(σ(tm)− t1) + β −m+ 2
< 1.

3. Main results

In this section, we give some sufficient conditions for the nonexistence of a positive
solution to the BVP (1)-(2).

We introduce the following extreme limits

fs
0 = lim

u+v→0+
sup

f(u, v)

u+ v
, gs0 = lim

u+v→0+
sup

g(u, v)

u+ v
,

f i
0 = lim

u+v→0+
inf

f(u, v)

u+ v
, gi0 = lim

u+v→0+
inf

g(u, v)

u+ v
,

fs
∞ = lim

u+v→∞
sup

f(u, v)

u+ v
, gs∞ = lim

u+v→∞
sup

g(u, v)

u+ v
,

f i
∞ = lim

u+v→∞
inf

f(u, v)

u+ v
, gi∞ = lim

u+v→∞
inf

g(u, v)

u+ v
.

By using the Green’s function G(t, s) from Section 2, our problem (1)-(2) can be
written equivalently as the following nonlinear system of integral equations

u(t) = λ
∫ σ(tm)

t1
G(t, s)p(s)f(u(s), v(s))∆s, t1 ≤ t ≤ σ(tm),

v(t) = µ
∫ σ(tm)

t1
G(t, s)q(s)g(u(s), v(s))∆s, t1 ≤ t ≤ σ(tm).

We consider the Banach space X = C[t1, σ(tm)] with supremum norm ∥ · ∥, and
the Banach space Y = X ×X with the norm ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥ . We define
the cone κ ⊂ Y by

κ =
{
(u, v) ∈ Y : u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ [t1, σ(tm)] and

min
t∈ [tm−1,σ(tm)]

(u(t) + v(t)) ≥ γ ∥ (u, v) ∥
}
.

For λ, µ > 0, we define the operators Qλ, Qµ : Y → X as

Qλ(u, v)(t) = λ

∫ σ(tm)

t1

G(t, s)p(s)f(u(s), v(s))∆s, t1 ≤ t ≤ σ(tm),

Qµ(u, v)(t) = µ

∫ σ(tm)

t1

G(t, s)q(s)g(u(s), v(s))∆s, t1 ≤ t ≤ σ(tm),
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and an operator Q : Y → Y as

Q(u, v) =
(
Qλ(u, v), Qµ(u, v)

)
, (u, v) ∈ Y.

It is clear that the existence of a positive solution to the system (1)-(2) is equivalent
to the existence of fixed points of the operator Q.

Lemma 4. Q : κ → κ is completely continuous.

Proof. By using standard arguments, we can easily show that, under assumptions
(A1) − (A3), the operator Q is completely continuous and we need only to prove
Q(κ) ⊂ κ.

In fact, for any (t, s) ∈ [tm−1, σ(tm)]× [t1, tm], from Lemma 3 we have

min
t∈[tm−1,σ(tm)]

[
Qλ(u, v)(t) +Qµ(u, v)(t)

]
= min

t∈[tm−1,σ(tm)]

[
λ

∫ σ(tm)

t1

G(t, s)p(s)f(u(s), v(s))∆s

+ µ

∫ σ(tm)

t1

G(t, s)q(s)g(u(s), v(s))∆s
]

≥λγ

∫ σ(tm)

t1

G(σ(s), s)p(s)f(u(s), v(s))∆s

+ µγ

∫ σ(tm)

t1

G(σ(s), s)q(s)g(u(s), v(s))∆s

=γ ∥ Qλ(u, v) ∥ +γ ∥ Qµ(u, v) ∥= γ ∥ Q(u, v) ∥;

hence,

min
t∈[tm−1,σ(tm)]

[
Qλ(u, v)(t) +Qµ(u, v)(t)

]
≥ γ ∥ Q(u, v) ∥ .

Therefore, Q(κ) ⊂ κ. Standard arguments involving the Arzela-Ascoli theorem show
that Q is a completely continuous operator.

