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Abstract

Information system change is concerned with deliberate
modifications to an organization’s technical and organiza‐
tional subsystems that deal with information. Changes
result in adjustments being made to the configuration of
information systems that could have an impact on the
operations of those systems. This paper examines the
problem of interference between old configuration activi‐
ties, new configuration activities and reconfiguration
activities that occur due to overlapping modes. The paper
proposes a novel form of depicting and solving the problem
based on a flow-based conceptualization in which a
configuration can be viewed as a system of flow systems
organized architecturally, described by their internal flows,
and connected by external flows and triggering. This
method of diagramming is applied to a complex case study
involving the reconfiguration of an office workflow for
order processing described in BPMN. The diagrams
resulting from this method and the BPMN diagrams are
then examined side by side. Accordingly, the conclusion is
that a new high-level representation seems more system‐
atic as a foundation for building a conceptual schema of
business processes.

Keywords information system configuration, dynamic
reconfiguration, information flow, BPMN

1. Introduction

The ancient Greek philosopher Heraclitus is quoted as
saying, “Everything changes and nothing stands still.” The
phenomenon of change applies to organizations and their
information systems. Information system (IS) change is
concerned with deliberate modifications to an organiza‐
tion’s technical and organizational subsystems that deal
with information [1]. According to Magalhaes [2], “IS
implementation is a (never-ending) process of change.” An
organization must make frequent changes to its IS in order
to update hardware and software components, fix software
flaws and other errors, address security threats, and adapt
to changing business objectives.

These constant changes result in adjustments being made
to the configuration of IS; hence, they could have an impact
on systems’ operations. “Configurations can be complex,
often involving state, and they are expressed in a plethora
of languages which differ not only by syntax, but also by
semantics and domain” [3]. The notion of configuration is
applied in diverse contexts such as hardware, software, and
theoretical computer science. In Turing‘s machine, “the
configuration determines the possible behaviour of the
machine” [4]. Software configuration management is
concerned with assembling software applications systems
from component parts with a focus more on change
management [5]. As systems change, the configuration
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specification determines aspects that may vary when the
system is reconfigured.

Note that this configuration conception is different from
what is called configuring software package servers and data
files that support diversity in applications. This latter type
of configuration refers to a repository containing different
versions of an application, and the configuration specifica‐
tion may simply define which version is installed on a
system, e.g., a machine. This paper is concerned with
schematic configurations involving structural changes
having to do with activities and their precedence [6]
resulting from changing configuration requirements and
bringing a system into compliance with those requirements
(reconfiguration). Examples of structural changes include
the deletion of an activity, the addition of a precedence
relation between two activities, and the parallelization of
two activities [6]. Reconfiguration necessitates first chang‐
ing the global conceptual view; in an analogy to program‐
ming, this schematic reconfiguration entails changing the
program flowchart as a first step in modifying the program
in response to a change in its requirements.

The aim of schematic reconfiguration is to minimize
changes, limiting them to the reconfigured portion of the
system. For example, it is possible to clone the entire
software system, modify it, then switch to the new system,
or we can follow the approach, as we do in this paper, of
developing a new subsystem as an independent subsystem,
pasting it to the running system, testing its behaviour, then
switching to the partially modified system.

Configuration and reconfiguration specifications can be
described at different levels of abstraction, with transfor‐
mations ranging from high- to low-level specifications. A
high-level representation specifies the overall configura‐
tion of a system. This paper focuses on a diagrammatic
high-level description as a tool in maintaining a system’s
configuration and reconfiguration. Visualizing the config‐
uration of a system decreases the time required to diagnose
and repair failures [7].

1.1 Problem

Adjustments made to the configuration of information
systems can have an impact on systems’ operations. The
problem of the reconfiguration of IS is difficult, highly
visible and costly [8]. Many organizations suspend work in
progress in order to avoid the undesirable side effects of
complex changes, but sometimes it is impossible to shut
down all activities in order to make changes [6]. Accord‐
ingly, “The problem of interference between old configu‐
ration activities, new configuration activities and
reconfiguration activities that occurs due to overlapping
modes needs to be addressed” [9].

