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Introduction

Poly(hydroxyalkanoates) (PHAs) are biode-
gradable intracellular polyesters synthesized by var-
ious eubacterial genera and some archaea1–5; further, 
the biosynthesis of PHAs in genetically modified 
yeasts6 and in modified plants was also reported7. 
PHAs occur in living systems as monopolymers 
(homopolymers) or copolymers (heteropolymers) 
with a variety of attributed pivotal functions in di-

verse ecosystems8, primarily serving as intracellular 
energy and carbon reservoirs9. They can be pro-
duced from renewable resources of the first genera-
tion (grains, sugar beet, sugarcane, starch, edible 
oils) and the second generation (molasses, lignocel-
lulosic wastes, whey, biodiesel and biodiesel waste 
-i.e., glycerol and waste lipids)4,10,11. In the near fu-
ture, it is expected that they will substitute some 
conventional plastics stemming from petrochemical 
sources, such as poly(ethylene) (PE) and poly(pro-
pylene) (PP)5. According to Gaden12, the rate pat-
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The potential of poly(hydroxyalkanoates) (PHAs) to replace conventional plastic 
materials justifies the increasing attention they have drawn both at lab-scale and in indus-
trial biotechnology.

The improvement of large-scale productivity and biochemical/genetic properties of 
producing strains requires mathematical modeling and process/strain optimization proce-
dures. Current models dealing with structurally diversified PHAs, both structured and 
unstructured, can be divided into formal kinetic, low-structured, dynamic, metabolic 
(high-structured), cybernetic, neural networks and hybrid models; these attempts are 
summarized in this review. Characteristic properties of specific groups of models are 
stressed in light of their benefit to the better understanding of PHA biosynthesis, and 
their applicability for enhanced productivity. Unfortunately, there is no single type of 
mathematical model that expresses exactly all the characteristics of producing strains 
and/or features of industrial-scale plants; in addition, the different requirements for mod-
elling of PHA production by pure cultures or mixed microbial consortia have to be ad-
dressed. Therefore, it is crucial to sophisticatedly adapt and fine-tune the modelling ap-
proach accordingly to actual processes, as the case arises. For “standard microbial 
cultivations and everyday practices”, formal kinetic models (for simple cases) and 
“low-structured” models will be appropriate and of great benefit. They are relatively 
simple and of low computational demand.

To overcome the specific weaknesses of different established model types, some 
authors use hybrid models. Here, satisfying compromises can be achieved by combining 
mechanistic, cybernetic, and neural and computational fluid dynamics (CFD) models. 
Therefore, this hybrid modelling approach appears to constitute the most promising solu-
tion to generate a holistic picture of the entire PHA production process, encompassing all 
the benefits of the original modelling strategies. Complex growth media require a higher 
degree of model structuring. For scientific purposes and advanced development of indus-
trial equipment in the future, real systems will be modelled by highly organized hybrid 
models.

All solutions related to modelling PHA production are discussed in this review.
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terns of product formation enclose three basic types 
in various bioprocesses:

(1) growth-associated products arising directly 
from the energy metabolism of carbohydrates;

(2) indirect products of carbohydrate metabo-
lism;

(3) products apparently unrelated to carbohy-
drate oxidation.

The aforementioned was studied for excretable 
products produced from carbohydrates. This was 
subsequently confirmed as valid for other types of 
C-sources (substrates related to the energy produc-
tion and cell components synthesis). Although 
PHAs are intracellular (insoluble in cytosol) storage 
polymers, Gaden’s types of kinetic behaviours can, 
under certain assumptions (circumstances) be ap-
plied to these compounds.

Regarding the kinetics of microbial growth and 
PHA production separately, three different types of 
microbial producers of PHAs can be distinguished, 
as follows:

a) Strains displaying strict separation between 
the biomass growth phase and the PHA production 
phase normally provoked by N or P limitation (pro-
totype organisms: Pseudomonas sp. 2F, Methylo-
monas extorquens)13.

b) Strains that accumulate certain quantities of 
PHA already under balanced nutritional conditions; 
also here, in the non-growth phase (usually pro-
voked by N or P limitation), amplified PHA accu-
mulation is observed (prototype organism: Cupria-
vidus necator).

c) Strains displaying high PHA formation rates 
during growth phase without limitation of an essen-
tial growth component2,14–16 (prototype organisms: 
Azohydromonas lata DSM 1122, or Pseudomonas 
putida GPo1 ATTC 29347).

Based on the different kinetic properties of the 
production strains, different cultivation techniques 
have been applied in the past for their cultivation: 
batch, fed batch, repeated batch, repeated fed batch, 
or one-, two-, and multi-stage continuous process-
es17; both pure and mixed microbial cultures 
(MMCs) where used. For example, microorganisms 
belonging to the mentioned groups (a) and (b) are 
well suited for two-stage continuous cultivation that 
requires extensive biomass growth in the first stage, 
followed by non-growth-associated PHA synthesis 
in the second stage18–24. As a novel approach, Atlić 
et al.25 have recently tested a five-stage continuous 
process in a bioreactor cascade, specially designed 
to achieve different process conditions (concentra-
tions of substrates and co-substrates, temperature, 
pH-value, dissolved oxygen [DO]) in each step of 
the cascade. From the point of view of such appli-
cation, this cascade set-up was designed to act as a 

tool for the designing of novel biopolymers, e.g., 
blocky structured polymers with alternating “soft” 
and “hard” segments, or polymers displaying con-
trolled molecular mass and polydispersity of molec-
ular mass distribution.

Regarding the type of polymers, substrates, 
strains (wild types or genetically modified organ-
isms), cultivation procedures and techniques, as 
well as the downstream processing systems for 
product recovery, numerous experiments were per-
formed in the past in order to optimize PHA pro-
duction both quantitatively and qualitatively.

Mathematical models are useful tools for opti-
mizing and controlling microbial product formation 
and microbial metabolism, encompassing the mod-
eling of cultivation techniques, the design of single 
cell metabolic models, or modelling of whole cell 
populations26–29. The segregated nature of biological 
systems and the complexity of cell reactions are 
cumbersome for mathematical treatment of process-
es in the bioengineering field. In addition, linking 
experimental data with mathematical modeling can 
reveal new aspects of microbial physiology, provid-
ing reasonable interpretations of results from exper-
imental work. This way, the improvement of knowl-
edge as well as the designing of new, more 
call-oriented experiments, can be achieved30,31.

Model theory classifies models into several 
classes and its antipodes: verbal/non-verbal, descrip
tive/explanatory, black-/grey-/white-box, unstruc-
tured/structured, non-mathematical /mathematical, 
deterministic/stochastic, discrete/continuous, and 
distributed (non-segregated)/segregated. The de-
rived combinations of the mentioned model classes 
can be further grouped into logistic, kinetic, dynam-
ic and cybernetic models. Usually, a specific model 
developed from a biological situation observed in 
living systems can belong to more than one class. 
For example, dynamic models can at the same time 
be structured, mathematical, continuous, and segre-
gated. Kinetic models include two basic subcatego-
ries: They can be unstructured or structured. In lit-
erature, unstructured kinetic models are known as 
formal kinetic (or mechanistic) models; structured 
kinetic models can be divided into subclasses: mor-
phological, compartmental, metabolic, and chemi-
cally related. Due to the plurality of microbial pro-
ducers, the vast number of cultivation strategies, 
substrates, and products, and the existing broad 
spectrum of available models, a great number of in-
terconnections (combinations) is conceivable. 
Therefore, very different model types have been ap-
plied to describe miscellaneous biotechnological 
situations regarding cultivation techniques, mass 
transfer, microbial growth kinetics, and metabolic 
network reaction kinetics. In the light of the afore-
mentioned, it is practically impossible to discover a 
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conceivable model type in the literature that has not 
yet been applied to describe PHA biosynthesis. 
Such highly extensive, comprehensive, and sophis-
ticated material is difficult to systematize in order to 
achieve the desired and urgently needed overview 
for the relevant scientific community, and reach 
deeper insight into the essence of matter. Therefore, 
the aim of this work was to provide the respected 
readers with a comprehensive and critical synopsis 
of mathematical models that were applied for the 
microbial synthesis of PHA, together with the relat-
ed cultivation strategies. Thereby, special attention 
is dedicated to the usefulness of applied models for 
improvement of processes, product yields, down-
stream processing, strains, and knowledge of the 
metabolic network.

Modeling approaches

Formal kinetic (unstructured 
and low-structured) models

In the early phase of mathematical modeling of 
PHA biosynthesis, mainly formal kinetic unstruc-
tured, so-called “black box type”, models were in-
troduced32–36. These early works focused on the ki-
netic relationships between substrate (S), product 
(P) and biomass (X); hence, at the beginning, the 
optimization of the bioprocess itself was not the 
main purpose of modelling. At that time, microor-
ganisms were cultivated by well-established stan-
dard microbiological techniques: Microbial broth 
usually contained the C-source as the growth-limit-
ing substrate, whereas all other constituents were 
present in excess. For this type of cultivation, the 
standard differential mass balance equations for 
biomass (X), limiting substrate (S) and product (P; 
here: PHA) were established by applying the Monod 
equation for linking the substrate concentration to 
the specific growth rate. An application of appropri-
ate yield and/or stoichiometric coefficients (biomass 
to substrate and product to substrate) was the com-
mon tool in these works. Such approaches were es-
pecially applicable for the growth-associated „(c)“-
type of PHA producers as described above. The 
reader can find an overview of these early works in 
the literature37–38. Soon after, these early mathemati-
cal models for PHA synthesis were corrected thanks 
to the works of Sonnleitner et al.32 and Heinzle and 
Lafferty34, who developed the “two main compart-
ments” strategy, which is applicable and still valid 
today. As the PHA mass fraction can account for the 
predominant part with mass fractions exceeding 0.9 
of the whole biomass (X), the latter was structured 
by the mentioned authors into two components:

(1)	The catalytically active fraction consisting 
of membrane- and cytosolic proteins (structural 

proteins and catalytic enzymes), glycolipids, phos-
pholipids, glycoproteins and nucleic acids (jointly 
known in literature as “residual biomass”, i.e., the 
biologically active part Xr).

(2)	The biopolymeric storage material (PHA) 
as the intracellular, catalytically inert fraction of 
biomass.

In addition, for some organisms it was observed 
that both the nitrogen (N) and phosphorus (P) sourc-
es act as limiting substrates, mainly triggering 
growth and product kinetics. So, N- and/or P-source 
limitation in the late phase of cultivation was postu-
lated as the inductive triggering factor that provokes 
(or enhances) PHA synthesis; this is especially valid 
for the abovementioned producer types “(a)” and 
“(b)”. By assuming that the rate of product forma-
tion is related both to the rate of growth and to the 
concentration of the biologically active part of bio-
mass (Xr), a reasonably good correlation was ob-
tained between experimental data and the model 
values. For this purpose, the Luedeking-Piret equa-
tion 39 was applied to describe product formation. 
Introducing growth-limiting substrates other than 
C-source (i.e., N- and/or P-sources) had certain ef-
fect on the mathematical expressions for specific 
growth and specific PHA production rate. In such 
cases, the specific growth rate of biomass (µ) was 
expressed using double-substrate Monod relations 
according to Megee et al.40. Regarding broth com-
position, this was extended to the multi-substrate 
Monod relation for more complicated mediums 
(containing complex substrates or mixture of differ-
ent C- or N-sources). In some cases, the logistic 
equation was applied for the mathematical descrip-
tion of cell growth41. Unfortunately, these improve-
ments were not the only changes needed in the ki-
netic modelling to achieve a valid model.

The introduction of new microbial species and 
strains constructed by genetic manipulation with 
specific kinetic performances in PHA biosynthesis, 
as well as the application of abundant inexpensive 
waste substrates (and by-products) in order to re-
duce production costs, required more advanced ap-
proaches in formal kinetic and low-structured mod-
elling. Substrate inhibition was the second strong 
grip that was introduced in kinetic equations in or-
der to adapt mathematical models to such biologi-
cal/technological situations. Several different sub-
strate inhibition terms reported by Hill42 (sigmoidal), 
Aiba et al.43 (exponential decreasing), as well as 
those reported by Yanno et al., Webb, Andrews and 
Noack (all reviewed by Moser44) were applied. Two 
general application fields of substrate inhibition 
terms could be identified among published models 
in several papers:

–– The substrate inhibition of growth by 
C-sources caused by the impact of organic com-
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pounds (i.e., glycerol), pH-value effect (i.e., organic 
acids), osmotic pressure effect (sugars), and kata-
bolic repression effect (typical in multi-substrate 
cultivations).

–– The triggering of PHA production in the late 
phase of cultivation by limitation on N- and/or 
P-sources; high concentrations of the mentioned 
sources acted as an inhibiting factor on the specific 
PHA production rate, whereas a balanced supply of 
N and P resulted in predominant biomass formation 
at the expense of PHA formation.

The third important model adaptation was the 
introduction of the specific carbon-substrate con-
sumption rate for generation of maintenance energy. 
For such purposes, the Guthke relation defined by 
simple Monod equation44 was usually applied. Thus, 
maintenance energy was related to the concentra-
tion of C-sources. Furthermore, in experiments un-
der aerobic conditions, it was recognized that the 
dissolved oxygen level (DO) influences the specific 
growth rate, but also acts on the intracellular 
NADH, NADPH and FADH2 pools that are essen-
tial for the reduction of PHA precursors (e.g., Ace-
toacetyl-CoA), thus also affecting the PHA produc-
tion rate. Hence, some authors45 accomplished 
further improvement of formal kinetic and 
low-structured models for PHA synthesis by intro-
ducing DO in their models.

Finally yet importantly, product inhibition 
terms were introduced in mathematical modelling 
of PHA biosynthesis. As PHA granules can account 
for a significant part of whole cell mass, they may 
occupy a large share of the intracellular volume. In 
addition, some strains were found to stop PHA bio-
synthesis when the average mass fraction of PHA 
exceeded a certain value. Bearing this in mind, 
there were possible steric hindrances in PHA bio-
synthesis; therefore, some authors35 implemented 
product inhibition terms in equations for the specif-
ic growth rate and/or in those for the specific PHA 
production rate. Usually used for such purposes 
were logistic equations, such as the equation ac-
cording to Aiba et al.43, and the Luong equation46,47.