Theorem 2. Assume that (A1)− (A3) hold. If fs
0 , f

s
∞, gs0, g

s
∞ < ∞, then there exist

positive constants λ0, µ0 such that for every λ ∈ (0, λ0) and µ ∈ (0, µ0) the boundary
value problem (1)-(2) has no positive solution.

Proof. Since fs
0 , f

s
∞ < ∞, we deduce that there exist M

′

1,M
′′

1 , r1, r
′

1 > 0, r1 < r
′

1

such that
f(u, v) ≤ M

′

1(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r1],

f(u, v) ≤ M
′′

1 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

1,∞).

We consider

M1 = max
{
M

′

1,M
′′

1 , max
r1≤u+v≤r

′
1

f(u, v)

u+ v

}
> 0.

Then we obtain
f(u, v) ≤ M1(u+ v), ∀ u, v ≥ 0.
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Since gs0, g
s
∞ < ∞, we deduce that there exist M

′

2,M
′′

2 , r2, r
′

2 > 0, r2 < r
′

2 such that

g(u, v) ≤ M
′

2(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r2],

g(u, v) ≤ M
′′

2 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

2,∞).

We consider

M2 = max
{
M

′

2,M
′′

2 , max
r2≤u+v≤r

′
2

g(u, v)

u+ v

}
> 0.

Then we obtain
g(u, v) ≤ M2(u+ v), ∀ u, v ≥ 0.

We define λ0 = 1
2M1B

and µ0 = 1
2M2D

, where

B =

∫ σ(tm)

t1

G(σ(s), s)p(s)∆s and D =

∫ σ(tm)

t1

G(σ(s), s)q(s)∆s.

We shall show that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the problem (1)-(2) has no
positive solution.

Let λ ∈ (0, λ0) and µ ∈ (0, µ0). We suppose that (1)-(2) has a positive solution
(u(t), v(t)), t ∈ [t1, σ(tm)]. Then we have

u(t) = Qλ(u, v)(t) = λ

∫ σ(tm)

t1

G(t, s)p(s)f(u(s), v(s))∆s

≤ λ

∫ σ(tm)

t1

G(σ(s), s)p(s)f(u(s), v(s))∆s

≤ λ

∫ σ(tm)

t1

G(σ(s), s)p(s)M1(u(s) + v(s))∆s

≤ λM1

∫ σ(tm)

t1

G(σ(s), s)p(s)(∥ u ∥ + ∥ v ∥)∆s

= λM1B ∥ (u, v) ∥, ∀ t ∈ [t1, σ(tm)].

Therefore, we conclude

∥ u ∥≤ λM1B ∥ (u, v) ∥< λ0M1B ∥ (u, v) ∥= 1

2
∥ (u, v) ∥ .

In a similar manner,

v(t) = Qµ(u, v)(t) = µ

∫ σ(tm)

t1

G(t, s)q(s)g(u(s), v(s))∆s

≤ µ

∫ σ(tm)

t1

G(σ(s), s)q(s)g(u(s), v(s))∆s

≤ µ

∫ σ(tm)

t1

G(σ(s), s)q(s)M2(u(s) + v(s))∆s

≤ µM2

∫ σ(tm)

t1

G(σ(s), s)q(s)(∥ u ∥ + ∥ v ∥)∆s

= µM2D ∥ (u, v) ∥, ∀ t ∈ [t1, σ(tm)].
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Therefore, we conclude

∥ v ∥≤ µM2D ∥ (u, v) ∥< µ0M2D ∥ (u, v) ∥= 1

2
∥ (u, v) ∥ .

Hence, ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥< 1
2 ∥ (u, v) ∥ +1

2 ∥ (u, v) ∥=∥ (u, v) ∥, which is a
contradiction. So, the boundary value problem (1)-(2) has no positive solution.

Theorem 3. Assume that (A1)− (A3) hold.

