
ARTICLE

International Journal of Engineering Business Management

Schematic Approach to Information
Services Reconfiguration
Regular Paper

Sabah Al-Fedaghi1*

1 Computer Engineering Department, Kuwait University, Kuwait
* Corresponding author(s) E-mail: sabah@alfedaghi.com

Received 24 June 2014; Accepted 6 October 2014

DOI: 10.5772/59434

© 2015 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

Information system change is concerned with deliberate
modifications to an organization’s technical and organiza‐
tional subsystems that deal with information. Changes
result in adjustments being made to the configuration of
information systems that could have an impact on the
operations of those systems. This paper examines the
problem of interference between old configuration activi‐
ties, new configuration activities and reconfiguration
activities that occur due to overlapping modes. The paper
proposes a novel form of depicting and solving the problem
based on a flow-based conceptualization in which a
configuration can be viewed as a system of flow systems
organized architecturally, described by their internal flows,
and connected by external flows and triggering. This
method of diagramming is applied to a complex case study
involving the reconfiguration of an office workflow for
order processing described in BPMN. The diagrams
resulting from this method and the BPMN diagrams are
then examined side by side. Accordingly, the conclusion is
that a new high-level representation seems more system‐
atic as a foundation for building a conceptual schema of
business processes.

Keywords information system configuration, dynamic
reconfiguration, information flow, BPMN

1. Introduction

The ancient Greek philosopher Heraclitus is quoted as
saying, “Everything changes and nothing stands still.” The
phenomenon of change applies to organizations and their
information systems. Information system (IS) change is
concerned with deliberate modifications to an organiza‐
tion’s technical and organizational subsystems that deal
with information [1]. According to Magalhaes [2], “IS
implementation is a (never-ending) process of change.” An
organization must make frequent changes to its IS in order
to update hardware and software components, fix software
flaws and other errors, address security threats, and adapt
to changing business objectives.

These constant changes result in adjustments being made
to the configuration of IS; hence, they could have an impact
on systems’ operations. “Configurations can be complex,
often involving state, and they are expressed in a plethora
of languages which differ not only by syntax, but also by
semantics and domain” [3]. The notion of configuration is
applied in diverse contexts such as hardware, software, and
theoretical computer science. In Turing‘s machine, “the
configuration determines the possible behaviour of the
machine” [4]. Software configuration management is
concerned with assembling software applications systems
from component parts with a focus more on change
management [5]. As systems change, the configuration

1Int J Eng Bus Manag, 2015, 7:2 | doi: 10.5772/59434

specification determines aspects that may vary when the
system is reconfigured.

Note that this configuration conception is different from
what is called configuring software package servers and data
files that support diversity in applications. This latter type
of configuration refers to a repository containing different
versions of an application, and the configuration specifica‐
tion may simply define which version is installed on a
system, e.g., a machine. This paper is concerned with
schematic configurations involving structural changes
having to do with activities and their precedence [6]
resulting from changing configuration requirements and
bringing a system into compliance with those requirements
(reconfiguration). Examples of structural changes include
the deletion of an activity, the addition of a precedence
relation between two activities, and the parallelization of
two activities [6]. Reconfiguration necessitates first chang‐
ing the global conceptual view; in an analogy to program‐
ming, this schematic reconfiguration entails changing the
program flowchart as a first step in modifying the program
in response to a change in its requirements.

The aim of schematic reconfiguration is to minimize
changes, limiting them to the reconfigured portion of the
system. For example, it is possible to clone the entire
software system, modify it, then switch to the new system,
or we can follow the approach, as we do in this paper, of
developing a new subsystem as an independent subsystem,
pasting it to the running system, testing its behaviour, then
switching to the partially modified system.

Configuration and reconfiguration specifications can be
described at different levels of abstraction, with transfor‐
mations ranging from high- to low-level specifications. A
high-level representation specifies the overall configura‐
tion of a system. This paper focuses on a diagrammatic
high-level description as a tool in maintaining a system’s
configuration and reconfiguration. Visualizing the config‐
uration of a system decreases the time required to diagnose
and repair failures [7].

1.1 Problem

Adjustments made to the configuration of information
systems can have an impact on systems’ operations. The
problem of the reconfiguration of IS is difficult, highly
visible and costly [8]. Many organizations suspend work in
progress in order to avoid the undesirable side effects of
complex changes, but sometimes it is impossible to shut
down all activities in order to make changes [6]. Accord‐
ingly, “The problem of interference between old configu‐
ration activities, new configuration activities and
reconfiguration activities that occurs due to overlapping
modes needs to be addressed” [9].

Generally, in software systems, local changes can have
global effects [10], and many examples can be given in this
context [7], e.g., a 2011 outage in Amazon Web Services [11]

and a 2010 outage in Facebook [12] were each a disaster
caused by a configuration change.

The need exists for better understanding of system config‐
urations, provided by tools for explanation, visualization,
and the repair of high-level processes instead of low-level
program code [10].

1.2 Solutions

The problem mentioned above is typically discussed in the
context of how to build dependable systems that operate in
dynamic environments. Dependability is “the ability of a
system to avoid failures... and outage durations” [13]. Two
of the basic characteristics of dependable service are
flexibility and availability, made possible through dynamic
reconfiguration. Dynamic reconfiguration aims at making
software systems highly available, maintaining their
consistency, and minimizing the down-time caused by
reconfiguration [14].

Reconfigurations can be instantaneous or non- instantane‐
ous; in the latter case, system service is discontinued
during the reconfiguration process. According to
Abouzaid et al. [9],

[Instantaneous reconfigurations] are unrealistic in the
service domain. For example, instantaneous mode change
in a distributed system is generally not possible, because
the system usually has no well-defined global state at a
specific instant (due to communication delays). Also,
waiting for the reconfiguration to complete is not accepta‐
ble if (as a result) the environment becomes dangerously
unstable or the service provider loses revenue by the
environment aborting the service request.

Accordingly, the need exists to study the problem of
dynamic reconfiguration of dependable services, especially
on its formal foundations of modelling and verification [9].

Dynamic reconfiguration enables resources to be added or
removed while the system is running [15]. It “can provide
maximum flexibility of the system by replacing one
configuration by another at runtime. Furthermore, it makes
the system more dependable because the overall architec‐
ture of the system has not been changed by adding or
removing configurations” [16].

Extensive research and development has been conducted
on handling this problem [9, 17-19]. Run-time testing of
configurations is valuable; it also has weaknesses and may
require an “extensive complex virtualized infrastructure”
[3]. In the static analysis of configurations, they are treated
as mathematical artefacts with automated reasoning.
Analysis is limited by the mathematical model of the
system, and most static analyses do not catch low-level
errors. A scenario-finding technique provides specific
instances of the behaviour of a configuration. Furthermore,
software modelling helps to facilitate understanding of the
specifications, constraints, and alternatives [3]. “Specifica‐

2 Int J Eng Bus Manag, 2015, 7:2 | doi: 10.5772/59434

tion languages like UML benefit from scenario-finding to
help bridge concrete and abstract representations” [3].