Simultaneously with the progress in kinetic 
modeling, the application of mathematical models 
in reactor designs, process optimization, substrate 
feeding strategies, copolymers production, one/two 
stage continuous cultivations and mixed cultures 
had increased. The reader can find all the situations 
described above, along with appropriate comments 
attached, in the review paper presented by Patnaik48 
who divided the described models into three groups:

–– Mechanistic models with pure culture,
–– Mechanistic models with mixed cultures, and
–– Cybernetic models

After the year 2005 (the year when the men-
tioned paper was published), a number of more 
complex models was established. For example, 
Koller et al.49 published a formal kinetic model for 
batch and fed-batch processes of copolymer pro-
duction with Haloferax mediterranei, as well as a 
low-structured model for poly(3-hydroxybutyrate) 
(PHB) homopolymer synthesis from hydrolyzed 
whey by Pseudomonas hydrogenovora (today: Bur-
kholderia fungorum). In the first case, the following 
assumptions were applied:

i) Residual biomass (non-PHA biomass) is syn-
thesized from all three main carbon sources i.e., 
glucose, galactose, γ-butyrolactone and from yeast 
extract as an obligate complex nitrogen source (in-
dependent growth on each substrate according to 
Monod relation was introduced).

ii) Direct influence of one C-source on the con-
sumption rate of the two other C-sources does not 
exist (simultaneous independent consumption of 
C-sources). Note: this is valid for the special case 
described in this publication; in other cases, pre
ferences of the organism for one C-source that is 
consumed prior to other, less easily convertible 
C-sources have been observed.

iii) Both PHA-building blocks, 3-hydroxybu-
tyrate (3HB) and 3-hydroxyvalerate (3HV), were 
supposed to be synthesized from both glucose and 
galactose, 4-hydroxybutyrate (4HB) was foreseen 
to be synthesized only from γ –butyrolactone pre-
cursor.

iv) PHA synthesis is inhibited by increasing in-
tracellular mass fraction of PHA (known as steric 
disturbing effect). The equation according to Lu-
ong46,47 was applied for this purpose.

Except for a few basic metabolic routes, meta-
bolic pathways for the applied microorganism were 
not known in detail. This is especially valid for the 
galactose degradation pathway in archaea like the 
investigated organism H. mediterranei. Insufficient 
metabolic knowledge was the reason why authors 
had chosen formal kinetic modelling (instead of 
low-structured or high-structured metabolic flux 
models). In the second case (batch cultivation of 
Pseudomonas hydrogenovora), a low-structured 
metabolic mathematical model for fed-batch culti-
vation was established. In low-structured models, 
several metabolic reactions of particular metabolic 
pathways are lumped in one kinetically defined re-
action (usually with kinetic properties of the slow-
est reaction or those that are the most sensitive to 
the regulating factors). In such models for PHA 
synthesis, except native biomass (residual biomass 
Xr + PHA), metabolic pools of intracellular metab-
olites and biocatalyst pools were structured. Here, 
the production of PHB from glucose and galactose 
as C-sources using NH4

+ and casein hydrolyzate as 
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N-sources was studied. P. hydrogenovora (today: 
Burkholderia funghorum) is a typical strain having 
3HB synthesis provoked by nitrogen limitation of 
growth; the total uncoupling of growth phase and 
3HB synthesis phase (‘‘non-growth-associated PHA 
production’’) was evidenced. The following as-
sumptions were necessary to establish a useful 
low-structured mathematical model:

–– Ac-CoA (originated from the central meta-
bolic pathways – meaning from the metabolism of 
both sugars) is chosen as the ubiquitous precursor 
for PHB (because all sugar metabolizing (degrad-
ing) pathways of microbial metabolism i.e., Entner–
Doudoroff, pentose-phosphate, Leloir, DeLey–Dou-
doroff, and EMP pathway) lead to EMP substrates 
(i.e., to pyruvate consecutively decarboxylated to 
Ac-CoA!).

–– Ac-CoA constitutes the substrate for two 
competitive reactions, the thiolase reaction (first step 
in the PHB synthesis), and the citrate synthase reac-
tion (substrates for synthesis of cell substances).

–– The breakdown of the complex nitrogen 
source (deamination and degradation of casamino 
acids) leads to Ac-CoA. An independent Monod ki-
netic of Ac-CoA synthesis from both sugars was as-
sumed for the modelling strategy.

–– Negative feedback control mechanism of 
Ac-CoA synthesis was built-in as strategy for its 
own regulation (Luong type of inhibition pattern).

–– Ac-CoA was foreseen for consumption to-
ward biomass formation, energy supply (including 
maintenance energy), NADPH generation in TCA 
cycle, 3HB accumulation (thiolase substrate), a-ke-
toglutarate excretion, for the production of one 
chemically unknown (excreted) compound and for 
the PHB-polymerase catalytic unit synthesis.

–– Ac-CoA synthesis from sugars is inhibited 
(but not stopped) by complex nitrogen source (ap-
plication of the Jerusalimsky type of inhibitory in-
fluence).

–– A small quantity of biomass is assumed to be 
synthesized directly from the complex nitrogen 
source (casamino acids were used as a separate C/N 
source for protein synthesis).

–– PHB synthesis rate was assumed to be pro-
portional to the intracellular biocatalyst concentra-
tion (PHB-polymerase complex). Polymerase syn-
thesis rate from Ac-CoA and nitrogen sources 
(multiple Michaelis-Menten kinetics) with particu-
lar degradation rate (protein turnover) was assumed.

–– The PHB-polymerase complex synthesis was 
assumed to be inhibited by the presence of high lev-
els of the complex nitrogen source (Jerusalimsky 
type of kinetic equation); its activity was assumed 
to be started after the complex nitrogen source was 
almost completely depleted.

–– Inorganic nitrogen source consumption was 
foreseen to be inhibited by complex nitrogen source 
(no consumption of NH4

+ in the first part of the 
growth phase when casamino acids were provided 
in sufficient amounts).

–– The excreted metabolite a-ketoglutarate was 
assumed to be influenced by a negative feedback 
controller of its own synthesis. The same was ap-
plied for an additional unknown metabolite. NH4

+ 
and PHB polymerase were adopted as inhibitory 
agents of production of these two metabolites (Jeru-
salimsky type of equation).

The aforementioned approach is more ad-
vanced and more demanding if compared to the 
models published earlier, but it is relatively simple 
if compared to high-structured, metabolic, ge-
nome-scale models. This simplified approach in 
modelling appears to be a promising tool in the case 
of insufficiently known metabolic pathways and/or 
rate control mechanisms making the building of 
metabolic flux models impossible.

An additional example of new application of 
formal kinetic modeling for process optimization is 
the work published by Horvat et al.50. In this work, 
the partially growth-associated production of PHA 
under nitrogen-limited growth was chosen as the 
modelling strategy, thus the Luedeking-Piret’s mod-
el of partial growth-associated product synthesis 
was used as a working tool. Specific growth rate 
relations according to Megee et al.40 and the 
Mankad-Bungay relation51, adapted to a double sub-
strate (C and N source) limited growth, were tested. 
The first stage of an investigated bioreactor cascade 
was modelled according to the principle of a nutri-
tionally balanced, continuous biomass production 
system; the second as a two substrate controlled 
process, while the three subsequent reactors were 
adjusted to produce PHB under continuous C-source 
fed, but under strict nitrogen deficiency (limitation). 
The simulated results of production, obtained by 
applied mathematical models with computational 
optimization, indicate that PHB productivity of the 
whole system could be increased significantly if 
certain experimental conditions are provided re-
garding the overall dilution rate, C- and N-source 
feed concentration. Additionally, a supplemental 
feeding strategy for switching from batch to contin-
uous mode of cultivation was proposed to avoid the 
substrate inhibition.

Recently, Mozumder et al.52 have contributed a 
mechanistic model describing the production of 
PHB by, similar to Horvat et al.50, a pure culture of 
C. necator DSM 545, which was calibrated and val-
idated for the two different substrates, glucose and 
surplus glycerol, derived from biodiesel production. 
Respectively to glucose and glycerol, non-growth-as-
sociated PHB production was triggered by low ni-
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trogen source concentration. Besides non-growth-as-
sociated PHB production, some growth-associated 
PHB synthesis was observed, although inhibited in 
the presence of nitrogen source. Biomass growth, 
PHB and non-linear product inhibition of PHB were 
included in the model. The established models have 
taken into account four main processes: biomass 
growth on carbon substrate, biomass growth by uti-
lizing intracellular PHB, PHB production and main-
tenance energy. Three models were used for further 
model calibration and model selection: (A) rep-
resents biomass growth on substrate only; (B) takes 
into account biomass growth on intracellular PHB; 
(C) was based on model (B), but cell density limita-
tion for biomass growth on both substrates and on 
intracellular PHB was additionally included. The 
mass balances of different components in the biore-
actor comprised two crucial parts: macroscopic 
transport and biochemical conversion. All models 
containing well-known formal-kinetic terms for 
specific growth rate, specific product synthesis rate, 
product-, substrate-, and biomass inhibition were 
subjected to sensitivity analysis, model calibration 
and model validation. The developed mathematical 
model was successful in the simulation of PHB pro-
duction, and in the prediction of dynamic behaviors 
related to heterotrophic biomass growth for the two-
phase pure culture system52.

In the field of formal-kinetic, mechanistic and 
low-structured modelling, in addition to the afore-
mentioned, very different models can be found in 
the scientific database. They consider different 
strains, substrates, mutants, kinetics, and cultivation 
properties. Raje and Srivastava53 have investigated 
continuous production of PHAs by Alcaligenes eu-
trophus (today: C. necator) B4383 in a nitrogen-lim-
ited culture. To define the specific growth rate µ, 
these authors have used a linear combination of 
Monod kinetic term and sigmoidal Hill term, addi-
tionally corrected with the inhibition term accord-
ing to Luong containing N/C ratio and with PHA 
inhibition. The rate of PHA formation was arranged 
to be growth- and non-growth-associated. A few 
years later, Pathwardan and Srivastava54 applied the 
identical model for the strain Ralstonia eutropha 
(today: C. necator) NNRL 14690.

Yu et al.55 and Wang et al.56 have worked with 
C. necator ATTC 17699 in studies of PHAs biosyn-
thesis from volatile fatty acids (VFAs), particularly 
acetic, propionic and butyric acid, respectively. 
They applied Monod kinetics for growth rate, which 
was corrected by the cell activity impacted by the 
toxic activity of acids. Leudeking-Piret term was in-
tegrated into the model in order to describe PHA 
production rate. The biological system was tested 
on all three acids separately and on mixtures of ac-
ids.

Shahhosseini et al.57 were active in the investi-
gation of fed-batch cultivation of Ralstonia eutro-
pha (today: C. necator) ATTC 17697 on fructose 
and NH4

+. These authors have introduced the Monod 
term for the definition of specific growth rate with 
the ratio of nitrogen to fructose (N/C) as the func-
tion argument. The equation for specific growth rate 
µ was corrected by N/C ratio incorporated in the 
Luong inhibition term. As mentioned previously, Yu 
et al.55 also incorporated the dependence of produc-
tion rate on biomass concentration and growth rate.

R. eutropha (today: C. necator) NRRL B14690 
strain was the subject of batch/fed-batch/continuous 
cultivation and mathematical modeling by Khanna 
and Srivastava58–61. For the microbial growth rate, 
these authors applied the double substrate (fructose 
and nitrogen) Hill (sigmoidal) kinetic expression 
corrected by the double substrate inhibition term ac-
cording to Luong. The PHA production term was 
modeled in accordance with Leudeking-Pirets equa-
tion, and consumption of both limiting substrates 
(fructose and nitrogen/or phosphorus) was assumed 
for cell maintenance. These authors did not consider 
product inhibition.

Monod growth kinetics corrected with an inhi-
bition term was combined by Patnaik62 with the dis-
persion model in modelling of growth of R. eutro-
pha (today: C. necator) ACM 1296 on fructose in a 
2-liter bioreactor. Similar to Shahhosseini et al.57, 
Patnaik62 applied the N/C ratio as an argument in 
the specific growth rate equation, thus the depen-
dence on two substrates was included. Imperfect 
mixing of bioreactor content was represented by a 
Pecklet number with 20 as the optimal value.

Shang et al.63 conducted high cell density fed-
batch culturing to produce PHB by Ralstonia eutro-
pha (today: C. necator) NCIMB 11599 under phos-
phate limitation. High glucose concentration was 
found to be inhibiting for PHB synthesis. An un-
structured model was proposed for predicting the 
cell growth, PHB synthesis, glucose, and P-source 
consumption with the phosphate concentration as 
the key factor triggering both accumulation of PHB 
and cell growth. Specific growth rate was expressed 
in accordance to double substrate limitation (C and 
P) Monod kinetics, and specific PHB production 
rate was characterized by combining Andrews ki-
netic term (employed glucose inhibition at high 
concentration), Jerusalimsky term (triggering by 
phosphate limitation) and logistic term (product in-
hibition caused by steric hindering).

Faccin et al.64 tested four different models in-
tended to be useful for PHAs synthesis by Bacillus 
megaterium on sucrose as the main carbon source. 
These authors used the models proposed by Mul-
chandani36, Raje and Srivastava53, as well as Khan-
na and Srivastava58–61 as the starting point to con-
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struct the basic formulation of four models. They 
modified these models by:

(i) changing the expression for the specific 
growth rate (μ);

(ii) introducing a correction factor (Φ) for 
products formation rates; and

(iii) introducing a term for cell death in the ex-
pression for residual biomass.

The first model was a modified Monod double 
substrate kinetic with sucrose and nitrogen as limit-
ing substrates, without substrate inhibition and 
without Φ correction factor, the correction of prod-
uct synthesis rate. In the second type, a Monod 
model equation for the specific growth rate with ni-
trogen as the only limiting substrate (sucrose limita-
tion was not included), but with Φ as correction 
factor. The next two models were based on Monod 
double substrate kinetics with sucrose and nitrogen 
as limiting substrates; these models additionally 
take into account the influence of the pH-value (one 
according to Ghose and Tyagi 65 and the other ac-
cording to Åkerberg et al.66). Both were equipped 
with Φ factor. When included, the correction Φ fac-
tor was a hyperbolic time dependent variable based 
on the experimental observation that the production 
of PHB by B. megaterium displays a two- stage 
process regarding the carbon flux towards residual 
biomass or polymer formation.