(i) If f i
0, f

i
∞ > 0, then there exists a positive constant λ̃0 such that for every λ > λ̃0

and µ > 0, the boundary value problem (1)-(2) has no positive solution.

(ii) If gi0, g
i
∞ > 0, then there exists a positive constant µ̃0 such that for every µ > µ̃0

and λ > 0, the boundary value problem (1)-(2) has no positive solution.

(iii) If f i
0, f

i
∞, gi0, g

i
∞ > 0, then there exist positive constants

˜̃
λ0 and ˜̃µ0 such that for

every λ >
˜̃
λ0 and µ > ˜̃µ0, the boundary value problem (1)-(2) has no positive

solution.

Proof. (i) Since f i
0, f

i
∞ > 0, we deduce that there exist m

′

1,m
′′

1 , r3, r
′

3 > 0, r3 < r
′

3

such that
f(u, v) ≥ m

′

1(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r3],

f(u, v) ≥ m
′′

1 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

3,∞).

We introduce

m1 = min
{
m

′

1,m
′′

1 , min
r3≤u+v≤r

′
3

f(u, v)

u+ v

}
> 0.

Then, we obtain

f(u, v) ≥ m1(u+ v), ∀ u, v ≥ 0.

We define λ̃0 = 1
γ2m1A

> 0, where A =
∫ σ(tm)

tm−1
G(σ(s), s)p(s)∆s. We shall show that

for every λ > λ̃0 and µ > 0 the problem (1)-(2) has no positive solution.
Let λ > λ̃0 and µ > 0.We suppose that (1)-(2) has a positive solution (u(t), v(t)), t ∈

[t1, σ(tm)]. Then we obtain

u(t) = Qλ(u, v)(t) = λ

∫ σ(tm)

t1

G(t, s)p(s)f(u(s), v(s))∆s

≥ λγ

∫ σ(tm)

tm−1

G(σ(s), s)p(s)f(u(s), v(s))∆s

≥ λγ

∫ σ(tm)

tm−1

G(σ(s), s)p(s)m1(u(s) + v(s))∆s

≥ λγ2m1

∫ σ(tm)

tm−1

G(σ(s), s)p(s) ∥ (u, v) ∥ ∆s

= λγ2m1A ∥ (u, v) ∥ .
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Therefore, we deduce

∥ u ∥≥ u(t) ≥ λγ2m1A ∥ (u, v) ∥> λ̃0γ
2m1A ∥ (u, v) ∥=∥ (u, v) ∥ .

and so ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥≥∥ u ∥>∥ (u, v) ∥, which is a contradiction.
Therefore, the boundary value problem (1)-(2) has no positive solution.

(ii) Since gi0, g
i
∞ > 0, we deduce that there exist m

′

2,m
′′

2 , r4, r
′

4 > 0, r4 < r
′

4 such
that

g(u, v) ≥ m
′

2(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r4],

g(u, v) ≥ m
′′

2 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

4,∞).

We introduce

m2 = min
{
m

′

2,m
′′

2 , min
r4≤u+v≤r

′
4

g(u, v)

u+ v

}
> 0.

Then we obtain
g(u, v) ≥ m2(u+ v), ∀ u, v ≥ 0.

We define µ̃0 = 1
γ2m2C

> 0, where C =
∫ σ(tm)

tm−1
G(σ(s), s)q(s)∆s. We shall show that

for every µ > µ̃0 and λ > 0 the problem (1)-(2) has no positive solution.
Let µ > µ̃0 and λ > 0.We suppose that (1)-(2) has a positive solution (u(t), v(t)), t ∈

[t1, σ(tm)]. Then we obtain

v(t) = Qµ(u, v)(t) = µ

∫ σ(tm)

t1

G(t, s)q(s)g(u(s), v(s))∆s

≥ µγ

∫ σ(tm)

tm−1

G(σ(s), s)q(s)g(u(s), v(s))∆s

≥ µγ

∫ σ(tm)

tm−1

G(σ(s), s)q(s)m2(u(s) + v(s))∆s

≥ µγ2m2

∫ σ(tm)

tm−1

G(σ(s), s)q(s) ∥ (u, v) ∥ ∆s

= λγ2m2C ∥ (u, v) ∥ .