This paper utilizes a flow-based conceptual description to
solve the problem of dynamic reconfiguration. Here a
configuration is viewed as a system of flow systems organ‐
ized structurally (e.g., a nested structure); these are
described by their internal flows and connected by external
flows and triggering (see Figure 1; flows and triggering are
represented by solid and dashed arrows, respectively). The
resultant systematic representation can provide a founda‐
tion for building a conceptual schema of business processes
and their relationships.

may require an ‚extensive complex virtualized

infrastructure‛ *3]. In the static analysis of configurations,

they are treated as mathematical artefacts with automated

reasoning. Analysis is limited by the mathematical model

of the system, and most static analyses do not catch low-

level errors. A scenario-finding technique provides

specific instances of the behaviour of a configuration.

Furthermore, software modelling helps to facilitate

understanding of the specifications, constraints, and

alternatives [3]. ‚Specification languages like UML

benefit from scenario-finding to help bridge concrete and

abstract representations‛ *3].

This paper utilizes a flow-based conceptual description to

solve the problem of dynamic reconfiguration. Here a

configuration is viewed as a system of flow systems

organized structurally (e.g., a nested structure); these are

described by their internal flows and connected by

external flows and triggering (see Figure 1; flows and

triggering are represented by solid and dashed arrows,

respectively). The resultant systematic representation can

provide a foundation for building a conceptual schema of

business processes and their relationships.

In such a proposed scheme, a change in configuration

(reconfiguration) means a change in flow systems,

structural change (e.g., eliminating a flowsystem), or a

change in flow. The overall configuration is similar to the

blueprint of a building, where the reconfiguration of flow

involves changes made by adding new units, and by

changing flows, e.g., the movement of people and things,

flows of water and electricity, gas, communications, etc.

As an introduction to this technique of flow-based

description, the next section provides a brief overview of

the background and features of the proposed model,

called the Flowthing Model [20-23]. The specific example

developed in this paper is a new contribution.

 2. The Flowthing Model

The foundation of the Flowthing Model (FM) can be

related to the notion of fluidity propounded by

Heraclitus, a pre-Socratic Greek philosopher who

declared that ‚everything flows.‛ Plato explained this as,

‚Everything changes and nothing remains still,‛ where

instead of the word ‚flow‛ he used ‚change‛.

2.1 Description of FM

In FM, things that ‚flow‛ (called flowthings, denoted by

solid arrows in the FM diagram) are things that make

their appearance in a system within their spheres. If a

system (global sphere) includes a human sphere, then this

human sphere has subspheres such as actions, money,

information, emotions, etc. as flowthings. These

flowthings flow in specific ‚flow channels,‛ changing in

form and interacting with outside spheres. The lower-

level spheres where the flows occur are called

flowsystems; these include, at most, six stages (states of a

flowthing), as follows:

- Arrive: a flowthing reaches a new flowsystem

- Accepted: a flowthing is permitted to enter the system.

Note that, in FM, if arriving flowthings are also always

accepted, Arrive and Accept can be combined as a single

received stage.

- Processed (changed in form): the flowthing passes

through some kind of transformation that changes its

form but not its identity (e.g., compressed, coloured)

- Released: a flowthing is marked as ready to be

transferred (e.g., airline passengers waiting to board)

- Created: a new flowthing originates (is created) in the

system (e.g., a data-mining program)

- Transferred: the flowthing is transported somewhere

outside the flowsystem (e.g., packets reaching ports in a

router, but still not in the arrival buffer).

These stages are mutually exclusive; i.e., a flowthing in

the process stage cannot be in the created stage or the

released stage at the same time. An additional stage of

stored can also be added to any FM model to represent the

storage of flowthings; however, storage is a generic stage,

not exclusive, because processed flowthings can be

stored, as can created flowthings, and so on.

Figure 2 shows the structure of a flowsystem and its

internal flows with the six stages and transactions among

them, assuming the irreversibility of flow, e.g., released

flowthings flow only to transfer. A flowsystem may not

need to include all the stages; for example, an archiving

system might use only the stages arrive, accept, and

release. Multiple systems captured by FM can interact

with each other by triggering events related to one

another in their spheres and stages.

Receive

Figure 2. Flowsystem

Create

Process Accept

Transfer Release

Arrive

 Flow system Flow system

 Flow system

 Flow system Flow system

 Flow system

Configuration

Figure 1. A configuration based on a system of flow systems
Figure 1. A configuration based on a system of flow systems

In such a proposed scheme, a change in configuration
(reconfiguration) means a change in flow systems, struc‐
tural change (e.g., eliminating a flowsystem), or a change
in flow. The overall configuration is similar to the blueprint
of a building, where the reconfiguration of flow involves
changes made by adding new units, and by changing flows,
e.g., the movement of people and things, flows of water and
electricity, gas, communications, etc.

As an introduction to this technique of flow-based descrip‐
tion, the next section provides a brief overview of the
background and features of the proposed model, called the
Flowthing Model [20-23]. The specific example developed
in this paper is a new contribution.

2. The Flowthing Model

The foundation of the Flowthing Model (FM) can be related
to the notion of fluidity propounded by Heraclitus, a pre-
Socratic Greek philosopher who declared that “everything
flows.” Plato explained this as, “Everything changes and
nothing remains still,” where instead of the word “flow”
he used “change”.

2.1 Description of FM

In FM, things that “flow” (called flowthings, denoted by
solid arrows in the FM diagram) are things that make their
appearance in a system within their spheres. If a system
(global sphere) includes a human sphere, then this human
sphere has subspheres such as actions, money, information,
emotions, etc. as flowthings. These flowthings flow in

specific “flow channels,” changing in form and interacting
with outside spheres. The lower-level spheres where the
flows occur are called flowsystems; these include, at most,
six stages (states of a flowthing), as follows:

• Arrive: a flowthing reaches a new flowsystem

• Accepted: a flowthing is permitted to enter the system.
Note that, in FM, if arriving flowthings are also always
accepted, Arrive and Accept can be combined as a single
received stage.

• Processed (changed in form): the flowthing passes
through some kind of transformation that changes its
form but not its identity (e.g., compressed, coloured)

• Released: a flowthing is marked as ready to be transferred
(e.g., airline passengers waiting to board)

• Created: a new flowthing originates (is created) in the
system (e.g., a data-mining program)

• Transferred: the flowthing is transported somewhere
outside the flowsystem (e.g., packets reaching ports in a
router, but still not in the arrival buffer).

These stages are mutually exclusive; i.e., a flowthing in the
process stage cannot be in the created stage or the released
stage at the same time. An additional stage of stored can also
be added to any FM model to represent the storage of
flowthings; however, storage is a generic stage, not
exclusive, because processed flowthings can be stored, as
can created flowthings, and so on.

Figure 2 shows the structure of a flowsystem and its
internal flows with the six stages and transactions among
them, assuming the irreversibility of flow, e.g., released
flowthings flow only to transfer. A flowsystem may not
need to include all the stages; for example, an archiving
system might use only the stages arrive, accept, and release.
Multiple systems captured by FM can interact with each
other by triggering events related to one another in their
spheres and stages.

may require an ‚extensive complex virtualized

infrastructure‛ *3]. In the static analysis of configurations,

they are treated as mathematical artefacts with automated

reasoning. Analysis is limited by the mathematical model

of the system, and most static analyses do not catch low-

level errors. A scenario-finding technique provides

specific instances of the behaviour of a configuration.