Generally, in software systems, local changes can have
global effects [10], and many examples can be given in this
context [7], e.g., a 2011 outage in Amazon Web Services [11]

and a 2010 outage in Facebook [12] were each a disaster
caused by a configuration change.

The need exists for better understanding of system config‐
urations, provided by tools for explanation, visualization,
and the repair of high-level processes instead of low-level
program code [10].

1.2 Solutions

The problem mentioned above is typically discussed in the
context of how to build dependable systems that operate in
dynamic environments. Dependability is “the ability of a
system to avoid failures... and outage durations” [13]. Two
of the basic characteristics of dependable service are
flexibility and availability, made possible through dynamic
reconfiguration. Dynamic reconfiguration aims at making
software systems highly available, maintaining their
consistency, and minimizing the down-time caused by
reconfiguration [14].

Reconfigurations can be instantaneous or non- instantane‐
ous;  in  the  latter  case,  system  service  is  discontinued
during  the  reconfiguration  process.  According  to
Abouzaid et al. [9],

[Instantaneous reconfigurations] are unrealistic in the
service domain. For example, instantaneous mode change
in a distributed system is generally not possible, because
the system usually has no well-defined global state at a
specific instant (due to communication delays). Also,
waiting for the reconfiguration to complete is not accepta‐
ble if (as a result) the environment becomes dangerously
unstable or the service provider loses revenue by the
environment aborting the service request.

Accordingly, the need exists to study the problem of
dynamic reconfiguration of dependable services, especially
on its formal foundations of modelling and verification [9].

Dynamic reconfiguration enables resources to be added or
removed while the system is running [15]. It “can provide
maximum flexibility of the system by replacing one
configuration by another at runtime. Furthermore, it makes
the system more dependable because the overall architec‐
ture of the system has not been changed by adding or
removing configurations” [16].

Extensive research and development has been conducted
on handling this problem [9, 17-19]. Run-time testing of
configurations is valuable; it also has weaknesses and may
require an “extensive complex virtualized infrastructure”
[3]. In the static analysis of configurations, they are treated
as mathematical artefacts with automated reasoning.
Analysis is limited by the mathematical model of the
system, and most static analyses do not catch low-level
errors. A scenario-finding technique provides specific
instances of the behaviour of a configuration. Furthermore,
software modelling helps to facilitate understanding of the
specifications, constraints, and alternatives [3]. “Specifica‐
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tion languages like UML benefit from scenario-finding to
help bridge concrete and abstract representations” [3].

This paper utilizes a flow-based conceptual description to
solve the problem of dynamic reconfiguration. Here a
configuration is viewed as a system of flow systems organ‐
ized structurally (e.g., a nested structure); these are
described by their internal flows and connected by external
flows and triggering (see Figure 1; flows and triggering are
represented by solid and dashed arrows, respectively). The
resultant systematic representation can provide a founda‐
tion for building a conceptual schema of business processes
and their relationships.
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In such a proposed scheme, a change in configuration
(reconfiguration) means a change in flow systems, struc‐
tural change (e.g., eliminating a flowsystem), or a change
in flow. The overall configuration is similar to the blueprint
of a building, where the reconfiguration of flow involves
changes made by adding new units, and by changing flows,
e.g., the movement of people and things, flows of water and
electricity, gas, communications, etc.

As an introduction to this technique of flow-based descrip‐
tion, the next section provides a brief overview of the
background and features of the proposed model, called the
Flowthing Model [20-23]. The specific example developed
in this paper is a new contribution.

2. The Flowthing Model

The foundation of the Flowthing Model (FM) can be related
to the notion of fluidity propounded by Heraclitus, a pre-
Socratic Greek philosopher who declared that “everything
flows.” Plato explained this as, “Everything changes and
nothing remains still,” where instead of the word “flow”
he used “change”.

2.1 Description of FM

In FM, things that “flow” (called flowthings, denoted by
solid arrows in the FM diagram) are things that make their
appearance in a system within their spheres. If a system
(global sphere) includes a human sphere, then this human
sphere has subspheres such as actions, money, information,
emotions, etc. as flowthings. These flowthings flow in

specific “flow channels,” changing in form and interacting
with outside spheres. The lower-level spheres where the
flows occur are called flowsystems; these include, at most,
six stages (states of a flowthing), as follows:

• Arrive: a flowthing reaches a new flowsystem

• Accepted: a flowthing is permitted to enter the system.
Note that, in FM, if arriving flowthings are also always
accepted, Arrive and Accept can be combined as a single
received stage.