Gahlawat and Srivastava67 studied batch culti-
vation of Azohydromonas australica DSM 1124 for 
growth-associated PHB production. Based on ex-
perimentally achieved production kinetics, the 
mathematical model was established. Thereafter, by 
using continuous fermentation modeling principles, 
the model was extended to fed-batch production in 
order to identify nutrient feeding regimes to im-
prove PHB accumulation. The authors used double 
substrate Monod kinetics for sucrose and nitrogen, 
and corrected by inhibition terms for substrates (Lu-
ong type for nitrogen and Jerusalimsky type for su-
crose). Direct growth-associated PHA production 
dependence was incorporated.

Recently, Špoljarić et al.68,69 have published 
two modeling articles dealing with PHA production 
by C. necator DSM 545. Glycerol (GLY) and fatty 
acid methylesters (FAME) from biodiesel produc-
tion were the main substrates in these works. Math-
ematical models were established in order to opti-
mize these processes. For glycerol, five different 
expressions for double substrate (C, N sources) de-
pendent growth rate with appropriate substrate inhi-
bition terms were tested: double substrate Monod 
relation was combined with different substrate inhi-
bition terms known as Yanno et al., Webb, Andrews 
and Noack, Aiba et al. relations as reviewed by 
Moser44. As proposed by Guthke, the specific car-

bon-substrate consumption rate for the maintenance 
of cells was defined according to simple Monod re-
lation. Leudeking-Piret relation was applied for the 
production rate; the depletion of nitrogen source 
was the trigger for PHA synthesis.

In the second work, two low-structured mathe-
matical models for fed-batch production of PHB and 
poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) 
on renewable substrates (GLY and FAME) were es-
tablished. GLY combined with glucose and FAMEs 
enriched with valeric acid (VA) were the main 
C-substrates. The models were used for develop-
ment/optimization of feeding strategies of carbon 
and nitrogen sources regarding PHA content and 
polymer/copolymer composition.

The following modeling principles were ap-
plied when glucose and GLY were used as C-sourc-
es:

(a) Residual biomass (Xr1) is synthesized only 
from glucose when nitrogen source is available; the 
growth on GLY in the presence of glucose is ap-
proached as practically negligible, evidencing that 
the consumption of GLY severely affected the avail-
ability of glucose

(b) The model reflected also the experimental 
lag-phase.

(c) PHB is synthesized from two carbon sourc-
es, glucose and GLY. In the exponential phase of 
growth, it was assumed that PHB synthesis from 
glucose is growth-associated with an experimental-
ly determined time delay (biosynthesis after begin-
ning of the exponential growth phase). In the fed-
batch part of fermentation and in the stationary 
phase of growth, PHB synthesis from glucose 
switches to the non-growth-associated type, and ni-
trogen source depletion was assumed to be an acti-
vator of the non-growth-associated type of synthe-
sis. The synthesis of PHB from GLY was assumed 
to be non-growth-associated, to occur at maximal 
rate, but inhibited if glucose is present in the broth. 
This was reflected by introducing an inhibition 
term.

(d) Maintenance is generated by metabolism of 
glucose.

(e) Nitrogen source was added for pH correc-
tion; the quantity of consumed nitrogen source is 
assumed to be proportional to the growth rate in the 
exponential phase.

The following modeling principles were ap-
plied for PHBV production under N-limited condi-
tions when FAME and VA were used as carbon 
sources:

i) Total biomass is divided into two ‘‘compart-
ments’’: residual biomass (Xr2) and PHBV.

ii) Residual biomass (non-PHA part of bio-
mass) is synthesized only from biodiesel (FAME) 
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and NH4
+ (as C and N sources) because valeric acid 

was added only during the non-growth-phase. 
Growth was assumed to be limited by depletion of 
nitrogen source. At the same time, FAME and VA 
were assumed as sources for cell maintenance. Fur-
thermore, the experimental lag phase was incorpo-
rated.

iii) PHBV is divided into two ‘‘sub-compart-
ments’’: 3HB and 3HV.

iv) 3HB is synthesized from biodiesel particu-
larly during the growth phase (growth-associated 
3HB synthesis) and dominantly during the non-
growth phase (non-growth associated 3HB synthe-
sis).

v) 3HV is synthesized only from VA during the 
non-growth phase (non-growth associated 3HV 
synthesis). Conversion of FAME in 3HV was not 
detected during the growth phase.

vi) Part of the carbon sources (FAME and VA) 
are lost by synthesis of CO2 and other minor metab-
olites.

Some general comments to all the models de-
scribed above: the formal kinetic modelling of mi-
crobial growth was applied first as the simplest 
among the group of kinetic models. Because of 
their simplicity, such models are still widely used. 
When such mathematical systems are insufficient to 
represent the biological system, low-structured 
models are introduced that are still based on for-
mal  kinetic principles. It is a challenging task to 
strictly distinguish low-structured and high-struc-
tured models of microbial metabolism (here, the 
corresponding number of included reactions is not 
conventionally fixed). This partition line often de-
pends on the level of our knowledge about the ob-
jects/subjects of modelling. It is clear that ge-
nome-scale metabolic models tend to be white-box 
models; therefore, they certainly belong to the 
high-structured ones, as they tend to contain the 
true number of reactions as present in the natural 
system. In this review, in accordance with a 
non-written rule, we attempted to separate the mod-
els into categories, as follows:

I) No metabolic reactions, extracellular molec-
ular species (substrates, products) and biomass it-
self are interesting variables and therefore the ob-
ject of mathematical modeling → formal kinetic 
models;

II) Extracellular molecular species, biomass 
and a few intracellular metabolic reactions more 
or  less lumped, without genetic regulations → 
low-structured models;

III) Complete, interconnected, highly net-
worked metabolic pathways present, and/or genetic 
regulation of pathways present → high-structured 
models.

To provide the reader with a more complete 
picture of formal kinetic and low-structured kinetic 
models, an overview of such mathematical models 
is provided in Table 1.

Dynamic models in PHA biosynthesis 
by pure and mixed cultures

The growth of microbial biomass is strictly re-
lated to environmental conditions (e.g., substrate 
concentrations, temperature, pH-value, DO, etc.). 
These factors are not the only ones that act on the 
properties of a growing microbial population. Genet-
ic factors and individualism of each cell inside the 
whole population are additional variables that deter-
mine microbial processes. Unstructured formal kinet-
ic models do not take into account such „individual“ 
factors. They are usually of the steady-state type (re-
gardless of whether is it in stabile, exponential, nutri-
ent balanced, in equilibrium with nutrient supplying, 
or in stationary phase of growth). The traditional 
(early) approach for modeling of PHA-producing mi-
crobial cultures was based on the figure of an un-
structured, non-segregated biophase during exponen-
tial growth, substrates that are sufficient for most of 
the cultivation period and a gradientless environment, 
i.e., unrestrained growth, without the substrate(s) 
concentration as the limiting parameter(s). Unfortu-
nately, such models are unable to predict the dynam-
ic behavior of the microbial culture under the real 
range of conditions. In fact, they do not consider cell 
segregation and ignore the inhibitory effect of PHB 
on the dynamic behavior of the cell culture. Dynamic 
models account for time-dependent changes in the 
state of the system; they are typically represented by 
differential equations and, in the case of PHA biosyn-
thesis, they are usually structured. This model type is 
appropriate for describing different transient states 
(e.g., from lag-phase to exponential phase of growth, 
exponential to stationary phase of growth). Concern-
ing structuring, bioreactor compartments, biomass 
itself (producers/non-producers, young/old cells, 
plasmids harboring/non-harboring, PHA steric hin-
dered/no hindered, gene expressed /non-expressed, 
biologically active/non-active), metabolites (intracel-
lular/extracellular), and products (homopolymer/het-
eropolymer, intracellular/extracellular) can be found 
in literature as objects of structuring. The dynamic 
responses of genetically structured models were pub-
lished earlier30,31. Detailed kinetic information for ba-
sic cellular processes, e.g., enzymatic reactions, pro-
tein–DNA and protein–protein interactions, are the 
prerequisite to describing the dynamics. By combin-
ing the known stoichiometry of metabolic pathway 
reactions with kinetics, such dynamic models can be 
established. This approach is far from being an easy 
endeavour. For example, Rizzi et al.29 applied 22 ma-
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terial balances for metabolites and 23 enzyme rate 
equations to predict the intracellular and extracellular 
metabolite levels in transient phase caused by glu-
cose pulse in a continuous culture of S. cerevisiae. 
This model was successful only in a timescale of 120 
seconds, but enzyme synthesis/degradation of pivotal 
importance in larger timescales have not been includ-
ed. Regulating activities in the aforementioned work 
were included at the individual enzymatic level, not 
on the genetic level. Further improvements of dy-
namic and metabolic models have solved some of the 
aforementioned problems.

Regarding dynamic models for PHA synthesis, 
the basic type could perhaps be the one proposed by 
van Aalst-van Leeuwen et al.70, which deals with 
activated sludge microorganisms. It is well known 
that activated sludge organisms from the wastewa-
ter treatment plants respond to feast/famine regimes 
by the production of the storage polymers glycogen 
and PHA. PHA seems to be the more common when 
cells are exposed to excess carbon source. A pure 
culture of Paracoccus pantotrophus LMD 94.21 
was the object of the case study in this work, where 
the steady-state C-limited chemostat culture was 
switched to batch mode with a pulse of added ace-
tate as C-source. As long as the external substrate 
(acetic acid) was present, growth and accumulation 
of PHB took place. After depletion of the external 
substrate, intracellular stored PHB was used as 
growth substrate. The accumulation of PHB was 
found to be strongly dependent on the growth rate 
of the organism before the acetate pulse addition. 
Mass-balanced PHB was correlated to the differ-
ence in acetate uptake rate and the acetate quantity 
required for growth. Using the C-mole convention, 
a metabolically structured model that adequately 
describes the observed kinetics of PHB formation/
consumption, has been set up.

Katoh and coworkers71 published a work deal-
ing with the dynamics and modeling of the fermen-
tative production of PHB by a mixed culture of 
Lactobacillus delbrueckii and A. eutrophus (today: 
C. necator) in one fermenter (“one-pot-reaction”). 
Sugars were transformed by L. delbrueckii in lac-
tate, which was the substrate for PHB synthesis in 
A. eutrophus. Metabolic flux distributions were 
computed for two cultivation phases: the cell growth 
and PHB production periods. It was found that 
when NH4

+ was abundant, the NADPH generated 
through isocitrate dehydrogenase in TCA cycle was 
predominantly utilized for the a-ketogluta-
rate-to-glutamate reaction. On the contrary, when 
NH4

+ concentration decreased under a certain level 
or completely depleted, NADPH tended to be uti-
lized for the PHB production (acetoacetyl-CoA re-
ductase reaction). Several mixed culture experi-
ments, conducted to see the dynamics of the system, 

were fundamental for the development of mathe-
matical models able to describe the dynamic behav-
ior of mixed cultures. According to the authors, the 
model may be used for control strategy, process op-
timization, and process dynamic investigations.

Roussos and Kiparissides72 developed a bivari-
ate population balance model (PBM) to describe the 
dynamic evolution of a PHB-producing microbial 
batch culture. The population balance model was 
solved by three different numerical methods: con-
tinuous finite element method, discrete-continuous 
finite element method, and a discretized method. 
Different high-resolution finite difference schemes 
for the calculation of the cell flux term were ap-
plied. The applied numerical methods were evaluat-
ed respectively to the accuracy and computational 
requirements. For this purpose, the authors directly 
compared the ongoings at pivotal instants of time of 
the developed bivariate distribution to the respec-
tive quantities calculated that were obtained by a 
simple homogeneous model for the non-product in-
hibited case. Results obtained from the solution of 
the 2-D PBM were compared with those achieved 
by the 1-D PBM (considering the product inhibition 
reflected on the residual biomass growth rate). It 
was shown that a bivariate population balance mod-
eling approach is required to describe the dynamic 
behavior of the microbial culture when the intracel-
lular accumulated PHB inhibits the biomass growth 
rate. The 1-D PBM was not accurate enough to de-
scribe the dynamics of the microbial system. PBMs 
may consider that the total biophase is distributed 
into a number of individualities (different cells). 
Due to the high degree of detailing, PBMs represent 
very accurate tools to describe the complicated phe-
nomena associated with cell growth, nutrient up-
take, and product formation. They allow the model-
ing of cell division with partitioning of cell space 
and intracellular PHB into new cells. Furthermore, 
instead of average cell properties predicted by for-
mal kinetic models, PBMs can even predict the dis-
tribution of a characteristic property over the whole 
cell population. Before the Roussos / Kiparissides 
work was published, among PBMs only the article 
by Mantzaris et al.73 was dedicated to the PHB ac-
cumulation and its inhibition effect on the behavior 
and dynamic of microbial cell cultures.

As the content of PHA in microbial cells is an 
important factor for the development of activated 
sludge properties (e.g., sludge volume index, sedi-
mentation velocity), PHA storage kinetics and simul-
taneous growth of cells were investigated for aerobic 
heterotrophic biomass under unsteady feast condi-
tions74. An additional reason for this effort was the 
idea that activated sludge could act as a cheap source 
for PHA production. Insel and coworkers74 investi-
gated the short-term variations in growth and storage 
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kinetics of activated sludge under disturbed feeding 
conditions. To achieve this target, a multi-component 
biodegradation model was used, supported by a 
multi-response modeling procedure and identifiabil-
ity analysis. Under the condition of ample availabili-
ty of external substrate, the heterotrophic biomass 
was able to increase the direct growth activity with 
simultaneous reduction of substrate storage capabili-
ty. Reduced sludge age (SRT) from 10 to 2 days had 
increased the maximum specific growth rate from 
3.9 to 7.0 per day without affecting the maximum 
storage rate. The alteration of sludge age provoked 
the elevation of value of half-saturation constant for 
growth from 5 to 25 mg COD L–1. This was inter-
preted as an indication of a change in species distri-
bution among the activated sludge consortium. The 
increase in primary growth metabolism in parallel 
with the reduction of PHA storage rate was validated 
by modelling two different sludge ages, both at avail-
ability of external substrate. The alteration of feeding 
conditions was found to differently influence storage 
and growth kinetics. Modifications in model struc-
ture were highlighted in order to reduce the tedious 
task of frequent recalibration efforts caused in varia-
tions of process conditions.