Furthermore, software modelling helps to facilitate

understanding of the specifications, constraints, and

alternatives [3]. ‚Specification languages like UML

benefit from scenario-finding to help bridge concrete and

abstract representations‛ *3].

This paper utilizes a flow-based conceptual description to

solve the problem of dynamic reconfiguration. Here a

configuration is viewed as a system of flow systems

organized structurally (e.g., a nested structure); these are

described by their internal flows and connected by

external flows and triggering (see Figure 1; flows and

triggering are represented by solid and dashed arrows,

respectively). The resultant systematic representation can

provide a foundation for building a conceptual schema of

business processes and their relationships.

In such a proposed scheme, a change in configuration

(reconfiguration) means a change in flow systems,

structural change (e.g., eliminating a flowsystem), or a

change in flow. The overall configuration is similar to the

blueprint of a building, where the reconfiguration of flow

involves changes made by adding new units, and by

changing flows, e.g., the movement of people and things,

flows of water and electricity, gas, communications, etc.

As an introduction to this technique of flow-based

description, the next section provides a brief overview of

the background and features of the proposed model,

called the Flowthing Model [20-23]. The specific example

developed in this paper is a new contribution.

 2. The Flowthing Model

The foundation of the Flowthing Model (FM) can be

related to the notion of fluidity propounded by

Heraclitus, a pre-Socratic Greek philosopher who

declared that ‚everything flows.‛ Plato explained this as,

‚Everything changes and nothing remains still,‛ where

instead of the word ‚flow‛ he used ‚change‛.

2.1 Description of FM

In FM, things that ‚flow‛ (called flowthings, denoted by

solid arrows in the FM diagram) are things that make

their appearance in a system within their spheres. If a

system (global sphere) includes a human sphere, then this

human sphere has subspheres such as actions, money,

information, emotions, etc. as flowthings. These

flowthings flow in specific ‚flow channels,‛ changing in

form and interacting with outside spheres. The lower-

level spheres where the flows occur are called

flowsystems; these include, at most, six stages (states of a

flowthing), as follows:

- Arrive: a flowthing reaches a new flowsystem

- Accepted: a flowthing is permitted to enter the system.

Note that, in FM, if arriving flowthings are also always

accepted, Arrive and Accept can be combined as a single

received stage.

- Processed (changed in form): the flowthing passes

through some kind of transformation that changes its

form but not its identity (e.g., compressed, coloured)

- Released: a flowthing is marked as ready to be

transferred (e.g., airline passengers waiting to board)

- Created: a new flowthing originates (is created) in the

system (e.g., a data-mining program)

- Transferred: the flowthing is transported somewhere

outside the flowsystem (e.g., packets reaching ports in a

router, but still not in the arrival buffer).

These stages are mutually exclusive; i.e., a flowthing in

the process stage cannot be in the created stage or the

released stage at the same time. An additional stage of

stored can also be added to any FM model to represent the

storage of flowthings; however, storage is a generic stage,

not exclusive, because processed flowthings can be

stored, as can created flowthings, and so on.

Figure 2 shows the structure of a flowsystem and its

internal flows with the six stages and transactions among

them, assuming the irreversibility of flow, e.g., released

flowthings flow only to transfer. A flowsystem may not

need to include all the stages; for example, an archiving

system might use only the stages arrive, accept, and

release. Multiple systems captured by FM can interact

with each other by triggering events related to one

another in their spheres and stages.

Receive

Figure 2. Flowsystem

Create

Process Accept

Transfer Release

Arrive

 Flow system Flow system

 Flow system

 Flow system Flow system

 Flow system

Configuration

Figure 1. A configuration based on a system of flow systems

Figure 2. Flowsystem

FM uses the following basic concepts:

Flowthing: A thing that has the capability of being created,
released, transferred, arrived, accepted, and processed
while flowing within and between “domains” called
spheres. Flowthings can be material objects, concepts,
actions, or information. Information communication
involves the creating, releasing, transferring, receiving, and
processing of information.

3Sabah Al-Fedaghi:
Schematic Approach to Information Services Reconfiguration

Spheres and subspheres: These are the environments of
the flowthing. A sphere is a container of other spheres.
Thus, if the sphere of a person (say, in the supersphere of an
information system) recognizes only two properties, then
the world represented in the person sphere is a world in
which there are only two properties (a closed system
assumption). A sphere can have multiple flowsystems in
its construction, if needed. A sphere can be an entity (e.g.,
a hospital and the departments within it; a person or class
of persons, e.g., nurses; a computer with one or more
components; and so forth), a location (laboratory, waiting
room), communication media (channel, wire)... A flowsys‐
tem is a subsphere that embodies the flow; it itself has no
subsphere.

Triggering: This is an instrument of activation (denoted by
a dashed arrow). This mechanism can control the move‐
ment of flowthings in the system; e.g., in process, if a
flowthing satisfies some condition, it can then flow to
release. A flow is said to be triggered if it is created or
activated by another flow (e.g., a flow of electricity triggers
a flow of heat) or is activated when a condition in the flow
is satisfied (e.g., the processing of records x and y triggers
the creation of record z in the flowsystem of records).
Triggering can also be used to start events, e.g., turning on
a flowsystem by a remote signal.

2.2 Example: FM version of a Simple BPMN Mode

Analysing a hotel reservation scenario, Zhou [16] builds a
BPMN-based graphical description of a hotel booking
process in which a hotel receives a reservation request,
checks the availability, and finally, based on that, either
rejects or confirms the request (see Figure 3). Figure 4 shows
the corresponding FM representation. It includes three
flowthing types: request, rejection, and confirmation, each
with its own stream of flow across different flowsystems in
the customer and hospital spheres. The figure is a type of
map, like the map of a city showing streets, buildings and
facilities. A reservation request is created in the customer
sphere (circle 1 in the diagram). It flows to the request
flowsystem in the hotel sphere (2), where it is received and
processed (3). The process results in triggering (4) the
creation of either a rejection (5) or a confirmation (6) that
flows to the customer. Details of constraints, synchroniza‐
tion, timing, etc., can be superimposed on the diagram, just
as details for managing traffic can supplement a city map.

Note how continuity in the narration of possible flows has
forced the addition of the customer side of the “story” to
complete the scenario. Different flowthings (data types) are
separated into different streams of flow, each specific to its
own realm of creation, movement, and destination. There
are no unbounded natural language operations such as
check, confirm, reject, etc., rather, only five operations –
create, release, transfer, receive, and process – that are
rhythmically repeated in all flowsystems.

3. Complex case study

Abouzaid et al. [9] use BPMN to describe a “complex case
study” involving the reconfiguration of an office workflow
for order processing. They then use different formalisms
(VDM, a model-based formalism; π, calculus and process
algebras) to model the design and study reconfiguration
requirements. “This evaluation may be useful to system
designers intending to use formalisms to design dynami‐
cally reconfigurable systems, and also to researchers
intending to design better formalisms for the design of
dynamically reconfigurable systems” [9].