• Processed (changed in form): the flowthing passes
through some kind of transformation that changes its
form but not its identity (e.g., compressed, coloured)

• Released: a flowthing is marked as ready to be transferred
(e.g., airline passengers waiting to board)

• Created: a new flowthing originates (is created) in the
system (e.g., a data-mining program)

• Transferred: the flowthing is transported somewhere
outside the flowsystem (e.g., packets reaching ports in a
router, but still not in the arrival buffer).

These stages are mutually exclusive; i.e., a flowthing in the
process stage cannot be in the created stage or the released
stage at the same time. An additional stage of stored can also
be added to any FM model to represent the storage of
flowthings; however, storage is a generic stage, not
exclusive, because processed flowthings can be stored, as
can created flowthings, and so on.

Figure 2 shows the structure of a flowsystem and its
internal flows with the six stages and transactions among
them, assuming the irreversibility of flow, e.g., released
flowthings flow only to transfer. A flowsystem may not
need to include all the stages; for example, an archiving
system might use only the stages arrive, accept, and release.
Multiple systems captured by FM can interact with each
other by triggering events related to one another in their
spheres and stages.
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Figure 2. Flowsystem

FM uses the following basic concepts:

Flowthing: A thing that has the capability of being created,
released, transferred, arrived, accepted, and processed
while flowing within and between “domains” called
spheres. Flowthings can be material objects, concepts,
actions, or information. Information communication
involves the creating, releasing, transferring, receiving, and
processing of information.
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Spheres and subspheres: These are the environments of
the flowthing. A sphere is a container of other spheres.
Thus, if the sphere of a person (say, in the supersphere of an
information system) recognizes only two properties, then
the world represented in the person sphere is a world in
which there are only two properties (a closed system
assumption). A sphere can have multiple flowsystems in
its construction, if needed. A sphere can be an entity (e.g.,
a hospital and the departments within it; a person or class
of persons, e.g., nurses; a computer with one or more
components; and so forth), a location (laboratory, waiting
room), communication media (channel, wire)... A flowsys‐
tem is a subsphere that embodies the flow; it itself has no
subsphere.

Triggering: This is an instrument of activation (denoted by
a dashed arrow). This mechanism can control the move‐
ment of flowthings in the system; e.g., in process, if a
flowthing satisfies some condition, it can then flow to
release. A flow is said to be triggered if it is created or
activated by another flow (e.g., a flow of electricity triggers
a flow of heat) or is activated when a condition in the flow
is satisfied (e.g., the processing of records x and y triggers
the creation of record z in the flowsystem of records).
Triggering can also be used to start events, e.g., turning on
a flowsystem by a remote signal.

2.2 Example: FM version of a Simple BPMN Mode

Analysing a hotel reservation scenario, Zhou [16] builds a
BPMN-based graphical description of a hotel booking
process in which a hotel receives a reservation request,
checks the availability, and finally, based on that, either
rejects or confirms the request (see Figure 3). Figure 4 shows
the corresponding FM representation. It includes three
flowthing types: request, rejection, and confirmation, each
with its own stream of flow across different flowsystems in
the customer and hospital spheres. The figure is a type of
map, like the map of a city showing streets, buildings and
facilities. A reservation request is created in the customer
sphere (circle 1 in the diagram). It flows to the request
flowsystem in the hotel sphere (2), where it is received and
processed (3). The process results in triggering (4) the
creation of either a rejection (5) or a confirmation (6) that
flows to the customer. Details of constraints, synchroniza‐
tion, timing, etc., can be superimposed on the diagram, just
as details for managing traffic can supplement a city map.

Note how continuity in the narration of possible flows has
forced the addition of the customer side of the “story” to
complete the scenario. Different flowthings (data types) are
separated into different streams of flow, each specific to its
own realm of creation, movement, and destination. There
are no unbounded natural language operations such as
check, confirm, reject, etc., rather, only five operations –
create, release, transfer, receive, and process – that are
rhythmically repeated in all flowsystems.