Except wastewater treatment-related PHA syn-
thesis, its production from defined substrates was 
also the target of dynamic modeling. Wu et al.75 in-
vestigated an optimal adaptive control mechanism 
of fed-batch processes of R. eutropha (today: C. 
necator). A dynamic model of the fed-batch PHB 
production by R. eutropha was prepared. Because 
of the need to detect “to uncertainties very sensitive 
kinetic parameters”, the authors developed a robust 
and feasible feeding strategy. A specific optimal 
adaptive control strategy was established by solving 
the constrained discrete-time optimization algo-
rithm using the genetic algorithm solver from Mat-
lab software package. Based on simplified kinetics, 
the proposed control methods were implemented to 
the feed flow manipulation with stepwise changes. 

A Lyapunov stability analysis, encompassing state 
estimation errors, and investigation of parametric 
uncertainties was performed. In addition, by using 
simulations, a satisfactory output tracking perfor-
mance was achieved by a two-input control config-
uration.

In this work, a set of simplifying hypotheses 
was applied:

–– Nitrogen is the limiting substrate affecting 
growth kinetics.

–– All nutrients are in excess except C-source 
(acetate) and N-source (NH4

+).
–– The broth is perfectly mixed without diffu-

sion and with negligible flock formation.
–– DO is not a limiting factor.
–– The present organisms have an average met-

abolic behavior that does not change significantly in 
time.

–– A simple two-compartment cell model, con-
sisting of PHB and active biomass more or less 
mixed cultures.

–– The rate of volume loss due to evaporation is 
neglected.

The main results were as follows:
–– The optimal adaptive control action is ob-

tained by solving the constrained discrete-time opti-
mization algorithm using the genetic algorithm 
solver from Matlab.

–– The proposed control scheme is based on the 
optimization of kinetic parameter estimation.

–– The stability analysis of the closed-loop sys-
tem with respect to specific constraints and speci-
fied learning rates was provided.

–– It was demonstrated that a satisfactory out-
put tracking performance is achieved by using a 
two-input control configuration.

An overview of dynamic oriented modeling ap-
proaches that consider PHA production is given in 
Table 2.

Ta b l e  2 	–	Properties of dynamic models dealing with PHA biosynthesis

Reference
Number of: Mass-balanced 

extracellular 
substrates

Mass-balanced 
productsmass balance equations intracellular 

reactions
intracellular 
metabolites

Van Aalst – Van Leeuwen et al.70 7 7 6 Acetate, NH4
+ CO2, X, PHA

Katoh et al.71 30 23 25 Lactate, NH4
+ CO2, X, PHA

Roussos and Kiparissides72 Bivariate population 
balance model S PHA, X

Insel et al.74 According to ASM1 
and ASM3 models Acetate, diss. O2 X, PHA

Wu et al.75 5 – – Acetate, NH4
+ X, PHA

LEGEND: (ASM) activated sludge model, (X) residual biomass
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Metabolic models in PHA biosynthesis

General

The main characteristic of metabolic mathe-
matical models is that they should reflect the real 
biochemical metabolic situation of cells. From the 
complexity point of view, metabolic models refer to 
a very broad range: from simple cases, where the 
metabolic pathway with at least two or three enzy-
matic reactions is investigated, to more or less com-
plicated metabolic networks that represents the 
main catabolic and anabolic routes of the cellular 
metabolism. Within very complex networks that 
consist of hundreds or more reactions grouped in 
networked, interconnected pathways, the metabolic 
control and regulatory mechanisms specific for liv-
ing cells must be included in the model. These reg-
ulatory mechanisms are usually not completely elu-
cidated; therefore, the establishment of fully 
mechanistic models that can describe the whole cel-
lular metabolism and/or the cell life cycle is not 
possible at the present state of science. That is why 
all metabolic models contain some simplifications 
(e.g., lumped reactions, simplified regulating pat-
terns, simplified kinetics, etc.). There is an intention 
in science to lift such “grey box” model types to the 
level of “white box” models. Development of ad-
vanced analytical techniques dealing with the mea-
surement of intracellular metabolite concentrations, 
intracellular/membrane-bound enzyme activities, 
regulating factors and signaling molecules lead to 
the formulation of higher structured and more im-
proved models that have more possibilities to “re-
flect” real cell physiology. The improvement of 
speed and processing power of computers as well as 
the development of metabolic software has opened 
the possibility to solve the very complex non-linear 
systems of differential equations, necessary for suc-
cessful application of such models. Metabolic math-
ematical models that describe the cellular metabo-
lism of PHA producers play a central role in 
elucidation of metabolism and substrate transport 
properties of existing strains; further, they are un-
avoidable in the development of new strains by 
methods of metabolic engineering. Among metabol-
ic models, kinetic models (usually based on both 
enzyme and/or microbial kinetics as well as on the 
stoichiometry of metabolic reactions), stoichiomet-
ric models (based on the time invariant characteris-
tics of metabolic networks), and cybernetic models 
(based on optimal nature of microbial processes and 
on the metabolic regulation by the cybernetic frame-
work which has to be discriminated from the pure 
kinetic ongoings)76 can be found in the scientific 
and professional literature. Furthermore, hybrid 
metabolic models that combine at least two of the 
aforementioned types of model properties are in 

use. Kinetic metabolic models function on the prin-
ciples of biochemical reaction kinetics. If informa-
tion on all the enzymatic reactions (of the whole 
metabolic framework) for an organism would be 
available, it would be possible to build and apply a 
detailed model in order to interpret experimental re-
sults, to predict the dynamic changes in the cells, 
and to predict the changes in the cultivation broth. 
Such models should reflect the shifts in the cultiva-
tion conditions and the eventual genetic changes. 
Usually, the lack of information on general regula-
tory mechanisms and the predominant availability 
of in vitro kinetic parameters instead of the desired 
availability of in vivo data are the limiting factors 
for such models. That is why established models are 
often limited to a certain biological situation, e.g., 
steady-state metabolic fluxes during exponential 
phase of growth, PHA degradation under C-source 
limitation, or resting cell activities.

Stoichiometric models are characterized by ap-
plication of strict stoichiometric relationship con-
sidering extracellular substrates, products, and in-
tracellular metabolites. To each molecular (or 
macroscopic) species (intracellular or extracellular), 
at least one “pool” is related as an object of mass 
balancing. Metabolic flux analysis (MFA) is widely 
performed to achieve the quantification of the intra-
cellular fluxes of central metabolism. In MFA, mass 
balances are used to calculate the fluxes through the 
different branches of the metabolic network. The 
establishment of a stoichiometric matrix is the first 
step that follows after the metabolic fluxes; these 
fluxes can either be measured, or calculated. In the 
second step, the stoichiometric matrix and vectors 
of reaction rates must be multiplied to define the 
mass balance equations. After that, an algebraic ma-
nipulation of the stoichiometric matrix should be 
performed. According to different authors (depend-
ing on the objective of the analysis), the further 
work can be done in five different ways:

–– One way is to impose some constraints (e.g., 
by measuring some fluxes) so that the determined 
system can be solved by principles of linear algebra 
(flux balancing!).

–– If the labelling state of some metabolites is 
measured, further constraints may be imposed. This 
leads to the combination of flux balancing with la-
belling balancing, so the system has to be solved 
numerically.

–– In the case when a system cannot be con-
strained to a “determined” type, the linear optimiza-
tion is a suitable tool for finding the maximum or 
minimum of a chosen objective function (OF).

–– Applying the convex analysis in order to de-
termine elementary flux modes (EFMs)77,78.
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–– By calculating the biochemically meaningful 
base vectors for the null space of the stoichiometric 
matrix.

By applying the procedures described above, it 
is possible to obtain a snapshot of the metabolic sit-
uation under a particular condition. The main draw-
back of stoichiometric models is their limited pre-
dictive power usually caused by the lack of 
regulatory information. Some basic principles of 
metabolic modeling can be found in the article pub-
lished by Giersch79.

The cybernetic models as a third main group 
among metabolic models will be treated in a sepa-
rate chapter.

Metabolic models related to PHA biosynthesis 
in activated sludge cultures

Kinetic and stoichiometric models were exten-
sively used in works dealing with MMCs from the 
wastewater treatment field. Yu and Wang80 devel-
oped a metabolic cell model with five fluxes in or-
der to depict the detoxification mechanism, mass 
transfer and acetyl-CoA formation related to acetic 
acid. The model encompassed the formation of 
PHB, active biomass, and CO2 as three final meta-
bolic products. Fluxes were measured under differ-
ent conditions. Based on achieved results, it was 
concluded that, under the present high cell mass 
concentration, elevated extracellular acetate con-
centrations occur by increased metabolic fluxes re-
sulting from acetate detoxification. It was conclud-
ed that the magnitude of detoxification fluxes is 
highly dependent on the intracellular acetate pool.

Veldhuizen and associate authors published an 
article about modelling of biological phosphorus 
and nitrogen removal that is closely connected to 
PHA synthesis and degradation in a full-scale acti-
vated sludge plant81. An activated sludge model82 
(ASM2) foreseen for the removal of COD, N and P 
was the basis for model development. The entire 
model was implemented by means of a SIMBA 3.0 
computer software package (based on MATLAB/
SIMULINK). Performance and validity of the mod-
el was successfully tested with the help of experi-
mental data elaborated both under aerobic and an-
oxic conditions in the full-scale wastewater 
treatment plant.

Yagci and associates83,84 published a new meta-
bolic model based on an activated sludge model 
(ASM2d)85 dealing with PHA synthesis and degra-
dation in a sludge microbial community under an-
aerobic conditions and acetate uptake performed by 
phosphate- and glycogen-accumulating organisms 
(PAOs and GAOs, respectively). The variable over-
all stoichiometry, based on the assumption that 
PAOs use the glyoxylate pathway to produce the 

reducing agents for PHA synthesis, was basically 
applied. A strong agreement was observed between 
experimental values and model predictions for PHA 
production, PHA composition, glycogen utilization, 
and P release.

The mathematical modeling of similar process-
es was also performed by Dias and coworkers86–88. 
Primarily, these authors have developed a simple 
two-compartmental metabolic model for PHA pro-
duction by mixed microbial culture86. After that, 
they decomposed the metabolic network into sepa-
rate EFMs to develop a dynamic/hybrid/semi-para-
metric model87 that was able to simulate the appli-
cation of propionic acid as C-source. Thereafter, the 
metabolic model for copolymer production from 
mixtures of acetic and propionic acid was estab-
lished88. Material and energy balances were estab-
lished on the basis of previously elucidated meta-
bolic pathways. Equations were derived for the 
theoretical yields (related to cell growth and PHA 
production) as functions of the oxidative phosphor-
ylation efficiency (i.e., P/O ratio). Two different 
feast and famine culture-enrichment strategies were 
studied: either with acetate or propionate. Metabolic 
flux analysis (MFA) and flux balance analysis 
(FBA) were performed to achieve the optimal feed-
ing conditions, culture enrichment, and high quality 
PHA.

Johnson and associated scientists89 used the ba-
sic model published before70 for the model-based 
data evaluation of PHB-producing MMCs in aero-
bic, sequencing batch and fed-batch reactors. A 
two-step process was reported: (I) for biomass, and 
(II) for PHB enrichment. These authors implement-
ed the following procedure:

(1) Measurement of a sufficiently large set of 
parameters including off-gas concentrations.

(2) Corrections of measurements for effects of 
sampling and addition of liquids (pH control, sub-
strate control).

(3) Calculation of oxygen uptake and CO2 evo-
lution rates.

(4) Balancing of the measured conversions.
(5) Evaluation of measurements by means of a 

metabolic model.
The feast phase was characterized by: (i) ace-

tate uptake affected by the PHB inhibition, growth 
of biomass, maintenance, (ii) PHB production af-
fected by PHB inhibition, CO2 evolution, oxygen 
and NH4

+ uptakes. Additionally, the famine phase 
was characterized by PHB degradation, mainte-
nance, biomass growth, CO2 evolution, and oxygen 
and NH4

+ uptakes. Conversion of acetate, NH4
+ and 

the storage polymer (PHB) were described very ac-
curately by the developed model.
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Jiang and coworkers90 investigated the produc-
tion of PHBV copolyester from acetate and propio-
nate by P. acidivorans-dominated mixed microbial 
cultures. The used model was based on the work 
performed earlier by Dias et al.88 with the following 
improvements that were taken into account:

1. Metabolic reactions active during the famine 
phase were included into the model structure;

2. Biomass synthesis from acetyl-CoA and pro-
pionyl-CoA were separately specified;

3. Maintenance energy (in the form of ATP re-
quirement) was used as an estimated parameter in 
the kinetics, whereas the P/O ratio was fixed;

4. The TCA cycle was assumed inactive when 
propionate was the sole carbon source.

The regulation for simultaneous acetate and 
propionate uptake was included in the model as a 
function of the acetate-propionate substrate mixture 
composition.

Simultaneous growth and storage kinetics vari-
ation (for the aerobic heterotrophic biomass under 
unsteady feast conditions) was also an object of 
modeling74 that belongs to the topics of MMCs and 
PHA production. Tajparast and Frigon91 studied the 
storage metabolism during feast/famine cycles of 
activated sludge treatment systems together with 
the foaming, bulking, and process optimization for 
the production of value added by-products (e.g., 
bio-plastics). PHB, glycogen, and triacylglycerols 
(TAGs) were examined during feast–famine cycles 
using two genome-scale metabolic models: (i) for 
Rhodococcus jostii RHA1 (iMT1174) and (ii) for 
Escherichia coli K-12 (iAF1260), both foreseen to 
simulate growth on glucose, acetate, and succinate. 
The target was to develop the proper objective func-
tion (OF) suitable for the model prediction of the 
storages compounds production under feast/famine 
cycle conditions. Using the flux balance analysis, 
combinations of three OFs were tested. The main 
OF was established to maximize growth rate, but 
for the time interval between feast and famine 
phases, two additional sub-OFs were introduced: 
minimization of biochemical fluxes, and minimiza-
tion of metabolic adjustments (MoMA). When glu-
cose and acetate were set as sole carbon sources, all 
(sub-)OFs predicted identical substrate–storage „as-
sociations“ (i.e., glucose–glycogen and acetate–
PHB). These predictions were in good agreement 
with experimental observations. Interestingly, in 
case of succinate as substrate, the predictions de-
pended on the network structure: the metabolic 
model for E. coli predicted glycogen accumulation 
and the R. jostii model predicted PHB accumula-
tion. The authors concluded that new modeling in-
sights between metabolic predictions and popula-

tion ecology would be necessary to predict 
metabolism properly.