FM uses the following basic concepts:

Flowthing: A thing that has the capability of being

created, released, transferred, arrived, accepted, and

processed while flowing within and between ‚domains‛

called spheres. Flowthings can be material objects,

concepts, actions, or information. Information

communication involves the creating, releasing,

transferring, receiving, and processing of information.

Spheres and subspheres: These are the environments of

the flowthing. A sphere is a container of other spheres.

Thus, if the sphere of a person (say, in the supersphere of

an information system) recognizes only two properties,

then the world represented in the person sphere is a world

in which there are only two properties (a closed system

assumption). A sphere can have multiple flowsystems in

its construction, if needed. A sphere can be an entity (e.g.,

a hospital and the departments within it; a person or class

of persons, e.g., nurses; a computer with one or more

components; and so forth), a location (laboratory, waiting

room), communication media (channel, wire) … A

flowsystem is a subsphere that embodies the flow; it itself

has no subsphere.

Triggering: This is an instrument of activation (denoted

by a dashed arrow). This mechanism can control the

movement of flowthings in the system; e.g., in process, if a

flowthing satisfies some condition, it can then flow to

release. A flow is said to be triggered if it is created or

activated by another flow (e.g., a flow of electricity

triggers a flow of heat) or is activated when a condition in

the flow is satisfied (e.g., the processing of records x and

y triggers the creation of record z in the flowsystem of

records). Triggering can also be used to start events, e.g.,

turning on a flowsystem by a remote signal.

2.1 Example: FM version of a Simple BPMN Mode

Analysing a hotel reservation scenario, Zhou [16] builds a

BPMN-based graphical description of a hotel booking

process in which a hotel receives a reservation request,

checks the availability, and finally, based on that, either

rejects or confirms the request (see Figure 3). Figure 4

shows the corresponding FM representation. It includes

three flowthing types: request, rejection, and

confirmation, each with its own stream of flow across

different flowsystems in the customer and hospital

spheres. The figure is a type of map, like the map of a city

showing streets, buildings and facilities. A reservation

request is created in the customer sphere (circle 1 in the

diagram). It flows to the request flowsystem in the hotel

sphere (2), where it is received and processed (3). The

process results in triggering (4) the creation of either a

rejection (5) or a confirmation (6) that flows to the

customer. Details of constraints, synchronization, timing,

etc., can be superimposed on the diagram, just as details

for managing traffic can supplement a city map.

Note how continuity in the narration of possible flows

has forced the addition of the customer side of the ‚story‛

to complete the scenario. Different flowthings (data

types) are separated into different streams of flow, each

specific to its own realm of creation, movement, and

destination. There are no unbounded natural language

operations such as check, confirm, reject, etc., rather, only

five operations – create, release, transfer, receive, and

process – that are rhythmically repeated in all

flowsystems.

3. Complex case study

Abouzaid et al. [9] use BPMN to describe a ‚complex case

study‛ involving the reconfiguration of an office

workflow for order processing. They then use different

formalisms (VDM, a model-based formalism; π, calculus

and process algebras) to model the design and study

reconfiguration requirements. ‚This evaluation may be

useful to system designers intending to use formalisms to

design dynamically reconfigurable systems, and also to

researchers intending to design better formalisms for the

design of dynamically reconfigurable systems‛ *9].

Receive

reservation

Check the

hotel room

Reject

reservation

Figure 3. BPMN representation of the Hotel Reservation

Scenario (redrawn from [16])

Confirm

reservation

 Create

Release Receive

Process: OR

Create Receive

Create Receive

Request

T
ra

n
sf

er

Release

Release

T
ra

n
sf

er

T
ra

n
sf

er

T
ra

n
sf

er

T
ra

n
sf

er

T
ra

n
sf

er

Request

Rejection Rejection

Confirmation Confirmation

Hotel

Customer

Figure 4. FM representation of the Hotel Reservation

Scenario

1

2

3

4

5

6

Figure 3. BPMN representation of the Hotel Reservation Scenario (redrawn
from [16])

FM uses the following basic concepts:

Flowthing: A thing that has the capability of being

created, released, transferred, arrived, accepted, and

processed while flowing within and between ‚domains‛

called spheres. Flowthings can be material objects,

concepts, actions, or information. Information

communication involves the creating, releasing,

transferring, receiving, and processing of information.

Spheres and subspheres: These are the environments of

the flowthing. A sphere is a container of other spheres.

Thus, if the sphere of a person (say, in the supersphere of

an information system) recognizes only two properties,

then the world represented in the person sphere is a world

in which there are only two properties (a closed system

assumption). A sphere can have multiple flowsystems in

its construction, if needed. A sphere can be an entity (e.g.,

a hospital and the departments within it; a person or class

of persons, e.g., nurses; a computer with one or more

components; and so forth), a location (laboratory, waiting

room), communication media (channel, wire) … A

flowsystem is a subsphere that embodies the flow; it itself

has no subsphere.

Triggering: This is an instrument of activation (denoted

by a dashed arrow). This mechanism can control the

movement of flowthings in the system; e.g., in process, if a

flowthing satisfies some condition, it can then flow to

release. A flow is said to be triggered if it is created or

activated by another flow (e.g., a flow of electricity

triggers a flow of heat) or is activated when a condition in

the flow is satisfied (e.g., the processing of records x and

y triggers the creation of record z in the flowsystem of

records). Triggering can also be used to start events, e.g.,

turning on a flowsystem by a remote signal.

2.1 Example: FM version of a Simple BPMN Mode

Analysing a hotel reservation scenario, Zhou [16] builds a

BPMN-based graphical description of a hotel booking

process in which a hotel receives a reservation request,

checks the availability, and finally, based on that, either

rejects or confirms the request (see Figure 3). Figure 4

shows the corresponding FM representation. It includes

three flowthing types: request, rejection, and

confirmation, each with its own stream of flow across

different flowsystems in the customer and hospital

spheres. The figure is a type of map, like the map of a city

showing streets, buildings and facilities. A reservation

request is created in the customer sphere (circle 1 in the

diagram). It flows to the request flowsystem in the hotel

sphere (2), where it is received and processed (3). The

process results in triggering (4) the creation of either a

rejection (5) or a confirmation (6) that flows to the

customer. Details of constraints, synchronization, timing,

etc., can be superimposed on the diagram, just as details

for managing traffic can supplement a city map.

Note how continuity in the narration of possible flows

has forced the addition of the customer side of the ‚story‛

to complete the scenario. Different flowthings (data

types) are separated into different streams of flow, each

specific to its own realm of creation, movement, and

destination. There are no unbounded natural language

operations such as check, confirm, reject, etc., rather, only

five operations – create, release, transfer, receive, and

process – that are rhythmically repeated in all

flowsystems.