3. Complex case study

Abouzaid et al. [9] use BPMN to describe a “complex case
study” involving the reconfiguration of an office workflow
for order processing. They then use different formalisms
(VDM, a model-based formalism; π, calculus and process
algebras) to model the design and study reconfiguration
requirements. “This evaluation may be useful to system
designers intending to use formalisms to design dynami‐
cally reconfigurable systems, and also to researchers
intending to design better formalisms for the design of
dynamically reconfigurable systems” [9].
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shows the corresponding FM representation. It includes 
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confirmation, each with its own stream of flow across 

different flowsystems in the customer and hospital 
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request is created in the customer sphere (circle 1 in the 
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workflow for order processing. They then use different 

formalisms (VDM, a model-based formalism; π, calculus 

and process algebras) to model the design and study 

reconfiguration requirements. ‚This evaluation may be 

useful to system designers intending to use formalisms to 

design dynamically reconfigurable systems, and also to 

researchers intending to design better formalisms for the 

design of dynamically reconfigurable systems‛ *9]. 
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This case study has been studied in several works, includ‐
ing [6, 9, 16, and 24]. It describes the dynamic reconfigura‐
tion of an office workflow that processes orders from
customers in a number of activities, in the following
sequence:

1. Receipt of order

2. Evaluation

3. Rejection/ acceptance:

4. If the order is to be processed, then the following tasks are
performed concurrently:

a. Billing: the customer is billed for the total cost of the
goods ordered plus shipping costs.

b. Shipping: the goods are shipped to the customer.

5. Archiving
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6. Confirmation

After some time, it is decided “to change the order proc‐
essing procedure, so that Billing is performed before
Shipping” instead of concurrently [9].

A version of this problem was analysed by Ellis et al. [6]
using Petri net formalism based on what they call “sequel
flow nets,” as shown in Figure 5.
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Accordingly, Figures 6 and 7 show a partial view of the 

original, and a new configuration, respectively. Only 

partial views are shown because we focus on the portions 

related to the reconfiguration problem. Additionally, the 

aim of this paper is not to produce an exhaustive or 

definitive description of Abouzaid et al.’s [9] design 

scheme; rather, the intent is to show only details sufficient 

to facilitating the objective of the paper: to contrast the 

diagrammatic representation of BPMN against our model 

of reconfiguration of the design of the office workflow 

case study. 
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This paper focuses on the problem presented by [9] in a
design utilizing Business Process Modelling Notation
[BPMN] for an office workflow case study [25]. BPMN was
selected for comparison with FM because of its wide
adoption as a standard for business process modelling [26].

Accordingly, Figures 6 and 7 show a partial view of the
original, and a new configuration, respectively. Only
partial views are shown because we focus on the portions
related to the reconfiguration problem. Additionally, the
aim of this paper is not to produce an exhaustive or
definitive description of Abouzaid et al.’s [9] design
scheme; rather, the intent is to show only details sufficient
to facilitating the objective of the paper: to contrast the
diagrammatic representation of BPMN against our model
of reconfiguration of the design of the office workflow case
study.
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Figure 7. Partial view of office workflow - BPMN diagram of the new
configuration (from [9])

Figure 6 includes three pools representing the functional
entities of main, bill, and ship. In the main pool, when the
order is received, the bill and ship activities are called
concurrently by means of a parallel gateway. “The same
gateway is used to merge the results from Bill and Ship. The
bill and ship details are then sent to the caller (Office
Workflow)... for the sake of simplicity and readability of the
overall workflow, we assume that neither the billing
activity nor the shipping activity provides a negative
result” [9].

In Figure 7, the parallel gateways have been removed, and
according to [9], the reconfiguration requires a change in
the main lane only “where the billing and shipping
activities are called, and therefore their invocations
ordered, while the rest of the workflow remains unaltered.”

Now, how can the transition from the original configura‐
tion to the new one be accomplished? Figure 8 shows a re-
drawing of the overall workflow during its
reconfiguration.
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Abouzaid et al. [9] also introduce an alternative overall 

workflow during reconfiguration, as shown in Figure 9, 

where the bill and ship pools are separated from the 

region of reconfiguration. However, they opted to use the 

first design (Figure 8) for a ‚technical reason where two 

outputs cannot be in sequence.‛  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The default flow is made to the original configuration. 