Tamis et al.92 provided an overview on current-
ly described models, and developed concepts for a 
generalized, or, as they said, “more predictive” 
model. The focus was devoted to the feast/famine 
parts of the process. Model improvements were in-
troduced for modeling of mixed substrates uptake, 
microbial growth in the feast phase, switching be-
tween feast and famine phase, PHA degradation, 
and modeling of the accumulation phase. The au-
thors postulated that the scientific community would 
welcomed the establishment of an improved gener-
alized model.

The mathematical modeling of PHA production 
by microbial cultures from activated sludge is tight-
ly connected to modeling of the entire wastewater 
treatment processe. A short overview of published 
models dealing with the wastewater treatment is 
given in a review work published by Gernaey et 
al.93. Metabolic models related to PHA biosynthesis 
in activated sludge cultures and their characteristic 
properties are summarized in Table 3.

Metabolic models targeted 
for industrial PHA biosynthesis

One of the early published metabolic models 
dealing with PHAs was that by Daae and cowork-
ers94 targeted for PHA biosynthesis in plants. The 
mathematical simulation was programmed in 
SCAMP using the metabolic pathway simulation 
package established by Sauro95. This mathematical 
model was based on kinetics of the key enzymes 
responsible for PHA synthesis: ketothiolase, aceto-
acetyl-CoA reductase, and PHB synthase. For this 
purpose, the complex enzyme kinetic was used: a 
reversible ping-pong BiBi mechanism, reversible 
sequential ordered BiBi mechanism, and Michae-
lis-Menten equation for nonreversible system cor-
rected by incorporated competitive inhibition term. 
Steady-state production rates and steady-state con-
centrations were achieved by dynamic simulation. 
Flux control coefficients and concentration control 
coefficients were calculated at the steady states ac-
cording to rules of metabolic control analysis 
(MCA)96,97. This paper outlined the theoretical pros-
pects of producing the copolymer PHBV in plant 
plastids. The model indicated that both the 
3HV/3HB ratio and the copolymer production rate 
can vary considerably between dark and light con-
ditions. Furthermore, it was illustrated that natural 
variations in substrates and cofactor levels have a 
significant influence on the production rate and co-
polymer ratio.

Dealing with biological copolyesters, Xu and 
coworkers98 used a mathematical model for regulat-
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ing monomer composition of microbially synthe-
sized medium-chain-length copolymers (mcl-PHA). 
The authors simplified the biochemical reactions 
and the metabolic network. To provide a general 
model, both reversible and irreversible reactions 
were considered. The pseudo-steady-state assump-
tion was taken into account; consequently, the con-
centration of each intermediate did not vary in time. 
In addition, it was also assumed that the type II 
PHA synthase, encoded on the PhaC1 and PhaC2 
operons, from P. oleovorans and P. aeruginosa did 
not differ too much in its substrate specificity. Be-
cause both prefer 3-hydroxyoctanoyl-CoA and 
3-hydroxydecanoyl-CoA as substrates, the simplifi-
cation to „one synthase kinetic“ in the model was 
very reasonable. The model was segregated into the 
following parts:

–– single carbon source,
–– effect of chain length of the related carbon 

source,
–– quantitative selectivity of the enzymatic sys-

tem,
–– effect of the enzyme levels on the copolymer 

composition,
–– mixed carbon source, and
–– genetically engineered pathways.

The authors reveal that if a sole carbon source 
had been used, the monomer compositions would 
have depended on the enzyme selectivity, while the 

cultivation time, concentration of the carbon source 
and enzyme levels would have limited effects, pro-
vided that the enzyme levels did not shift in time 
after PHA synthesis had started. Quantitative selec-
tivity of the enzyme system towards different inter-
mediates was determined, so the highest selectivity 
towards the intermediates with 8–10 carbon atoms 
was evidenced. Furthermore, the model was able to 
predict the effect of mixed substrates and genetic 
engineering on copolymer composition. In addition, 
the model was further applied for the simulation 
of  short-chain-length PHA (scl-PHA) copolymer 
synthesis, as well as the copolymers of 3HB and 
mcl-hydroxyalkanoates. The conclusion was that 
manipulation of two simultaneous and independent 
metabolic pathways responsible for the precursor 
formation could effectively regulate PHA copoly-
mer compositions.

Copolymer synthesis was also the aim of the 
work performed by Iadevaia and Mantzaris99. These 
authors investigated a genetic network driven con-
trol of PHBV copolymer composition. The strategy 
was based on the modification of an artificial genet-
ic toggle that controls the ratio of monomer concen-
trations. For this purpose, the authors applied a 
mathematical model consisting of three coupled 
parts for describing the dynamics of three modules:

–– Artificial genetic network, which should 
control the expression levels of the enzymes cata-
lyzing the formation of the monomers,

Ta b l e  3 	–	Characteristic properties of metabolic models dealing with PHA production by mixed microbial cultures.

Reference
Number of: Mass-balanced 

extracellular 
substrates

Mass-balanced 
productsmass balance 

equations
intracellular 

reactions
intracellular 
metabolites

Yu and Wang80 10 5 5 Acetate CO2, X, H+

Veldhuizen et al.81 Based on ASM1 and ASM2, 22 stoichiometric and 42 kinetic 
parameters model

COD, NH4
+, NO3

–, 
PO4

2– X, PHB, Glycogen

Yagci et al.83,84 13 (GAO) 
17 (PAO)

6 (GAO) 
7 (PAO)

12 (GAO) 
15 (PAO) Acetate PHB, PHV

Dias et al.86 13 7 9 Acetate, NH4
+ CO2, X, PHB

Dias et al.87 15 8 9 Propionate, NH4
+ CO2, X, PHB, PHV

Dias et al.88 14 8 10 Acetic acid, 
Propionate, NH4

+
CO2, PHB, PHV, 

PH2MV

Johnson et al.89 12 6 7 Acetate, NH4
+ CO2, X, PHB

Jiang et al.90 9 9 9 Acetic acid, 
Propionate, NH4

+ CO2, X, PHB, PHV

Tajparast and Frigon91 Genome scale metabolic models for Rhodococcus jostii RHA1 
(iMT1174) and Escherichia coli K-12 (i AF1260)

Glucose, Acetate, 
Succinate

PHB, Glycogen, 
Triacylglycerols

Tamis et al.92 13 7 10 Volatile fatty acids CO2, X, PHA

LEGEND: (GAO) Glycogen accumulating microorganisms, (PAO) Phosphate accumulating microorganisms, 
(PH2MV) poly(2-methyl-3 hydroxyvalerate), (X) residual biomass.
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–– Monomer formation kinetics, and
–– Monomer polymerization dynamics (PHA 

synthesis).
The monomer formation module was coupled 

to the driver genetic toggle module through the de-
pendence on expression levels, whereas the polym-
erization was coupled to monomer formation due to 
the dependence of the initiation, elongation and 
transition rates on the monomer concentrations. The 
presented simulation results showed that the steady-
state mass fraction of 3HB and molecular mass dis-
tribution of the copolymer PHBV were strongly af-
fected by the ratio and absolute values of the chain 
elongation rates. At the same time, the dynamics of 
the polymerization process was related to and deter-
mined by the specific growth rate. According to the 
authors, the presented model can be used as a pre-
dictive tool for the rigorous design of bioprocesses 
in order to produce PHBV chains of desirable com-
positions.

Ao and associates100 worked on a systematic 
method for constructing large-scale kinetic meta-
bolic models. Initially, the authors had applied this 
method for modeling of the metabolism of Methylo-
bacterium extorquens AM1. Its central metabolic 
network included formaldehyde metabolism, serine 
cycle, citric acid cycle, pentose phosphate pathway, 
gluconeogenesis, PHB synthesis and acetyl-CoA 
conversion pathway, respiration and energy metabo-
lism. The authors reported that they had overcome 
„an outstanding difficulty in large-scale kinetic 
modeling: the requirement for a massive number of 
enzymatic reaction parameters“. The latter was 
done through a systematic and consistent procedure 
of parameter finding. They were able to construct a 
kinetic model containing 80 metabolic (computa-
tional) species that were based on general biological 
considerations and incomplete experimental kinetic 
parameters. The following steps were performed:

–– The number of enzymatic parameters for the 
generic enzymatic rate equation was reduced to a 
minimum set (still preserving crucial characteris-
tics!):

–– A set of steady-state fluxes and metabolite 
concentrations in the physiological range were ap-
plied to restrict the parametric space of enzymatic 
reactions;

–– If experimental values for enzyme saturation 
constants (and equilibrium constants) are unknown, 
the values under physiological concentrations 
should be chosen;

–– „Designing a dynamical exchange for the 
coupling between the metabolism represented in the 
model without including the rest“, valid for models 
which do not cover the entire metabolic network of 
the organism.

The results of the work described above was a 
robust model with respect to fluctuations of the car-
bon source. Although the main target of the afore-
mentioned work was not PHA itself, the applied 
method can be a suitable tool for the construction of 
a number of PHA-related metabolic models.

P. putida is a well-described PHA producer. 
This microorganism (strain KT2440) was studied 
on the level of genome-scale reconstruction and 
metabolic network analysis performed by Puchałka 
et al.101. A genome-scale constraint-based model of 
the metabolism was developed where network re-
construction and flux balance analysis (FBA) have 
enabled the pin-pointing of essential metabolic 
functions, structure of the metabolic network, iden-
tification of knowledge gaps, and refinement of 
gene annotations. FBA and flux variability analysis 
(FVA) have been used for analyzing the properties, 
potential, and model limits, allowing, under various 
conditions, the identification of metabolic key fea-
tures such as: gene essentiality, model and network 
robustness, growth and yield. The validation of the 
model was performed using data from continuous 
cell cultures, C13-measurement of internal flux dis-
tributions, high-throughput phenotyping data, and 
gene knockout studies. Interestingly, it was revealed 
that biomass composition had negligible influence 
on the accuracy of predictions, whereas the struc-
ture of metabolic network was the main factor de-
termining this category. The model network ac-
counts for 877 reactions with 886 metabolites (824 
intracellular and 62 extracellular), where 6 % of the 
reactions in the network are non-gene-associated, 
and 821 (94 %) reactions have at least one assigned 
gene (delineated in the gene-protein-reaction (GPR) 
relationships). The mentioned model was used to 
improve metabolic engineering strategies in produc-
tion of PHAs. One of the strategies frequently ex-
ploited in the past was the increasing of intracellu-
lar availability of the central PHA precursor AcCoA. 
According to the authors, two methods were tested 
by modeling to increase the cellular AcCoA pool. 
The first was the maximization of AcCoA produc-
tion by enhanced action of pyruvate dehydrogenase 
(PDH). In the second „an auxiliary reaction was in-
troduced that consumed AcCoA (concurrently pro-
ducing CoA, to avoid cofactor cycling artifacts) and 
that would represent the pooling of AcCoA“. The 
value of ‘AcCoA production’ predicted by the first 
method includes AcCoA that is consumed subse-
quently in other reactions (e.g., biomass produc-
tion). Contrarily, „the value of ‘AcCoA pooling’ 
predicted by the second method includes only Ac-
CoA that is taken completely out of the system, and 
is therefore made available for PHA production but 
unusable for growth or other purposes“. For further 
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information, the reader should consult the cited ref-
erence101.

The same strain was also investigated by Sohn 
et al.102. Various characteristics of P. putida KT2440, 
such as capacity for PHA synthesis and degradation 
of aromatics were investigated using the construct-
ed genome scale metabolic model (PpuMBEL1071). 
Although characterized as a strict aerobic bacteri-
um, the physiological conditions required to ensure 
anaerobic survival were investigated. An  extended 
survival under anaerobic stress was achieved by 
introducing the ackA gene from Pseudomonas 
aeruginosa and E. coli. In the model network, 
1071  reactions can be found (among them 958 
metabolic and 113 transport reactions) represented 
by 900 genes (percentage of genes represented 
=16.6), and 1044 metabolites. Metabolic reactions 
in the PpuMBEL1071 model were categorized into 
11 functional groups, where the largest group of re-
actions (ca. 25 %) belonged to the synthesis and 
degradation of amino acids, the next largest group 
of reactions belonged to the carbohydrate metabo-
lism (16 %), and 10 % related to more than 300 
proteins (transporters). A detailed description of the 
process of the genome-scale metabolic modeling 
and in silico flux analysis can be found elsewhere103. 
Linear programming, mass conservation, and bio-
chemical thermodynamics were needed to deter-
mine the fluxes. The fluxes of irreversible reactions 
were considered positive, and the negative flux was 
used for the opposite direction of the reactions.

A series of articles104–108 published by Penlo-
glou and coworkers, and Chadzidoukas et al. was 
dedicated to the modeling of PHA production by 
Alcaligenes latus (today: Azohydromonas lata). A 
mathematical model that incorporates the metabolic 
regulation was used to predict the simultaneous 
bacterial growth and polymer accumulation, re-
specting the polymerization/kinetic mechanism for 
build-up of the polymer chains. The applied frame-
work was able to predict the dynamic rate of carbon 
source consumption, the concentration and the mo-
lar mass of the produced PHB, and the molar mass 
distribution throughout the culture time. Additional-
ly, the model can predict the effect of different fer-
mentation strategies (e.g., batch or fed-batch condi-
tions) on productivity, product quality, polymer 
concentration and the PHB molar mass distribution. 
This model can be characterized as a dynamic met-
abolic/polymerization kinetic model that integrates 
two different sub-models: a length/time scales po-
lymerization kinetic sub-model, and a metabolic 
sub-model. The connecting point between these two 
sub-models is the concentration of the active sub-
strate of PHA synthase, namely, 3-hydroxybutyr-
yl-CoA. The following assumptions were used:

–– Total biomass is considered to be structured 
in three compartments: the residual biomass (X), 
the monomer (3HB), and PHB (P);

–– The cultivation medium is chemically de-
fined, all nutrients are available in excess except for 
carbon and nitrogen sources;

–– The effects of population heterogeneity and 
mass-transfer phenomena are negligible.

Furthermore, the macroscopic sub-model for 
bioreactor space was connected to the metabolic 
and polymerization model106, and used for the in-
vestigation of tailor-made production of PHAs.