3. Complex case study

Abouzaid et al. [9] use BPMN to describe a ‚complex case

study‛ involving the reconfiguration of an office

workflow for order processing. They then use different

formalisms (VDM, a model-based formalism; π, calculus

and process algebras) to model the design and study

reconfiguration requirements. ‚This evaluation may be

useful to system designers intending to use formalisms to

design dynamically reconfigurable systems, and also to

researchers intending to design better formalisms for the

design of dynamically reconfigurable systems‛ *9].

Receive

reservation

Check the

hotel room

Reject

reservation

Figure 3. BPMN representation of the Hotel Reservation

Scenario (redrawn from [16])

Confirm

reservation

 Create

Release Receive

Process: OR

Create Receive

Create Receive

Request

T
ra

n
sf

er

Release

Release

T
ra

n
sf

er

T
ra

n
sf

er

T
ra

n
sf

er

T
ra

n
sf

er

T
ra

n
sf

er

Request

Rejection Rejection

Confirmation Confirmation

Hotel

Customer

Figure 4. FM representation of the Hotel Reservation

Scenario

1

2

3

4

5

6

Figure 4. FM representation of the Hotel Reservation Scenario

This case study has been studied in several works, includ‐
ing [6, 9, 16, and 24]. It describes the dynamic reconfigura‐
tion of an office workflow that processes orders from
customers in a number of activities, in the following
sequence:

1. Receipt of order

2. Evaluation

3. Rejection/ acceptance:

4. If the order is to be processed, then the following tasks are
performed concurrently:

a. Billing: the customer is billed for the total cost of the
goods ordered plus shipping costs.

b. Shipping: the goods are shipped to the customer.

5. Archiving

4 Int J Eng Bus Manag, 2015, 7:2 | doi: 10.5772/59434

6. Confirmation

After some time, it is decided “to change the order proc‐
essing procedure, so that Billing is performed before
Shipping” instead of concurrently [9].

A version of this problem was analysed by Ellis et al. [6]
using Petri net formalism based on what they call “sequel
flow nets,” as shown in Figure 5.

This case study has been studied in several works,

including [6, 9, 16, and 24]. It describes the dynamic

reconfiguration of an office workflow that processes

orders from customers in a number of activities, in the

following sequence:

1. Receipt of order

2. Evaluation

3. Rejection/ acceptance:

4. If the order is to be processed, then the following tasks are

performed concurrently:

(a) Billing: the customer is billed for the total cost of the

goods ordered plus shipping costs.

(b) Shipping: the goods are shipped to the customer.

5. Archiving

6. Confirmation

After some time, it is decided ‚to change the order

processing procedure, so that Billing is performed before

Shipping‛ instead of concurrently [9].

A version of this problem was analysed by Ellis et al. [6]

using Petri net formalism based on what they call ‚sequel

flow nets,‛ as shown in Figure 5.

This paper focuses on the problem presented by [9] in a

design utilizing Business Process Modelling Notation

[BPMN] for an office workflow case study [25]. BPMN

was selected for comparison with FM because of its wide

adoption as a standard for business process modelling

[26].

Accordingly, Figures 6 and 7 show a partial view of the

original, and a new configuration, respectively. Only

partial views are shown because we focus on the portions

related to the reconfiguration problem. Additionally, the

aim of this paper is not to produce an exhaustive or

definitive description of Abouzaid et al.’s [9] design

scheme; rather, the intent is to show only details sufficient

to facilitating the objective of the paper: to contrast the

diagrammatic representation of BPMN against our model

of reconfiguration of the design of the office workflow

case study.

Credit-Check

Inventory Check

Evaluation

Inventory Check

Credit-Check

Evaluat

ion

Figure 5. Different configurations described in Petri net (from

[6])

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive bill

details

Receive

ship details

+ +
Main

Bill

Ship

Figure. 6. Partial view of office workflow - BPMN diagram of the original configuration (From [9])

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive

ship details Main

Bill

Ship

Figure 7. Partial view of office workflow - BPMN diagram of the new configuration (from [9])

Receive bill

details

Figure 5. Different configurations described in Petri net (from [6])

This paper focuses on the problem presented by [9] in a
design utilizing Business Process Modelling Notation
[BPMN] for an office workflow case study [25]. BPMN was
selected for comparison with FM because of its wide
adoption as a standard for business process modelling [26].

Accordingly, Figures 6 and 7 show a partial view of the
original, and a new configuration, respectively. Only
partial views are shown because we focus on the portions
related to the reconfiguration problem. Additionally, the
aim of this paper is not to produce an exhaustive or
definitive description of Abouzaid et al.’s [9] design
scheme; rather, the intent is to show only details sufficient
to facilitating the objective of the paper: to contrast the
diagrammatic representation of BPMN against our model
of reconfiguration of the design of the office workflow case
study.

This case study has been studied in several works,

including [6, 9, 16, and 24]. It describes the dynamic

reconfiguration of an office workflow that processes

orders from customers in a number of activities, in the

following sequence:

1. Receipt of order

2. Evaluation

3. Rejection/ acceptance:

4. If the order is to be processed, then the following tasks are

performed concurrently:

(a) Billing: the customer is billed for the total cost of the

goods ordered plus shipping costs.

(b) Shipping: the goods are shipped to the customer.

5. Archiving

6. Confirmation

After some time, it is decided ‚to change the order

processing procedure, so that Billing is performed before

Shipping‛ instead of concurrently [9].

A version of this problem was analysed by Ellis et al. [6]

using Petri net formalism based on what they call ‚sequel

flow nets,‛ as shown in Figure 5.

This paper focuses on the problem presented by [9] in a

design utilizing Business Process Modelling Notation

[BPMN] for an office workflow case study [25]. BPMN

was selected for comparison with FM because of its wide

adoption as a standard for business process modelling

[26].

Accordingly, Figures 6 and 7 show a partial view of the

original, and a new configuration, respectively. Only

partial views are shown because we focus on the portions

related to the reconfiguration problem. Additionally, the

aim of this paper is not to produce an exhaustive or

definitive description of Abouzaid et al.’s [9] design

scheme; rather, the intent is to show only details sufficient

to facilitating the objective of the paper: to contrast the

diagrammatic representation of BPMN against our model

of reconfiguration of the design of the office workflow

case study.

Credit-Check

Inventory Check

Evaluation

Inventory Check

Credit-Check

Evaluat

ion

Figure 5. Different configurations described in Petri net (from

[6])

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive bill

details

Receive

ship details

+ +
Main

Bill

Ship

Figure. 6. Partial view of office workflow - BPMN diagram of the original configuration (From [9])

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive

ship details Main

Bill

Ship

Figure 7. Partial view of office workflow - BPMN diagram of the new configuration (from [9])

Receive bill

details

Figure 6. Partial view of office workflow - BPMN diagram of the original
configuration (From [9])

This case study has been studied in several works,

including [6, 9, 16, and 24]. It describes the dynamic

reconfiguration of an office workflow that processes

orders from customers in a number of activities, in the

following sequence:

1. Receipt of order

2. Evaluation

3. Rejection/ acceptance:

4. If the order is to be processed, then the following tasks are

performed concurrently:

(a) Billing: the customer is billed for the total cost of the

goods ordered plus shipping costs.