‚This default flow can be altered through an interrupting 

message event contained in a ‘determine configuration’ 

activity, an activity that determines which configurations 

should be used‛ *9]. An authority can be placed in charge 

of deciding the reconfiguration. 

 

It can be presumed that the solid arrows in the BPMN-

based Figure 10 may represent pure ‚control flow.‛ For 

example, ‚Receive ship details‛ in the new Figure 6 

activates ‚Send bill and ship details,‛ even though there 

is no direct connection between ‚Receive bill details‛ and 

‚Send bill and ship details‛ as shown in Figure 10. 

 

4. FM-based Modelling 

 

4.1 The original view of office workflow 

 

Figure 11 shows the FM representation that corresponds 

to the BPMN workflow diagram of the original 

configuration in Figure 6.  
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Abouzaid et al. [9] also introduce an alternative overall
workflow during reconfiguration, as shown in Figure 9,
where the bill and ship pools are separated from the region
of reconfiguration. However, they opted to use the first
design (Figure 8) for a “technical reason where two outputs
cannot be in sequence.”
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entities of main, bill, and ship. In the main pool, when the 

order is received, the bill and ship activities are called 

concurrently by means of a parallel gateway. ‚The same 

gateway is used to merge the results from Bill and Ship. 

The bill and ship details are then sent to the caller (Office 

Workflow) … for the sake of simplicity and readability of 

the overall workflow, we assume that neither the billing 

activity nor the shipping activity provides a negative 

result‛ *9]. 
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The default flow is made to the original configuration. “This
default flow can be altered through an interrupting message
event contained in a ‘determine configuration’ activity, an
activity that determines which configurations should be
used” [9]. An authority can be placed in charge of decid‐
ing the reconfiguration.

It can be presumed that the solid arrows in the BPMN-
based Figure 10 may represent pure “control flow.” For
example, “Receive ship details” in the new Figure 6 activates
“Send bill and ship details,” even though there is no direct
connection between “Receive bill details” and “Send bill and
ship details” as shown in Figure 10.

Figure 6 includes three pools representing the functional 

entities of main, bill, and ship. In the main pool, when the 

order is received, the bill and ship activities are called 

concurrently by means of a parallel gateway. ‚The same 

gateway is used to merge the results from Bill and Ship. 

The bill and ship details are then sent to the caller (Office 

Workflow) … for the sake of simplicity and readability of 

the overall workflow, we assume that neither the billing 

activity nor the shipping activity provides a negative 

result‛ *9]. 

 

In Figure 7, the parallel gateways have been removed, 

and according to [9], the reconfiguration requires a 

change in the main lane only ‚where the billing and 

shipping activities are called, and therefore their 

invocations ordered, while the rest of the workflow 

remains unaltered.‛ 
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configuration to the new one be accomplished? Figure 8 
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4. FM-based Modelling

4.1 The original view of office workflow

Figure 11 shows the FM representation that corresponds to
the BPMN workflow diagram of the original configuration
in Figure 6.

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FM includes ‚real‛ data flow represented as solid lines in 

the representation. Accordingly, so orders can be sent in 

parallel, the flowthing order includes the original order 

and its copies. How else could we send an order 

concurrently to bill and ship? FM conceptualizes the 

order and its copies as being of the same type of 

flowthing, just as even and odd are types of integers in a 

programming language. Consequently, we do not need to 

separate the flows of the original order and its copies. 

 

In Figure 11, the four flowsystems in the lower/middle 

part of the figure are in the main sphere: main/order, 

main/ship details, main/bill calculation, and 

main/sending. For the sake of simplicity and 

compactness, the box around these flowsystems is not 

drawn. An order flows to the main/order flowsystem 

(circle 1 in the figure). It is processed, triggering (2) the 

creation (3) of two copies, Copy A and Copy B (4 and 5, 

respectively). 