PHAs are produced by a great number of natu-
ral microbial species. Some of them are genetically 
changed in order to produce more PHA or in order 
to be able to use other substrates. By gene manipu-
lations and plasmid transfers, some host strains that 
do not naturally produce PHAs (or they produce in-
significant quantities) have been constructed to be 
powerful PHAs producers. An example of this is 
recombinant E. coli DH5a used by Carlson and co-
workers109. By transforming DH5a strain with two 
plasmids, two different strains were constructed. 
Plasmid pPT500 was a carrier of the native, three-
gene R. eutropha (today: C. necator) PHB operon 
from pAeT41 ligated into the pCR Blunt vector. 
The operon was expressed efficiently in E. coli by 
the native R. eutropha operon promoter, which re-
sembles the E. coli (σ70) system. This E. coli strain 
was referred to as PHB (+). The second plasmid, 
pCR-KT, was constructed by ligating the R. eutro-
pha b-ketothiolase gene, without a promoter, into 
the pCR Blunt vector. The control strain harboring 
this plasmid expressed no PHB genes and was re-
ferred to as PHB(-). A theoretical biochemical net-
work model was used to interpret the experimental 
results of the product secretion profiles, PHAs syn-
thesis, as well as for study of E. coli network capa-
bilities under anaerobic conditions. The latter were 
analyzed by the elementary mode model described 
earlier110,111; for details, the reader is referred to 
these works. To conceive the main idea of this 
work, some modifications were added to the model, 
concerning acetate, ethanol, lactate, succinate, and 
glucose as potential substrates, the designation of 
some transport reactions from irreversible to revers-
ible, and the designation of interconversion of ace-
tate and acetyl coenzyme A (CoA) to be reversible.

The elementary mode analysis was run by the 
program METATOOL, and the Euclidean distances 
were used as the objective tool. Elementary mode 
analysis was used to determine the network model 
capability of predicting the anaerobic PHB produc-
tion. Two hundred and two anaerobic PHB-pro
ducing modes were identified, among which nine-
ty-eight modes made PHB without coproducing 
biomass. The anaerobic synthesis of PHB was 
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demonstrated under both growth and non-growth 
conditions. One of the examined recombinant path-
ways had a significant effect on by-product secre-
tion patterns.

One of the best examined PHA producers is R. 
eutropha (today: C. necator). Its native (wild-type) 
strain (H16) is able to use fructose and N-ace-
tyl-glucosamine (NAG), but not glucose112. Some 
mutants developed from this wild-type strain (i.e., 
G+1 and H1G+3) have been found capable of utilizing 
glucose113. In the past, this wild-type strain and se-
lected mutants were the target of many biological 
and technological investigations, so the related me-
tabolism was an object of mathematical modeling. 
Based on the annotated genome, Park et al.114 devel-
oped a genome-scale metabolic model of R. eutro-
pha H16. The genome of R. eutropha H16 consists 
of two chromosomes and one plasmid, fully se-
quenced and annotated: chromosome1 (4,052,032 
bp), chromosome 2 (2,912,490 bp), and mega plas-
mid pHG1 (452,156 bp). The stoichiometric part of 
the model, RehMBEL1391, related to 1391 reac-
tions (inclusive 229 transport reactions) and 1171 
metabolites. To refine the genome-scale metabolic 
model and perform its validation under environ-
mental and genetic perturbations, the con-
straints-based flux analysis was applied. According 
to the authors, „the metabolic flux distribution and 
the changes of metabolic fluxes under several per-
turbed conditions were examined by flux variability 
analysis (FVA) that calculates minimal and maxi-
mal flux values of each reaction for an objective 
function of maximum cell growth rate“. These cal-
culated fluxes were compared with the control val-
ues in order to examine the changes of flux solution 
space for each reaction under genetic and environ-
mental perturbations. In order to identify the gene 
knockouts suitable for the enhanced production of 
2-methylcitric acid, the method of minimization of 
metabolic adjustment (MOMA) was applied using 
quadratic programming (QP). This way, the lithoau-
totrophic growth characteristics were investigated 
by varying the feeding ratios of gas (CO2 and H2) 
mixture. Additionally, the developed model was 
used for the research of strategies for PHB produc-
tion under different cultivation conditions (pH-val-
ue and carbon/nitrogen source uptake ratios). Fur-
thermore, the metabolic characteristics of the strain 
were analyzed under phosphofructokinase gene ex-
pression. Finally, „in silico“ gene knockout simula-
tions were used „to identify targets for metabolic 
engineering essential for the production of 2-meth-
ylcitric acid in R. eutropha (today: C. necator) H16.

Lopar and associated colleagues analyzed the 
five-step continuous production of PHB on glu-
cose115 as well as glycerol metabolism pathways by 
C. necator DSM 545 116, respectively. Elementary 

flux modes, yield space analysis and a high-struc-
tured metabolic model were used as tools. Estab-
lished was a high-structured, metabolic, kinetic type 
model consisting of 43 mass balance equations re-
lated to the intracellular compounds115. The meta-
bolic state of cells cultivated in a continuously op-
erated five-stage bioreactor cascade was analyzed 
with the help of elementary flux modes and two-di-
mensional yield space. Stoichiometric matrix and 
elementary modes were calculated using the pro-
gram Metatool, version 5.1 originally established 
by Pfeiffer et al.117 and further developed by Kamp 
and Schuster118. The metabolic yield analysis and 
weighting factors were obtained using Matlab (in-
clusive function “fmincon”). Two different C-source 
feeding strategies were performed. Regarding PHB 
and biomass yields, the values of the more efficient 
feeding strategy were used as the data source for 
elementary modes and metabolic flux calculations, 
respectively. Metabolic fluxes were calculated from 
experimental yield data using a combination of ele-
mentary modes. For that purpose, the quadratic pro-
gramming approach119 was applied, where the sum 
of squared weighting factors was minimized. Excel-
lent agreement of metabolic model with experi-
ments was achieved for the growth-associated PHA 
synthesis phase of cultivation. Regarding biomass 
and PHA-related experimental yields, the „in silico“ 
calculated data presented in yield space were in sat-
isfactory agreement with the real metabolic situa-
tion along the 5-step reactor cascade. According to 
the authors, this was the first time that a multi-step 
continuous process of PHA biosynthesis was ana-
lyzed combining elementary flux modes, yield 
space analysis and high-structured metabolic model 
tools.

For analyzing metabolic pathways of C. neca-
tor DSM 545 when growing on glycerol, a model 
with a metabolic network consisting of 48 reactions 
was established in order to describe intracellular 
processes and PHB production116. Special attention 
was devoted to the branching points in sugar metab-
olism pathways, direction of reversible reactions, 
fluxes in gluconeogenesis route, and to the possible 
coenzymes (NAD or FAD) involved in the glycer-
ol-3-P-dehydrogenase (GLY-3-P DH) reaction. Four 
sets of elementary modes were obtained, depending 
on whether the pair NAD/NADH or FAD/FADH2 
contributes to the reaction of GLY-3-P DH, and 
whether 6-phosphogluconate dehydrogenase (6-PG 
DH) is present or not. The established metabolic 
network and the related system of equations provid-
ed multiple solutions for the simultaneous synthesis 
of PHB and biomass. The number of solutions was 
increased further if either NAD/NADH or FAD/
FADH2 were assumed to contribute in the reaction 
of GLY-3-P DH. As a major outcome, it was demon-
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strated that experimentally determined yields for 
biomass and PHB (with respect to glycerol) fit well 
to the values obtained „in silico“ if assuming that 
the Entner-Doudoroff pathway (ED) dominates over 
the glycolytic pathway. Interestingly, this was also 
the case if the Embden-Meyerhof-Parnas pathway 
dominates over the ED. Such results suggest that 
the producing strain possessed multiple metabolic 
possibilities for glycerol uptake; the crucial points 
for further investigation of metabolic pathways 
were pointed out by the authors.

Apart from pure cultures, mixed microbial cul-
tures have also been applied for PHA biosynthesis. 
For this purpose, Pardelha and coworkers120 culti-
vated microbial consortia in broths based on cane 
molasses and volatile fatty acids (VFA). Metabolic 
modeling principles described for the MMC (origi-
nated from wastewater activated sludge) were also 
used in this case. The authors presented a dynamic 
metabolic model describing the uptake of complex 
mixtures of VFA. This model was outsourced from 
a previously published flux balance analysis mod-
el121 that identified the minimization of TCA cycle 
activity as the key metabolic objective to predict 
PHA storage capacity. The model was calibrated by 
experimental data obtained for synthetic mixtures 
of volatile fatty acids or by data obtained from sug-
arcane molasses experiments. The MMC was se-
lected using sugarcane molasses under feast and 
famine cultivation regime. This model gave an ex-
cellent fit between experimental and computed val-
ues (regression coefficients above 0.92). The intro-
duced C-source consumption regulatory factor 
reflected well the decrease in acetyl- and propionyl- 
CoA, confirming the hypothesis that the minimiza-
tion of TCA cycle is a key objective for the maximi-
zation of PHA production by MMC in feast and 
famine regimen.

Grousseau et al.122 investigated the role of NA-
DPH i.e., how growth controls the NADPH genera-
tion and availability, as well as the resulting impact 
on PHB when C. necator DSM 545 (H1 G+3 mu-
tant) grows on butyric acid. Well-controlled phos-
phorus limited fed-batch cultures were carried out 
under non-inhibitory conditions with butyric acid as 
substrate. Kinetic and stoichiometric models were 
constructed based on known metabolic pathways, 
bibliographic studies and available databases 
(KEGGS and others). The metabolic descriptor was 
composed of two equation systems:

(1) An anabolic network (53 reactions) for the 
synthesis of macromolecular cell components from 
28 intracellular metabolites used to calculate the 
global molar stoichiometry of biomass and the mass 
fraction of its components;

(2) A catabolic network (45 reactions, 46 inter-
mediates) for carbon assimilation, inclusive the cen-

tral metabolic pathways i.e., glyoxylate shunt, TCA 
cycle, gluconeogenesis, PHB synthesis.

The experiments and modeling were used to 
explore how microbial growth (controlled by phos-
phate availability) influences NADPH generation 
and availability, as well as the impacts on PHB 
yields.

It was assumed that butyric acid in its non-ion-
ized form penetrates into the cells, where it is acti-
vated by the actions of butyrate kinase and phos-
phate butyryltransferase, after which butyryl-CoA is 
converted into acetoacetyl-CoA via oxidation, and 
then decomposed into acetyl-CoA (by ketothiolase) 
to produce biomass and energy or to be incorporat-
ed into PHB .

Modeling (i.e., a mathematical solution) was 
performed by solving the complete descriptor sys-
tem of linear equations on the basis of the mass bal-
ance under pseudo-steady-state assumption. The 
model was used in two ways: (a) to simulate the 
theoretical yield that could be reached, (b) to calcu-
late the intracellular flux based on experimental re-
sults. The results indicated that the anabolic demand 
allowed the NADPH production by Entner-Doudo-
roff (ED) pathway with maximal theoretical PHB 
production yield of 0.89 C mol C mol–1; further, 
without residual biomass production, NADPH re-
generation is only possible via the isocitrate dehy-
drogenase from TCA cycle with a theoretical yield 
of 0.67 C mol C mol–1. Furthermore, it was found 
that the maximum specific rate of NADPH produc-
tion at maximal growth rate (for biomass synthesis 
requirements) was maximal in all conditions. This 
by consequence determines the maximal PHB pro-
duction rate.

These results lead to the conclusion that “sus-
taining a controlled residual growth improves the 
PHB specific production rate without altering pro-
duction yield”.

A very interesting modeling paper was recently 
published by Mavaddat and coworkers123. A 3D 
simulation was made by using a computational fluid 
dynamics software package (FLUENT 6.3.26) that 
was combined with a metabolic model. The target 
was to investigate hydrodynamics and production 
of PHB in an airlift bioreactor124. An Eulerian ap-
proach was applied to model the gas–liquid interac-
tions. This system, characterized by the combined 
effect of bubble breakup and coalescence, was 
solved by a population balance model implemented 
in the software. Biosynthesis of PHB was deter-
mined by the maximal forward reaction rates for 
thiolase, reductase, and synthase. A simplified reac-
tion was considered for PHB production; the gas 
holdup, liquid velocity vectors, shear stress, and 
volumetric oxygen transfer coefficient were studied. 
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Ta b l e  4 	–	Main characteristics of metabolic models targeted for industrial PHA biosynthesis and metabolism of producers

Reference Microorganism /Method of work
Number of: Mass-balanced 

extracellular 
substrates

Mass-balanced 
productsmass balance 

equations
intracellular 

reactions
intracellular 
metabolites

Daae 
et al.94

Plants; 
Enzyme kinetic, MCA, 

SCAMP/ Sauro 93
9 6 8 – P(3HB-3HV)

Xu et al.98 Pseudomonas stutzeri 1317 6–10 5–8

Acetate 
Butyrate 

Hexanoate 
Octanoate 
Decanoate 

Dodecanoate 
Tetradecanoate

(MCL-PHA) 
copolymers

Iadevaia 
and 
Mantzaris99

E.coli 
Model modules: 

– Enzyme kinetic 
(monomer formation); 

– Artificial genetic network 
(regulation), 

– Polymerisation (PHBV formation)

11 (for monomer 
formation only) See Ref. 97 See Ref. 97 Acetate 

Propionate PHBV

Ao et al.100
Methylobacterium extorquens AM1 
Kinetic model, generic enzymatic 

rate equations
80 80

80 (total) 
56 (related to 

central C-flux only) 
20 related to 

biomass precursors)

Methanol X, PHB

Puchałka 
et al.101

Pseudomonas putida KT2440 
Genome-scale network 

reconstruction, FBA, FVA, C13-IFD, 
gene knock-out, MILP

889 877 886 Glucose X, PHB

Sohn et 
al.102

Pseudomonas putida KT2440 
Genome-scale network, 
In silico FA, C13-IFD

1046 1071 total 
958 metabolic 1044

Glucose 
Glycerol 
Pyruvate

X, PHA

Penloglou 
et al.104–107

Azohydromonas lata DSM 1123 
(metabolic and polymerisation model) See Ref. 102–106 See Ref. 102–106 See Ref. 102–106 Sucrose X, PHB, CO2

Carlson 
et al.109 Escherichia coli DH5a 13 14 (3 transport 

react. included) 12 Glucose 
Acetate PHB, Formate

Park et 
al.114 Ralstonia eutropha H16 1121

1391 total 
229 transport 

react. included
1117 Fructose X, PHB, CO2

Lopar 
et al.115

Cupriavidus necator DSM 545 
Kinetic model, EFM, YSA, QP 48

45 
(inclusive 2 

transp. react.)
44 Glucose, NH3 X, PHB

Lopar 
et al.116

Cupriavidus necator DSM 545 
Kinetic model, EFM, YSA, QP 48

48 
(inclusive 3 

transp. reacti.)
44 Glycerol, NH3 X, PHB

Pardelha 
et al.120 MMC 17 (depends on 

substrate number)

10 
(plus 9 transp. 

react.)
7

Molasses, 
Volatile fatty 

acids, (Acetate, 
Butyrate, 

Propionate, 
Valerate, Even 
fatty ac., Odd 
fatty ac.), NH3

X, PHA

Grousseau 
et al.122

Cupriavidus necator DSM 545 
MFA, CIM, NLWL 77

53 +45 
(anabolic + 
katabolic)

74 Butyrate X, PHB

Mavaddat 
et al.123

Ralstonia eutropha 
CFD + metabolic enzyme kinetic model 

GAMBIT /FLUENT, SIMPLE 
method of pressure 
– velocity coupling

Accord. Tetra-
Hybrid/Hex Core 

Mesh space,
5 13 Glucose PHB

LEGEND: X, biomass (residual), (MCA)94,95 metabolic control analysis; (FBA) flux balance analysis, (FVA) flux variability analysis, 
(IFD) internal flux distribution, (MILP) mixed integer linear programming, (FA) flux analysis, (EFM) elementary flux modes, (YSA) 
yield space analysis, (QP) quadratic programing, (MMC) mixed microbial culture, (CIM) consistency index method, (NLWL) non-
linear weighted least squares, (CFD) computational fluid dynamic
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Also, molar concentration profiles of PHB and glu-
cose within the bioreactor were obtained.