(b) Shipping: the goods are shipped to the customer.

5. Archiving

6. Confirmation

After some time, it is decided ‚to change the order

processing procedure, so that Billing is performed before

Shipping‛ instead of concurrently [9].

A version of this problem was analysed by Ellis et al. [6]

using Petri net formalism based on what they call ‚sequel

flow nets,‛ as shown in Figure 5.

This paper focuses on the problem presented by [9] in a

design utilizing Business Process Modelling Notation

[BPMN] for an office workflow case study [25]. BPMN

was selected for comparison with FM because of its wide

adoption as a standard for business process modelling

[26].

Accordingly, Figures 6 and 7 show a partial view of the

original, and a new configuration, respectively. Only

partial views are shown because we focus on the portions

related to the reconfiguration problem. Additionally, the

aim of this paper is not to produce an exhaustive or

definitive description of Abouzaid et al.’s [9] design

scheme; rather, the intent is to show only details sufficient

to facilitating the objective of the paper: to contrast the

diagrammatic representation of BPMN against our model

of reconfiguration of the design of the office workflow

case study.

Credit-Check

Inventory Check

Evaluation

Inventory Check

Credit-Check

Evaluat

ion

Figure 5. Different configurations described in Petri net (from

[6])

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive bill

details

Receive

ship details

+ +
Main

Bill

Ship

Figure. 6. Partial view of office workflow - BPMN diagram of the original configuration (From [9])

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive

ship details Main

Bill

Ship

Figure 7. Partial view of office workflow - BPMN diagram of the new configuration (from [9])

Receive bill

details

Figure 7. Partial view of office workflow - BPMN diagram of the new
configuration (from [9])

Figure 6 includes three pools representing the functional
entities of main, bill, and ship. In the main pool, when the
order is received, the bill and ship activities are called
concurrently by means of a parallel gateway. “The same
gateway is used to merge the results from Bill and Ship. The
bill and ship details are then sent to the caller (Office
Workflow)... for the sake of simplicity and readability of the
overall workflow, we assume that neither the billing
activity nor the shipping activity provides a negative
result” [9].

In Figure 7, the parallel gateways have been removed, and
according to [9], the reconfiguration requires a change in
the main lane only “where the billing and shipping
activities are called, and therefore their invocations
ordered, while the rest of the workflow remains unaltered.”

Now, how can the transition from the original configura‐
tion to the new one be accomplished? Figure 8 shows a re-
drawing of the overall workflow during its
reconfiguration.

Figure 6 includes three pools representing the functional

entities of main, bill, and ship. In the main pool, when the

order is received, the bill and ship activities are called

concurrently by means of a parallel gateway. ‚The same

gateway is used to merge the results from Bill and Ship.

The bill and ship details are then sent to the caller (Office

Workflow) … for the sake of simplicity and readability of

the overall workflow, we assume that neither the billing

activity nor the shipping activity provides a negative

result‛ *9].

In Figure 7, the parallel gateways have been removed,

and according to [9], the reconfiguration requires a

change in the main lane only ‚where the billing and

shipping activities are called, and therefore their

invocations ordered, while the rest of the workflow

remains unaltered.‛

Now, how can the transition from the original

configuration to the new one be accomplished? Figure 8

shows a re-drawing of the overall workflow during its

reconfiguration.

Abouzaid et al. [9] also introduce an alternative overall

workflow during reconfiguration, as shown in Figure 9,

where the bill and ship pools are separated from the

region of reconfiguration. However, they opted to use the

first design (Figure 8) for a ‚technical reason where two

outputs cannot be in sequence.‛

The default flow is made to the original configuration.

‚This default flow can be altered through an interrupting

message event contained in a ‘determine configuration’

activity, an activity that determines which configurations

should be used‛ *9]. An authority can be placed in charge

of deciding the reconfiguration.

It can be presumed that the solid arrows in the BPMN-

based Figure 10 may represent pure ‚control flow.‛ For

example, ‚Receive ship details‛ in the new Figure 6

activates ‚Send bill and ship details,‛ even though there

is no direct connection between ‚Receive bill details‛ and

‚Send bill and ship details‛ as shown in Figure 10.

4. FM-based Modelling

4.1 The original view of office workflow

Figure 11 shows the FM representation that corresponds

to the BPMN workflow diagram of the original

configuration in Figure 6.

Figure 9. Partial view of an alternative BPMN diagram of the

reconfiguration (based on a diagram in [9])

Determine

configuration

Main

Bill

Ship

Configuration 1

Main

Reconfiguration

Configuration 2

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive

ship details
Main

Bill

Ship

Figure 10. Illustration of pure control flow in the BPMN diagram.

Receive bill

details

Bill data does not flow to Ship hence,

its flow to ‚Send bill and ship

details‛ is implicitly understood.

Figure 8. Partial view of office workflow - BPMN diagram of the

reconfiguration (based on a diagram in [9])

Determine

configuration

Main

Bill

 Ship

C
o

n
fi

g
u

ra
ti

o
n

 1

Main

Bill

 Ship

C
o

n
fi

g
u

ra
ti

o
n

 2

Reconfiguration

Figure 8. Partial view of office workflow - BPMN diagram of the reconfigu‐
ration (based on a diagram in [9])

Abouzaid et al. [9] also introduce an alternative overall
workflow during reconfiguration, as shown in Figure 9,
where the bill and ship pools are separated from the region
of reconfiguration. However, they opted to use the first
design (Figure 8) for a “technical reason where two outputs
cannot be in sequence.”

Figure 6 includes three pools representing the functional

entities of main, bill, and ship. In the main pool, when the

order is received, the bill and ship activities are called

concurrently by means of a parallel gateway. ‚The same

gateway is used to merge the results from Bill and Ship.

The bill and ship details are then sent to the caller (Office

Workflow) … for the sake of simplicity and readability of

the overall workflow, we assume that neither the billing

activity nor the shipping activity provides a negative

result‛ *9].

In Figure 7, the parallel gateways have been removed,

and according to [9], the reconfiguration requires a

change in the main lane only ‚where the billing and

shipping activities are called, and therefore their

invocations ordered, while the rest of the workflow

remains unaltered.‛

Now, how can the transition from the original

configuration to the new one be accomplished? Figure 8

shows a re-drawing of the overall workflow during its

reconfiguration.

Abouzaid et al. [9] also introduce an alternative overall

workflow during reconfiguration, as shown in Figure 9,

where the bill and ship pools are separated from the

region of reconfiguration. However, they opted to use the

first design (Figure 8) for a ‚technical reason where two

outputs cannot be in sequence.‛

The default flow is made to the original configuration.

‚This default flow can be altered through an interrupting

message event contained in a ‘determine configuration’

activity, an activity that determines which configurations

should be used‛ *9]. An authority can be placed in charge

of deciding the reconfiguration.

It can be presumed that the solid arrows in the BPMN-

based Figure 10 may represent pure ‚control flow.‛ For

example, ‚Receive ship details‛ in the new Figure 6

activates ‚Send bill and ship details,‛ even though there

is no direct connection between ‚Receive bill details‛ and

‚Send bill and ship details‛ as shown in Figure 10.