 

Copy A flows to the Bill sphere (6), where it is processed 

(7) to trigger (8) creation (9) of the bill calculation that 

flows to its flowsystem in main (9). In the main/bill 

calculation flowsystem, the bill calculation data is 

processed (10) and triggers the creation (11) of the report, 

including bill calculation and shipping details, which 

flows to the office workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Copy B (5) flows to the ship sphere (12) to be processed 

(13) to trigger (14) the generation (15) of shipping details 

that flow to main (16), where copy B is processed (17) and 

flows (18) to trigger the creation (11) of the report that 

includes bill calculation and shipping details. 

 

Figure 12 depicts the new configuration. It shows that 

copy B of the order is blocked (the dark bar – can be 

implemented as an ‘if statement’ inside the FM stage) in 

the release stage (circle ‚a‛ in the figure). When the Bill 

calculation arrives (‚b‛), this triggers (‚c‛) clearing the 

flow of copy B to ship (‚d‛). 

  

Figure 13 shows the FM overall workflow during 

reconfiguration. An order is received (circle 1) by the 

reconfiguration selection flowsystem (2, the long 

flowsystem on the right side of the figure). The received 

order is processed (3) to determine whether it flows to the 

parallel procedure of bill and ship (4) or the sequential 

procedure (5). The default flow can be altered by 

interrupting the process stage with a triggering signal (6) 

to determine which configurations should be used. 

 

5. Discussion 

 

BPMN and FM can be contrasted and compared at two 

different levels: the overall model and the level of 

technical details. 
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FM includes “real” data flow represented as solid lines in
the representation. Accordingly, so orders can be sent in
parallel, the flowthing order includes the original order and
its copies. How else could we send an order concurrently to
bill and ship? FM conceptualizes the order and its copies as
being of the same type of flowthing, just as even and odd
are types of integers in a programming language. Conse‐
quently, we do not need to separate the flows of the original
order and its copies.

In Figure 11, the four flowsystems in the lower/middle part
of the figure are in the main sphere: main/order, main/
ship details, main/bill calculation, and main/sending. For
the sake of simplicity and compactness, the box around these
flowsystems is not drawn. An order flows to the main/
order flowsystem (circle 1 in the figure). It is processed,

triggering (2) the creation (3) of two copies, Copy A and
Copy B (4 and 5, respectively).

Copy A flows to the Bill sphere (6), where it is processed (7)
to trigger (8) creation (9) of the bill calculation that flows to
its  flowsystem in  main  (9).  In  the  main/bill  calculation
flowsystem, the bill calculation data is processed (10) and
triggers  the  creation  (11)  of  the  report,  including  bill
calculation and shipping details, which flows to the office
workflow.

Copy B (5) flows to the ship sphere (12) to be processed (13)
to trigger (14) the generation (15) of shipping details that
flow to main (16), where copy B is processed (17) and flows
(18) to trigger the creation (11) of the report that includes bill
calculation and shipping details.

Figure 12 depicts the new configuration. It shows that copy
B of the order is blocked (the dark bar – can be implement‐
ed as an ‘if statement’ inside the FM stage) in the release
stage (circle “a” in the figure). When the Bill calculation
arrives (“b”), this triggers (“c”) clearing the flow of copy B
to ship (“d”).

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Some remarks on the BPMN and FM representations 

 

Contrasting the FM representation of Figure 11 with the 

BPMN modelling (Figure 6), it can be noted that the 

sequence flow in BPMN (solid arrows) may or may not 

subsume the message flow (dashed arrows). For example, 

in Figure 6 the ‚Receive order‛, parallel gateway, and 

‚Call bill‛ are connected by solid arrows representing the 

sequence of execution. It is understood, implicitly, that 

the order is also flowing in the same direction. The same 

BPMN representation can depict two situations: one in 

which the control flow coincides with the data flow, and 

one where they do not, e.g., a message arrives, activating 

a sequence of processes that do not use the message. 

Additionally, there is an implicit ‚jump‛ in message 

(data) flow, as illustrated previously in Figure 10.  