From the presented models, the reader can eas-
ily conclude that very different modeling approach-
es and a very broad spectrum of methods has been 
applied to achieve the desired target. Some import-
ant characteristic properties of the models described 
in this section are listed in Table 4.

Cybernetic models in PHA biosynthesis

As previously stated, with the present state of 
knowledge it is practically impossible in kinetic 
modeling to have all the data necessary to compile 
a fully developed, and, from a regulatory point of 
view, exact, perfect, mechanistic model. That is 
why various kinetic and mechanistic simplifications 
are introduced in models. Another way to involve 
regulatory mechanisms related to cell metabolism is 
to apply cybernetic principles of modeling125–129. 
Thus, cybernetic variables introduced into a kinetic 
model substitute the unknown mechanistic factors 
of the cell regulatory system; they represent the dif-
ferent cellular processes: induction, repression, in-
hibition, and activation. To that end, an OF must be 
created, assuming that the cell metabolism operates 
with a physiologically specific goal (optimal growth 
or maximal product yield, for instance). The opti-
mality hypothesis describes that cells regulate the 
synthesis and activity of enzymes in such a way that 
a nutritional objective (the goal) is achieved in an 
optimal manner. During model development, these 
goal-functions can be optimized. These facts are 
summarized comprehensively in a review by Pat-
naik130. Hatzimanikatis et al.131 presented yet anoth-
er way of including regulatory aspects in a mathe-
matical model: discrete variables were used to 
represent the presence or absence of possible regu-
latory loops. Thus, the model is formulated as a 
“mixed integer linear programming (MILP) optimi-
zation problem”. Using a (log)linear approximation 
for a de facto “non-linear model”, the authors veri-
fied a qualitative agreement between the model pre-
dictions and experimental results. In cases when 
mechanistic details are not attainable, fuzzy log-
ic-based models132,133 or neural networks134,135 can be 
used to achieve simulation of metabolic system. 
However, to generate these models, such an ap-
proach requires an extremely high quantity of ex-
perimental data.

In this section, the cybernetic models dealing 
with PHAs are discussed. Neural networks will be a 
separate part in this review.

One of the first cybernetic works dealing with 
PHAs was the investigation of Yoo and Kim136. 
These authors assumed that the pathway of PHB 

synthesis exhibits the transcriptional control in-
duced by environmental stress, i.e., nitrogen limita-
tion. As the objective for this control, an optimiza-
tion of acetyl-CoA utilization was chosen, thus 
ensuring the necessary degree of metabolic flexibil-
ity in cells catabolism. The state equation related to 
key protein synthesis was assumed dependent on 
the nonlinear control variable. Yoo and Kim136 built 
their model based on two assumptions, as follows:

(i) Cells may be divided into two components/
compartments, i.e., the residual cell mass (non-PHB 
part) and PHB (storage material);

(ii) C-source is allocated to the enzyme synthe-
sis system respecting the principle of considerable 
flexibility under nitrogen limitation.

Although the application of economic laws in 
biotechnology is a rare case, very surprisingly, Her-
rnstein’s law from macroeconomics field137 has 
found its place in cybernetic modeling. That means 
that the conventional cybernetic approach is fully 
adopted applying the rule: “when many resources 
are to be allocated to many activities (not necessar-
ily an equal number), the fractional allocations are 
proportional to the fractional returns”. Yoo and 
Kim136 did not use the above approach, because the 
singular optimality criteria applied by these authors 
“make the model too stiff to integrate numerically”. 
They proposed a nonsingular strategy and compared 
their predictions with those of Asenjo and Suk35 and 
Mulchandani et al.36 as well as with own experi-
mental data. Such organization of the model was 
able to predict the “mixed-growth-associated syn-
thesis of PHB” for the overall fermentation range. 
The described model was compared with earlier re-
ported unstructured models by statistical tests.

It is also worthwhile mentioning the model 
proposed by Varner and Ramkrishna129, developed 
for the synthesis of storage polymers. This is a ge-
neric model with assumed storage pathways com-
prising two substrates and seven enzymes. The au-
thors concluded that the nutrient environment is a 
determining factor for the pathway performance. To 
improve productivity, they investigated genetic al-
terations suggested by the model simulations. When 
the cybernetic criteria of over-expressing a key en-
zyme that catalyzes PHB synthesis and blocking of 
two unproductive pathways were used, a PHB yield 
of 90 % of the total biomass was predicted. This is 
significantly higher than the experimental values of 
65–75 % obtained by conventional fed-batch and 
continuous cultivations. It is unclear if this discrep-
ancy is the consequence of model weakness or if it 
is due to a “steric inhibition factor” in the cells that 
was not considered in the model.

Ferraz and coworkers 138 established a cyber-
netic model for PHA synthesis by A. eutrophus (to-
day: C. necator) DSM 545, containing 53 parame-
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ters (among them 14 fixed and 39 adjustable) and 
25 equations. A preliminary estimation of adjustable 
model parameters was achieved using model linear-
izations and simplifications as well as the treated 
experimental data. Thereupon, the model parame-
ters were estimated by applying the flexible geo-
metric simplex method proposed by Nelder and 
Mead139, known as the flexible polyhedron search. 
For a more effective application of this technique, 
the results of the preliminary search were used as 
the initial guess. The model considers the feedings, 
sample withdrawals and evaporation influences tak-
ing into account the phenomena related to the kinet-
ics of active biomass growth and PHBV production. 
According to the authors, the proposed model ade-
quately represents the characteristic phenomenolo-
gy of the two-phase cultivation process; neverthe-
less, this model was unable to reflect well all the 
data and transient states achieved under tested con-
ditions.

Gadkar et al.140 used a similar modelling ap-
proach to develop their cybernetic model for R. eu-
tropha (today: C. necator). They established the 
metabolic model that contains four main metabolic 
parts (pathways): glycolytic and pentose phosphate 
pathways for sugar metabolism, the PHB synthesis, 
the PHB degradation (depolymerisation) and the 
TCA cycle (biomass precursor’s synthesis). It was 
proposed that the pathway of PHB degradation (i.e., 
depolymerisation) becomes active when the 
C-source (glucose) concentration drops and starts to 
be growth-limiting. Gadkar et al.140 validated their 
model with those proposed by Yoo and Kim136. The 
targets of modelling were the multi-rate model pre-
dictive control algorithm, a continuous flow biore-
actor with cell recycling, PHB productivity and the 
permeate flux through a micro-filter acting as cells 
separator.

The formerly described model by Ferraz et 
al.138 was further elaborated and improved by Rias-
cos and Pinto141. The authors proposed the use of 
orthogonal collocation to a simultaneous optimiza-
tion approach. Initially, this methodology was im-
plemented to the model of penicillin biosynthesis 
that was simplified to some extent; thereafter it was 
applied to a cybernetic structured model for PHA 
synthesis138. The model was intended for optimizing 
PHB and PHBV production by A. eutrophus (today: 
C. necator). The model is characterized by 11 states, 
2 – 4 control profiles, 3 C-sources (glucose, fruc-
tose, propionic acid) and one nitrogen source 
(NH4OH), with all feed rates selected as control 
variables. This time, the optimization problem was 
treated as the optimal control problem (OCP). In or-
der to solve the singularity problem, the authors dis-
cretized the optimization problem on finite elements 
by orthogonal collocation. The results of this inves-

tigation indicated that “the discretization of differ-
ential-algebraic equation systems (DAE) by ortho
gonal collocation in finite elements efficiently 
transforms dynamic optimization problems into 
nonlinear programming (NLP) problems”. Thus, 
the solution of complex problems with several con-
trol variables satisfied the approximation error tol-
erance141. According to Patnaik48,there is evidence 
that the results achieved by the model described 
above are “inferior” to those presented by Gadkar 
et al.140. If so, the model complexity did not suffi-
ciently point out the expected positive contribu-
tions. Contrarily, it seems that a counter-effect was 
generated.

The published cybernetic model of continuous 
PHB production by Alcaligenes eutrophus141 (today 
C. necator) was extended to an industrial two-stage 
continuous process142. This model incorporated 
three main metabolic pathways – the glycolysis, 
pentose phosphate, and the TCA cycle pathway – 
supposing that glucose and NH4

+ are converted by 
the cells into precursors required for cell growth 
and storage materials. The formation of PHB and its 
degradation pathways were also involved. Regard-
ing cybernetic variables, two levels were defined – 
the “local” and the “global” level. Regarding the 
local cybernetic variables, they considered “the in-
dividual strands of the metabolic pathways (produc-
tion of growth precursors, production of PHB etc.)”. 
Furthermore, on the global level the competition 
between the different directions of metabolic path-
ways was related, such as between the production 
of precursors for the cell growth or for the PHB 
synthesis. Such a solution resulted in diverting a 
larger amount of precursor resources towards PHB 
synthesis, when excess glucose was present. Simi-
lar, for the C-limiting growth phase, the competi-
tion between the production of metabolites from 
glucose on the one side, and PHB degradation on 
the other side was taken into account. The techno-
logical process in this study was performed in two 
reactors in series, followed by a separation stage. In 
the first reactor, the bacteria were forced to grow on 
glucose and NH4

+ as the nitrogen source under 
non-limiting conditions. The output from this reac-
tor was connected to the second reactor where only 
glucose (without nitrogen source) was fed. Any 
NH4

+ in the second reactor originated only from the 
unassimilated part that had left the first reactor, re-
sulting in the exposure of bacteria to excess glu-
cose, preferentially channeled into PHB. The output 
from the second reactor was subjected to a separa-
tion procedure where PHB was extracted from bio-
mass. Furthermore, the remaining biomass residuals 
underwent degradation to convertible substrates that 
were subsequently supplied as feed streams to both 
reactors. A bifurcation analysis was performed with 
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the help of the described cybernetic model as a use-
ful tool to study the dynamics of the process. This 
allowed insight into the system features (i.e., steady 
states; limit cycles), and was very useful for an effi-
cient reactor design and process control.

Cybernetic modeling was combined with ele-
mentary flux modes resulting in the hybrid model 
described by Kim et al.143. Such method was also 
applied for modeling of the metabolism of R. eutro-
pha (today: C. necator)144 concerning PHAs synthe-
sis on carbohydrates. The latter is characterized by 
the strong participation of cybernetic part in the 
whole modeling system. As this model is a typical 
hybrid model, it will be considered later under the 
separate section “hybrid models”. Cybernetic mod-
els are based on concepts of natural evolution. They 
are more feasible, and give more physiological fi-
delity than mechanistic models. Nevertheless, cy-
bernetic models display at least two disadvantages. 
One is certainly their complexity that can be con-
sidered as the consequence of representation of in-
cluded intracellular regulatory systems and across 
the cell walls active transport systems.

Additional problems are, for a given situation, 
possible multiple cybernetic goals. It is often un-
clear which of these goals is the most relevant for 
the given situation. When mixed microbial cultures 
or/and multiple substrates are involved, a conflict of 
goals is possible, and consequently, a conflict of re-
sults can occur.

Neural networks and hybrid models 
in modelling of PHAs biosynthesis

Neural networks have been applied in model-
ling of PHAs biosynthesis in order to overcome 
limitations of mechanistic and cybernetic models. 
For such models, a mathematical description of the 
biological/technological system is not obligatory. 
This is a certain benefit for industrial level of appli-
cations, but such models must be carefully designed 
and “trained” with full attention145,146. It is not a rare 
case that more than one neural network is pointed 
out as the best solution. To choose correctly the tru-
ly best one, an additional effort in the form of com-
piling hybrid models can be helpful. In order to 
achieve maximal effect, neural networks and partial 
(or fully developed) mathematical models of mech-
anistic or/and cybernetic type are combined in such 
models.

Neural networks and hybrid models 
in modelling of PHA biosynthesis 
by pure microbial cultures

One of the first neural network/hybrid models 
dealing with PHA biosynthesis was developed by 

Peres et al.147. The method combines “first princi-
ples models” with modular artificial neural net-
works trained by the EM (Expectation-Maximiza-
tion) algorithm (for details the reader should consult 
the works of Jordan and Jacobs148 and Xu et a1.149). 
The modular networks were used in order to treat 
the ‘cells system’ as a “highly complex network of 
metabolic reactions organized in modular path-
ways”. After validation of the model by the experi-
mental, laboratory scale, production process, the 
results indicated that the modular network, if trained 
with the EM algorithm, was able to organize itself 
in modules related to the basic biological pathways. 
In particular, the network was able to learn to dis-
criminate between acetate- and internal reserves 
respiration. That meant that the network had detect-
ed the switch between the presence and absence of 
acetate considering the transient phase from normal 
extracellular acetate respiration (PHB storage) and 
internal storage consumption, i.e., PHB degrada-
tion.