4. FM-based Modelling

4.1 The original view of office workflow

Figure 11 shows the FM representation that corresponds

to the BPMN workflow diagram of the original

configuration in Figure 6.

Figure 9. Partial view of an alternative BPMN diagram of the

reconfiguration (based on a diagram in [9])

Determine

configuration

Main

Bill

Ship

Configuration 1

Main

Reconfiguration

Configuration 2

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive

ship details
Main

Bill

Ship

Figure 10. Illustration of pure control flow in the BPMN diagram.

Receive bill

details

Bill data does not flow to Ship hence,

its flow to ‚Send bill and ship

details‛ is implicitly understood.

Figure 8. Partial view of office workflow - BPMN diagram of the

reconfiguration (based on a diagram in [9])

Determine

configuration

Main

Bill

 Ship

C
o

n
fi

g
u

ra
ti

o
n

 1

Main

Bill

 Ship

C
o

n
fi

g
u

ra
ti

o
n

 2

Reconfiguration

Figure 9. Partial view of an alternative BPMN diagram of the reconfiguration
(based on a diagram in [9])

5Sabah Al-Fedaghi:
Schematic Approach to Information Services Reconfiguration

The default flow is made to the original configuration. “This
default flow can be altered through an interrupting message
event contained in a ‘determine configuration’ activity, an
activity that determines which configurations should be
used” [9]. An authority can be placed in charge of decid‐
ing the reconfiguration.

It can be presumed that the solid arrows in the BPMN-
based Figure 10 may represent pure “control flow.” For
example, “Receive ship details” in the new Figure 6 activates
“Send bill and ship details,” even though there is no direct
connection between “Receive bill details” and “Send bill and
ship details” as shown in Figure 10.

Figure 6 includes three pools representing the functional

entities of main, bill, and ship. In the main pool, when the

order is received, the bill and ship activities are called

concurrently by means of a parallel gateway. ‚The same

gateway is used to merge the results from Bill and Ship.

The bill and ship details are then sent to the caller (Office

Workflow) … for the sake of simplicity and readability of

the overall workflow, we assume that neither the billing

activity nor the shipping activity provides a negative

result‛ *9].

In Figure 7, the parallel gateways have been removed,

and according to [9], the reconfiguration requires a

change in the main lane only ‚where the billing and

shipping activities are called, and therefore their

invocations ordered, while the rest of the workflow

remains unaltered.‛

Now, how can the transition from the original

configuration to the new one be accomplished? Figure 8

shows a re-drawing of the overall workflow during its

reconfiguration.

Abouzaid et al. [9] also introduce an alternative overall

workflow during reconfiguration, as shown in Figure 9,

where the bill and ship pools are separated from the

region of reconfiguration. However, they opted to use the

first design (Figure 8) for a ‚technical reason where two

outputs cannot be in sequence.‛

The default flow is made to the original configuration.

‚This default flow can be altered through an interrupting

message event contained in a ‘determine configuration’

activity, an activity that determines which configurations

should be used‛ *9]. An authority can be placed in charge

of deciding the reconfiguration.

It can be presumed that the solid arrows in the BPMN-

based Figure 10 may represent pure ‚control flow.‛ For

example, ‚Receive ship details‛ in the new Figure 6

activates ‚Send bill and ship details,‛ even though there

is no direct connection between ‚Receive bill details‛ and

‚Send bill and ship details‛ as shown in Figure 10.

4. FM-based Modelling

4.1 The original view of office workflow

Figure 11 shows the FM representation that corresponds

to the BPMN workflow diagram of the original

configuration in Figure 6.

Figure 9. Partial view of an alternative BPMN diagram of the

reconfiguration (based on a diagram in [9])

Determine

configuration

Main

Bill

Ship

Configuration 1

Main

Reconfiguration

Configuration 2

Call bill

Call ship

Calculate

bill
Send bill

Send bill and

ship details

Send ship

details
Ship

product

Receive

order

Receive

order

Receive

order

Receive

ship details
Main

Bill

Ship

Figure 10. Illustration of pure control flow in the BPMN diagram.

Receive bill

details

Bill data does not flow to Ship hence,

its flow to ‚Send bill and ship

details‛ is implicitly understood.

Figure 8. Partial view of office workflow - BPMN diagram of the

reconfiguration (based on a diagram in [9])

Determine

configuration

Main

Bill

 Ship

C
o

n
fi

g
u

ra
ti

o
n

 1

Main

Bill

 Ship

C
o

n
fi

g
u

ra
ti

o
n

 2

Reconfiguration

Figure 10. Illustration of pure control flow in the BPMN diagram.

4. FM-based Modelling

4.1 The original view of office workflow

Figure 11 shows the FM representation that corresponds to
the BPMN workflow diagram of the original configuration
in Figure 6.

FM includes ‚real‛ data flow represented as solid lines in

the representation. Accordingly, so orders can be sent in

parallel, the flowthing order includes the original order

and its copies. How else could we send an order

concurrently to bill and ship? FM conceptualizes the

order and its copies as being of the same type of

flowthing, just as even and odd are types of integers in a

programming language. Consequently, we do not need to

separate the flows of the original order and its copies.

In Figure 11, the four flowsystems in the lower/middle

part of the figure are in the main sphere: main/order,

main/ship details, main/bill calculation, and

main/sending. For the sake of simplicity and

compactness, the box around these flowsystems is not

drawn. An order flows to the main/order flowsystem

(circle 1 in the figure). It is processed, triggering (2) the

creation (3) of two copies, Copy A and Copy B (4 and 5,

respectively).

Copy A flows to the Bill sphere (6), where it is processed

(7) to trigger (8) creation (9) of the bill calculation that

flows to its flowsystem in main (9). In the main/bill

calculation flowsystem, the bill calculation data is

processed (10) and triggers the creation (11) of the report,

including bill calculation and shipping details, which

flows to the office workflow.

Copy B (5) flows to the ship sphere (12) to be processed

(13) to trigger (14) the generation (15) of shipping details

that flow to main (16), where copy B is processed (17) and

flows (18) to trigger the creation (11) of the report that

includes bill calculation and shipping details.

Figure 12 depicts the new configuration. It shows that

copy B of the order is blocked (the dark bar – can be

implemented as an ‘if statement’ inside the FM stage) in

the release stage (circle ‚a‛ in the figure). When the Bill

calculation arrives (‚b‛), this triggers (‚c‛) clearing the

flow of copy B to ship (‚d‛).

Figure 13 shows the FM overall workflow during

reconfiguration. An order is received (circle 1) by the

reconfiguration selection flowsystem (2, the long

flowsystem on the right side of the figure). The received

order is processed (3) to determine whether it flows to the

parallel procedure of bill and ship (4) or the sequential

procedure (5). The default flow can be altered by

interrupting the process stage with a triggering signal (6)

to determine which configurations should be used.

5. Discussion

BPMN and FM can be contrasted and compared at two

different levels: the overall model and the level of

technical details.

Process

Create

Process

Receive Transfer Main/Order

Process
Ship

Details

Order

Process

Receive

Office workflow

Receive

Figure 11. The FM representation of the original configuration.