 

In FM, the semantics of flow are clear. The flow of data 

implies a possible chronological sequence. If a piece of 

data moves from one sphere to another, it is received 

(after transfer) sometime after it is sent (released/ 

transferred). Additionally, one clear weakness of BPMN 

representation is the infinite number of processes that can 

be specified, e.g., in Figure 6, receive, call, calculate, send, 

ship; in principle, all natural language verbs could be 

used to denote activities, whereas FM uses only six 

generic ‚processes.‛ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 General comparison, BPMN vs. FM 

 

The Flowthing Model presents an alternative conceptual 

representation for use in the context of change during 

reconfiguration activities. FM-based description 

concentrates on identifying flowthings and their 

flows. In FM, flowthing movement (solid arrows) is a 

fundamental characteristic that denotes an actual or 

logical flow. The structure of the FM representation 

reflects a map of the system, in the same way a blueprint 

serves as the map of a high-rise construction project.  By 

contrast, the BPMN depiction has a prevailing ‚control 

flow‛ distinction that reflects, in general, the network 

(e.g., sequence) of tasks to be performed; e.g., in the 

construction analogy:  import material, calculate cost, lay 

foundation, pour concrete, etc. Accordingly, this implies 

that an FM schema precedes and is more basic than the 

BPMN scheme.  

 

Figure 14 shows the superimposing of the BPMN original 

configuration of Figure 6 over the corresponding FM 

schemata of Figure 11. In Figure 14, the BPMN 

designations and symbols seem heterogeneous (e.g., 

shapes, icons, text, etc.) over the FM map. If the purpose 

of such ‚shorthand‛ diagramming of BPMN is to make 

‚easier the communication and coordination between 

non-technical and technical users by offering a common 

language‛ *27], the FM description can be simplified as 

shown in Figure 15. 

Figure 12. The FM representation of modification in the new configuration. 
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Figure 12. The FM representation of modification in the new configuration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

 

This paper has applied an alternative representation of 

workflows to the problem of dynamic reconfiguration in 

the context of business processes. A new solution to the 

problem is not introduced; rather, the paper proposes a 

novel form of depicting the problem and its solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is difficult to prove technically that a certain 

diagramming method is better or worse than another, 

especially if they are at the same level of abstraction. One 

way to achieve a reasonable comparative analysis is to 

apply the same problem to both methodologies and then 

inspect the resultant diagrams side by side.  

 

 

 

Figure 13. The FM representation of the reconfiguration. 
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Figure 13. The FM representation of the reconfiguration
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Figure 13 shows the FM overall workflow during reconfigu‐
ration. An order is received (circle 1) by the reconfigura‐
tion selection flowsystem (2, the long flowsystem on the
right side of the figure). The received order is processed (3)
to determine whether it flows to the parallel procedure of
bill and ship (4) or the sequential procedure (5). The default
flow can be altered by interrupting the process stage with a
triggering  signal  (6)  to  determine  which  configurations
should be used.

5. Discussion

BPMN and FM can be contrasted and compared at two
different levels: the overall model and the level of technical
details.

5.1 Some remarks on the BPMN and FM representations

Contrasting the FM representation of Figure 11 with the
BPMN modelling (Figure 6), it can be noted that the
sequence flow in BPMN (solid arrows) may or may not
subsume the message flow (dashed arrows). For example,
in Figure 6 the “Receive order”, parallel gateway, and “Call
bill” are connected by solid arrows representing the
sequence of execution. It is understood, implicitly, that the
order is also flowing in the same direction. The same BPMN
representation can depict two situations: one in which the
control flow coincides with the data flow, and one where
they do not, e.g., a message arrives, activating a sequence
of processes that do not use the message. Additionally,
there is an implicit “jump” in message (data) flow, as
illustrated previously in Figure 10.

In FM, the semantics of flow are clear. The flow of data
implies a possible chronological sequence. If a piece of data
moves from one sphere to another, it is received (after
transfer) sometime after it is sent (released/ transferred).
Additionally, one clear weakness of BPMN representation
is the infinite number of processes that can be specified, e.g.,
in Figure 6, receive, call, calculate, send, ship; in principle,
all natural language verbs could be used to denote activi‐
ties, whereas FM uses only six generic “processes.”

5.2 General comparison, BPMN vs. FM

The Flowthing Model presents an alternative conceptual
representation for use in the context of change during
reconfiguration activities. FM-based description concen‐
trates on identifying flowthings and their flows. In FM,
flowthing movement (solid arrows) is a fundamental
characteristic that denotes an actual or logical flow. The
structure of the FM representation reflects a map of the
system, in the same way a blueprint serves as the map of a
high-rise construction project. By contrast, the BPMN
depiction has a prevailing “control flow” distinction that
reflects, in general, the network (e.g., sequence) of tasks to
be performed; e.g., in the construction analogy: import
material, calculate cost, lay foundation, pour concrete, etc.