Therefore, we deduce

∥ v ∥≥ v(t) ≥ µγ2m2C ∥ (u, v) ∥> µ̃0γ
2m2C ∥ (u, v) ∥=∥ (u, v) ∥ .

and so ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥≥∥ v ∥>∥ (u, v) ∥, which is a contradiction.
Therefore, the boundary value problem (1)-(2) has no positive solution.

(iii) Because f i
0, f

i
∞, gi0, g

i
∞ > 0, we deduce as above that there exist m1,m2 > 0

such that
f(u, v) ≥ m1(u+ v), g(u, v) ≥ m2(u+ v), ∀ u, v ≥ 0.

We define
˜̃
λ0 =

1

2γ2m1A

(
=

λ̃0

2

)
and ˜̃µ0 =

1

2γ2m2C

(
=

µ̃0

2

)
.
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Then for every λ >
˜̃
λ0 and µ > ˜̃µ0, the problem (1)-(2) has no positive solution.

Indeed, let λ >
˜̃
λ0 and µ > ˜̃µ0. We suppose that (1)-(2) has a positive solution

(u(t), v(t)), t ∈ [t1, σ(tm)]. Then in a similar manner as above, we deduce

∥ u ∥≥ λγ2m1A ∥ (u, v) ∥, ∥ v ∥≥ µγ2m2C ∥ (u, v) ∥,

and so
∥ (u, v) ∥ =∥ u ∥ + ∥ v ∥

≥ λγ2m1A ∥ (u, v) ∥ +µγ2m2C ∥ (u, v) ∥

>
˜̃
λ0γ

2m1A ∥ (u, v) ∥ + ˜̃µ0γ
2m2C ∥ (u, v) ∥

=
1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥=∥ (u, v) ∥

which is a contradiction. Therefore, the boundary value problem (1)-(2) has no
positive solution.

3.1. Example

In this section, we give an example to illustrate our result. Let

T =

{(1
2

)n

: n ∈ N0

}
∪ [1, 2],

where N0 denotes the set of all non-negative integers. For the sake of simplicity,
we take m = 4, t1 = 1

2 , t2 = 1, t3 = 3
2 , t4 = 2, α = 8, β = 3, p(t) = q(t) and

f(t) = g(t).
Consider the system of dynamic equation on time scales,

u∆∆ + λ
1

10
t
k(u+ v) + e2(u+v)

c+ e(u+v) + e2(u+v)
= 0, t ∈

[1
2
, 2
]
,

v∆∆ + µ
1

10
t
k(u+ v) + e2(u+v)

c+ e(u+v) + e2(u+v)
= 0, t ∈

[1
2
, 2
] (7)

with the boundary conditions

u
(1
2

)
= 0, 8u(σ(2)) + 3u∆(σ(2)) = u∆(1) + u∆

(3
2

)
,

v
(1
2

)
= 0, 8v(σ(2)) + 3v∆(σ(2)) = v∆(1) + v∆

(3
2

)
.

(8)

Here p(t) = q(t) = 1
10 t, k = 100, c = 500,

f(u, v) =
k(u+ v) + e2(u+v)

c+ e(u+v) + e2(u+v)
, g(u, v) =

k(u+ v) + e2(u+v)

c+ e(u+v) + e2(u+v)
.

By simple calculation, we found that γ = 1
7 , f0 = g0 = k

c+2 = 100
502 , f∞ = g∞ =

k = 100, , M1 = 140, M2 = 262, B = 0.0421, D = 0.0224, 1
2M1B

= 0.0848,

and 1
2M2D

= 0.0851. By Theorem 2, we deduce that problem (7)-(8) has no positive
solutions for 0 < λ < 0.0848 and 0 < µ < 0.0851.
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