Patnaik150 performed the neural network model-
ling to enhance the production of PHB in an ideally 
mixed fed-batch bioreactor. The process was repre-
sented by a neural network and controlled by anoth-
er network. A feed-forward artificial neural network 
(ANN) was used as a feedback controller, and seven 
different neural networks were used and studied for 
the process. The pair of networks (feed controller/
bioreactor) was applied with the intention to ensure 
the stepwise control of feed rates in time (i.e., solu-
tions for the carbon-glucose and NH4

+), in order to 
maximize the concentration of PHB at the end of 
each time interval. Dispersion, in all cases repre-
sented by a Pecklet (Bodenstein) number ≈ 20, was 
found to be optimal. All seven ANN that represent 
the fermentation can be classified into one of three 
types: feed-forward (FF) trained by the back-propa-
gation (BP) algorithm; radial basis (RB) i.e., gener-
alized regression type and recurrent (Elman and 
Hopfield type). The achieved results suggested that 
enhanced final PHB concentration could be reached 
(ranging from 16 to 93 %). Regardless of the choice, 
the application of neural networks significantly im-
proves the productivity under simulated industrial 
conditions. A further work was performed by the 
same author151 where two neural networks had been 
employed to enhance PHB production in fed-batch 
system by R. eutropha (today: C. necator). One net-
work was adapted to filter the noise in the two feed 
streams (C, N), whereas the second was foreseen to 
control their flow rates at the optimum dispersion. 
This arrangement had more than doubled the PHB 
concentration per reactor volume if compared to an 
ideal fermentation. While the unfiltered noise re-
duced biomass growth (20–25 %) and PHB for
mation (25–30 %), the used neural filter reversed 
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this trend. In addition, in simulated experiments152, 
Gaussian noise was added to the flow rates of both 
C- and N-source. Lyapunov exponents were used 
for comparison of different noise filters influence 
(auto-associative neural, cumulative sum control 
chart-CUSUM, extended Kalman, Butterworth fil-
ter, respectively) versus noise-free result. Negative 
exponents indicated a stable fermentation. An au-
to-associative neural filter performed best, followed 
by the combination of a CUSUM filter and an ex-
tended Kalman filter, whereas Butterworth filters 
were inferior and inadequate. The same author test-
ed three fundamental hybrid designs by comparison 
of the neural and mechanistic optimizations done 
for a fed-batch bioreactor153. In his study, the author 
proposed the general neural hybrid model. The 
Gaussian noise was used to challenge the non-ideal 
features in the two feed streams for glucose and 
NH4

+; the optimal finite dispersion of substrates was 
assumed and incorporated in the models. The one 
purely neural model and three hybrid designs were 
compared with mechanistic kinetic models. All 
three hybrid designs were superior to the neural and 
mechanistic approaches. Models that contained both 
mechanistic and neural components, generated 
higher biomass and PHB concentrations if com-
pared with “pure” neural system. Among these, the 
model in which concentrations of C and N were 
represented by neural networks were found less 
suitable, whereas the model containing neural net-
works for the biomass and PHB performed superior 
to the first. Finally, the third, involving the hybrid 
representation with an optimally weighted combina-
tion of mathematical and neural forms for the kinet-
ics, was found to outperform the other modelling 
approaches the best; it generated 140 % more bio-
mass and 330 % more PHB than obtained after con-
ventional mechanistic optimization.

Franz and associates144 published the hybrid cy-
bernetic modeling approach to describe PHB bio-
synthesis and its depolymerisation with simultane-
ous consumption in R. eutropha (today: C. necator). 
This mathematical model allows a systematic deri-
vation of the model equations from elementary 
mode analysis. It was assumed that internal metab-
olites are in quasi-steady state, and PHB was con-
sidered as internal metabolite with slow dynamics. 
The vector of fluxes through EFMs was set to be 
liable to the control of vector of cybernetic vari-
ables. All relevant enzymes were divided into two 
sub-groups: inducible and constitutive. The vector 
of inducible enzyme synthesis rates was assumed to 
be controlled by the vector of separate cybernetic 
variables. In addition, it was adapted by an OF, cov-
ering the assumption of maximum carbon source 
uptake by the organisms (again, the model was as-
sumed to be two-compartmental (PHB and “residu-

al” non-PHB biomass)). Metabolic yield analysis 
was applied in order to reduce the number of EFMs. 
Due to the stoichiometry of the network, the con-
centration of the residual biomass (non-PHB part of 
cells) was linearly correlated, inter alia, with the 
metabolized nitrogen source; therefore, the yield 
space was reduced to two-dimensional. This ap-
proach was extended for non-quasi-stationary me-
tabolites, i.e., PHB. The model was validated by 
separate experiments. Five different metabolic mod-
el configurations were tested concerning ratio of 
metabolic flux to biomass or PHB synthesis. Non-
linear analysis of continuous cultures was per-
formed with the intention to identify nonlinear phe-
nomena: oscillations154 and multiple steady states155. 
The model showed good agreement with experi-
mental data concerning PHB synthesis and its intra-
cellular degradation. Multiple steady states were 
identified in the continuous bioreactor for a certain 
range of dilution rates/substrate loading. It was un-
derlined that the predicted multiplicity region is of 
relatively small range, so that multiple steady states 
are realistically not probable in the practical work.

Recently, Zafar and coworkers published a se-
ries of articles156–158 dealing with optimization of 
PHB and PHBV production by A. lata MTCC 2311 
on cane molasses and on a mixture of cane molas-
ses with propionic acid. In the first step, maximiz-
ing biomass and PHB production was targeted. 
During optimization of broth components in shak-
ing flask experiments, among three carbon sources 
(sucrose, fructose, and glucose) and four nitrogen 
sources [(NH4)2SO4, NH4Cl, urea, and NH4NO3], 
sucrose and urea were found to be the best carbon 
and nitrogen sources, respectively. Further, the ef-
fects of sucrose, urea, and trace elements solution 
on biomass and PHB concentrations were investi-
gated. Response surface methodology (RSM) and 
artificial neural network models (ANN) were ap-
plied to direct the experimental data obtained in ac-
cordance with the central composite design. The 
relationships among the screened variables were 
expressed in the form of quadratic polynomial func-
tion. All experiments were conducted in the central 
composite design (CCD) procedure, fitted by an 
empirical fully developed second-order polynomial 
model, representing in the form of surface response 
over the variables range. Each variable in the CCD 
was studied at three different levels; hence, a 23-fac-
torial design was applied. With three variables, 20 
experimental sets were spawned and used for opti-
mization of sucrose, urea, and trace elements solu-
tion concentrations. Two ANN models were used 
for modelling the influence of the mentioned sub-
strate concentrations on biomass and PHB concen-
trations. A “feed-forward” architecture of ANN 
model (multilayer perception; MLP) was combined 
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with propagation algorithm (BP) to reach the pre-
dictive models. Three medium concentrations acted 
as input variables, in contrary, biomass and PHB 
concentrations were outputs. Root mean square er-
ror (RMSE), model predictive error (MPE) and 
standard error of prediction (SEP), were calculated 
(respecting the bias (Bf) and accuracy (Af) factors) 
to reach the desired fitting/prediction accuracy of 
models. After good prediction accuracy was reached 
by RSM and ANN based models, the genetic algo-
rithm (GA) was applied to optimize the input space 
with an objective to maximize the process perfor-
mances (in this case biomass and PHB concentra-
tions). RSM and ANN models (combined with 
CCD) were successful in modelling/studying of the 
input variables interactions. The modeling ability 
and the optimization power of hybrid ANN-GA 
model provided higher accuracy (considering opti-
mal substrate concentrations) than hybrid RSM-GA 
model. The experience collected by the work de-
scribed above was applied by the same authors for 
the optimization of PHBV production through the 
simulations performed with artificial neural net-
work (ANN), response surface methodology (RSM) 
and (GA). The predictions obtained by ANN were 
in good agreement with experimental findings and 
better than those achieved by RSM. Furthermore, 
the cited authors applied the same methodology for 
modeling and optimization of PHBV production us-
ing the same microorganism and cane molasses 
supplemented with propionic acid. The experiments 
were carried out in a stirred-tank reactor, conducted 
in a three-level factorial design by varying the im-
peller and aeration rates to investigate the effect of 
agitation and aeration regimes. Further, the data 
were fitted to quadratic polynomial equation and 
ANN; process variables were optimized by GA-cou-
pled models. ANN and hybrid ANN-GA were found 
superior for modeling and optimization of process 
variables, respectively.

Neural networks and hybrid models 
in modelling of PHA biosynthesis 
by mixed microbial cultures

In the previously mentioned work, Dias et al.87 
studied the optimization of PHA production by 
mixed microbial cultures. This work was based on a 
detailed hybrid metabolic model. The metabolic 
network from this model was, by applying elemen-
tary flux modes (EFM), first decomposed into its 
fundamental pathways. The EFMs are the minimal 
set of reactions, able to define the metabolism of 
cells obtained using the FluxAnalyzer software. A 
step after that, the dynamical hybrid semi-paramet-
ric model was formulated. The EFM fluxes were 
interpreted in terms of metabolic consistency. The 
final model allowing characterization of the metab-

olism dynamics and metabolic pathway analysis, 
showed that the propionate metabolism is more 
flexible (redundant) than the acetate metabolism. 
Using the classical macroscopic approach, four re-
actions were obtained for the “feast” phase: 3HB 
and 3HV production, cell growth, and maintenance 
on propionate. The EFM technique identified two 
additional pathways: simultaneous growth and 3HB 
production, and simultaneous 3HB and 3HV pro-
duction. The EFMs obtained in the “famine” phase 
were in good agreement with the macroscopic reac-
tions.

A neural network based methodology was car-
ried out for the modelling of a sequencing batch re-
actor (SBR) for PHB production by MMCs159. In 
order to achieve successful process control and op-
timization, the data driven modelling method 
through operating regime decomposition, with the 
bootstrap aggregated neural networks, were used in 
this study. The target was to enhance model accura-
cy and its reliability by capitalization of empirical 
models, developed earlier from process data. When 
PHB is produced in SBR using MMC, two sub-
strates (acetate and NH4

+) in the feed stream have 
an important, dominant influence on PHB produc-
tion time course. Different process operation re-
gimes must be applied depending on the concentra-
tions of these substrates. Using bootstrap aggregated 
neural networks, the authors proposed a method for 
the classification of such operation regimes, and for 
building of neural network models in accordance 
with operational regimes. Nine different regime 
types were tested. Mathematical equations for the 
“border curves” that separate the “feast” from the 
“famine” operation regime area were established 
with the intention that they will display an import-
ant role in process optimization. The neural network 
model inputs were initial biomass concentration, ac-
etate and NH4

+ feeding concentrations; the model 
output was the time when PHB production reaches 
its maximal value. The bootstrap aggregated neural 
networks were applied to predict the batch comple-
tion time. Bootstrap re-sampling was used to gener-
ate 40 replications of the model development data, 
and each replication was partitioned randomly into 
a “training” and a “testing” data set. These pairs 
(training / testing data set) were applied to build the 
neural network model, further, the optimal number 
of hidden neurons was determined for each neural 
network (using cross validation, i.e., the lowest sum 
squared errors, SSE). The combination of individual 
networks generated an aggregated neural network 
model (ANNM). The bootstrap aggregated neural 
network models provide a more robust prediction 
capability. According to the authors, the optimal 
SBR cycles should operate near border curve, dif-
ferentiating the “feast” and “famine” operation re-
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gime areas. An optimal duration of the “famine” 
phase requires further investigation because a long 
“famine” phase positively influenced the stability of 
the cell culture, however resulting in the loss of 
some quantity of PHB.

Some general comments on the neural net-
works and related hybrid models: Similar to neural 
network designs, to date the scientific community 
has not found a unique procedure (solution) for the 
targeted, exact, final design of hybrid neural net-
works models. It seems that bidirectional exchange 
of solutions and experience between experimental 
science and modelling performers will be the right 
way to reach a “satisfactory point”. With the present 
state of knowledge, we are “doomed” to improve 
the models by experimental results, and contrarily, 
the simulation results achieved by the models 
should be “first aid” in the planning and interpret-
ing of experiments. As all other model types, these 
models are a useful tool for detecting possible 
methods in investigation procedures.

Conclusion

It is not possible to generally state which model 
type is the best for the mathematical modelling of 
different problems connected with PHA production 
(bioreactor performance, metabolism, genetic engi-
neering, cultivation conditions and kinetics). All the 
models presented in this review possess some range 
of validity, and are characterized by some range of 
adjustability (indicated by so-called “interpolation/
extrapolation power of model”; related to the ap-
plied range of cultivation conditions and inevitably 
connected to the used strain). It is sure that certain 
types of models are meant to be direct mathematical 
pictures of the real biological systems, hence “as 
similar as possible” (e.g., genome-scale metabolic 
kinetic models). Contrarily, for example, neural net-
work models are constructed without the intention 
of being “direct pictures” of biological systems, but 
they are proposed to give simulation results as exact 
and compliant “as possible” if compared with ex-
perimental data. In this review, the presented math-
ematical models fully meet different functions. 
They are used for the modeling of processes in bio-
reactors, mixing, metabolic pathways, cell cycles, 
genetic purposes, and metabolic engineering, re-
spectively. It seems that for “standard bacterial cul-
tivations and everyday practices”, the formal kinet-
ic  models (for simple cases) and “low-structured” 
models will, in most situations, be accurate enough 
and of great benefit. This is due to their simplicity 
and relatively low computational demand. In con-
trast, it seems that complex multi-substrate cultiva-
tion media require a higher degree of model struc-

turing. In addition, for scientific purposes and 
advanced development of industrial equipment, real 
systems (technical or biological) will in the future 
be modelled by highly organized hybrid models. 
For example, computational fluid dynamics (CFD) 
in bioreactors offers many new tools for the com
putational characterization of fluid streaming and 
concentration/temperature/momentum fields. Other-
wise, genome-scaled models including enzyme ki-
netic properties are coming ever closer to the real 
biological “picture” of cell metabolism. Combina-
tion of such models in hybrid-type models by im-
plementation of the necessary degree of structuring 
could be the right way to obtaining a model capable 
of reflecting the broad spectrum of biological and 
physical diversities. This is certainly only an exam-
ple. Cybernetic or neural network models, hybrid-
ized with kinetic or genome-scale metabolic models 
(as well as with CFD models), also have the poten-
tial to solve complex biotechnological situations. In 
general, there is still a lot of work to be done in the 
field of mathematical modeling dealing with bio-
technological processes; in this context, mathemati-
cal modeling in the field of PHA only constitutes a 
prime-example for the variety of bioprocesses.
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