Accordingly, this implies that an FM schema precedes and
is more basic than the BPMN scheme.

Figure 14 shows the superimposing of the BPMN original
configuration of Figure 6 over the corresponding FM
schemata of Figure 11. In Figure 14, the BPMN designations
and symbols seem heterogeneous (e.g., shapes, icons, text,
etc.) over the FM map. If the purpose of such “shorthand”
diagramming of BPMN is to make “easier the communica‐
tion and coordination between non-technical and technical
users by offering a common language” [27], the FM
description can be simplified as shown in Figure 15.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Accordingly, the opinion expressed in this paper is that 

FM representation seems more systematic as a foundation 

for building a conceptual schema of business processes 

and their relationships. This observation can be made 

throughout the paper in the ‚sketchiness‛ of the BPMN 

diagrams, ambiguity in their connections, and excess 

kinds of activities, e.g., almost any English verb is used. 

While such an observation is not a conclusive result, FM 

is potentially worth pursuing to facilitate modelling in 

this area of application, because it may lead to more 

precise  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tools, and it improves understanding of modelling 

notions (e.g., differences and combinations of types of 

flows: control flow, data flow, triggering). 

 

Future work may explore the possibility of enhancing the 

two models with each other. For instance, the basic 

notions of FM can be injected into workflows, or the rich 

constructs of workflows can be incorporated into FM. 
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Figure 14. The BPMN representation of Figure 6 is superimposed over the FM representation of Figure 11.  

 

 

  

 

 

  

 

 

 

Order 

Ship Details 

Order 
Office 

workflow 

Figure 15. Simplified FM representation of the original configuration. 

Copy A Copy B 

Order 

Receive and send in parallel 

Ship 

sphere 

Ship Details 

Bill calculation 

Bill calculation 

Bill 

sphere 

Main Final report 

Figure 14. The BPMN representation of Figure 6 is superimposed over the
FM representation of Figure 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Accordingly, the opinion expressed in this paper is that 

FM representation seems more systematic as a foundation 

for building a conceptual schema of business processes 

and their relationships. This observation can be made 

throughout the paper in the ‚sketchiness‛ of the BPMN 

diagrams, ambiguity in their connections, and excess 

kinds of activities, e.g., almost any English verb is used. 

While such an observation is not a conclusive result, FM 

is potentially worth pursuing to facilitate modelling in 

this area of application, because it may lead to more 

precise  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tools, and it improves understanding of modelling 

notions (e.g., differences and combinations of types of 

flows: control flow, data flow, triggering). 

 

Future work may explore the possibility of enhancing the 

two models with each other. For instance, the basic 

notions of FM can be injected into workflows, or the rich 

constructs of workflows can be incorporated into FM. 
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6. Conclusion

This paper has applied an alternative representation of
workflows to the problem of dynamic reconfiguration in
the context of business processes. A new solution to the
problem is not introduced; rather, the paper proposes a
novel form of depicting the problem and its solution.

It is difficult to prove technically that a certain diagram‐
ming method is better or worse than another, especially if
they are at the same level of abstraction. One way to achieve
a reasonable comparative analysis is to apply the same
problem to both methodologies and then inspect the
resultant diagrams side by side.

Accordingly, the opinion expressed in this paper is that FM
representation seems more systematic as a foundation for
building a conceptual schema of business processes and
their relationships. This observation can be made through‐
out the paper in the “sketchiness” of the BPMN diagrams,
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ambiguity in their connections, and excess kinds of
activities, e.g., almost any English verb is used. While such
an observation is not a conclusive result, FM is potentially
worth pursuing to facilitate modelling in this area of
application, because it may lead to more precise tools, and
it improves understanding of modelling notions (e.g.,
differences and combinations of types of flows: control
flow, data flow, triggering).

Future work may explore the possibility of enhancing the
two models with each other. For instance, the basic notions
of FM can be injected into workflows, or the rich constructs
of workflows can be incorporated into FM.
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