7

2
1

Copy A Copy B 4 5

6

3

8

9

10

12

2

13 15
14

16

Create Create

Transfer

Transfer

Process

Order

Transfer

Ship sphere

Main/ Ship

Details

Transfer

Release

Bill

calculation

Transfer

Release

Main/Bill

calculation

Bill sphere

Release
 Main/

Sending

Create

Transfer

Release
Receive

Transfer

Receive

Transfer
11

17

Figure 11. The FM representation of the original configuration.

FM includes “real” data flow represented as solid lines in
the representation. Accordingly, so orders can be sent in
parallel, the flowthing order includes the original order and
its copies. How else could we send an order concurrently to
bill and ship? FM conceptualizes the order and its copies as
being of the same type of flowthing, just as even and odd
are types of integers in a programming language. Conse‐
quently, we do not need to separate the flows of the original
order and its copies.

In Figure 11, the four flowsystems in the lower/middle part
of the figure are in the main sphere: main/order, main/
ship details, main/bill calculation, and main/sending. For
the sake of simplicity and compactness, the box around these
flowsystems is not drawn. An order flows to the main/
order flowsystem (circle 1 in the figure). It is processed,

triggering (2) the creation (3) of two copies, Copy A and
Copy B (4 and 5, respectively).

Copy A flows to the Bill sphere (6), where it is processed (7)
to trigger (8) creation (9) of the bill calculation that flows to
its flowsystem in main (9). In the main/bill calculation
flowsystem, the bill calculation data is processed (10) and
triggers the creation (11) of the report, including bill
calculation and shipping details, which flows to the office
workflow.

Copy B (5) flows to the ship sphere (12) to be processed (13)
to trigger (14) the generation (15) of shipping details that
flow to main (16), where copy B is processed (17) and flows
(18) to trigger the creation (11) of the report that includes bill
calculation and shipping details.

Figure 12 depicts the new configuration. It shows that copy
B of the order is blocked (the dark bar – can be implement‐
ed as an ‘if statement’ inside the FM stage) in the release
stage (circle “a” in the figure). When the Bill calculation
arrives (“b”), this triggers (“c”) clearing the flow of copy B
to ship (“d”).

5.1 Some remarks on the BPMN and FM representations

Contrasting the FM representation of Figure 11 with the

BPMN modelling (Figure 6), it can be noted that the

sequence flow in BPMN (solid arrows) may or may not

subsume the message flow (dashed arrows). For example,

in Figure 6 the ‚Receive order‛, parallel gateway, and

‚Call bill‛ are connected by solid arrows representing the

sequence of execution. It is understood, implicitly, that

the order is also flowing in the same direction. The same

BPMN representation can depict two situations: one in

which the control flow coincides with the data flow, and

one where they do not, e.g., a message arrives, activating

a sequence of processes that do not use the message.

Additionally, there is an implicit ‚jump‛ in message

(data) flow, as illustrated previously in Figure 10.

In FM, the semantics of flow are clear. The flow of data

implies a possible chronological sequence. If a piece of

data moves from one sphere to another, it is received

(after transfer) sometime after it is sent (released/

transferred). Additionally, one clear weakness of BPMN

representation is the infinite number of processes that can

be specified, e.g., in Figure 6, receive, call, calculate, send,

ship; in principle, all natural language verbs could be

used to denote activities, whereas FM uses only six

generic ‚processes.‛

5.2 General comparison, BPMN vs. FM

The Flowthing Model presents an alternative conceptual

representation for use in the context of change during

reconfiguration activities. FM-based description

concentrates on identifying flowthings and their

flows. In FM, flowthing movement (solid arrows) is a

fundamental characteristic that denotes an actual or

logical flow. The structure of the FM representation

reflects a map of the system, in the same way a blueprint

serves as the map of a high-rise construction project. By

contrast, the BPMN depiction has a prevailing ‚control

flow‛ distinction that reflects, in general, the network

(e.g., sequence) of tasks to be performed; e.g., in the

construction analogy: import material, calculate cost, lay

foundation, pour concrete, etc. Accordingly, this implies

that an FM schema precedes and is more basic than the

BPMN scheme.

Figure 14 shows the superimposing of the BPMN original

configuration of Figure 6 over the corresponding FM

schemata of Figure 11. In Figure 14, the BPMN

designations and symbols seem heterogeneous (e.g.,

shapes, icons, text, etc.) over the FM map. If the purpose

of such ‚shorthand‛ diagramming of BPMN is to make

‚easier the communication and coordination between

non-technical and technical users by offering a common

language‛ *27], the FM description can be simplified as

shown in Figure 15.

Figure 12. The FM representation of modification in the new configuration.

Process

Create

Process

Receive Transfer Main/Order

Process
Ship

Details

Order

Process

Receive

Office workflow

Receive

7

2
1

Copy A Copy B 4 5

6

3

8

9

10

12

2

13 15
14

16

Create Create

Transfer

Transfer

Process

Order

Transfer

Ship sphere

Main/ Ship

Details

Transfer

Release

Bill

calculation

Transfer

Release

Main/Bill

calculation

Bill sphere

Release
 Main/

Sending

Create

Transfer

Release
Receive

Transfer

Receive

Transfer
11

17

a

b

d

c

Figure 12. The FM representation of modification in the new configuration

6. Conclusion

This paper has applied an alternative representation of

workflows to the problem of dynamic reconfiguration in

the context of business processes. A new solution to the

problem is not introduced; rather, the paper proposes a

novel form of depicting the problem and its solution.

It is difficult to prove technically that a certain

diagramming method is better or worse than another,

especially if they are at the same level of abstraction. One

way to achieve a reasonable comparative analysis is to

apply the same problem to both methodologies and then

inspect the resultant diagrams side by side.

Figure 13. The FM representation of the reconfiguration.

1

T
ran

sfer
R

elease
T

ran
sfer

R
elease

P
ro

cess

T
ran

sfer
R

eceiv
e

C
o

n
fig

u
ratio

n
 selectio

n

2

3

C
o

n
fig

u
ratio

n

4

Process

Create

Process

Receive Transfer Main/Order

Process
Ship

Details

Order

Process

Receive

Office

workflow

Receive

Copy A Copy B

5

Create
Create

Transfer

Transfer

Process

Order

Transfer

Ship sphere

Main/

Ship

Details

Transfer

Release

Bill

calculation

Transfer

Release

Main/Bill

calculation

Bill sphere

Release

Main/ Sending

Create

Transfer Release

Receive

Transfer

Receive

Transfer

 Process

Create

Process

Receive Transfer Main/Order

Process

Ship

Details

Order

Process

Copy A Copy B

Create

Process

Order
Ship sphere

Main/

Ship

Details

Transfer

Release

Bill

calculation

Main/Bill

calculation

Bill sphere

Main/ Sending

Create

Transfer Release

Receive

Transfer

Receive

Transfer

Receive

Transfer

Create

Transfer

Release

Receive

Transfer

Transfer

Release

6

Figure 13. The FM representation of the reconfiguration

6 Int J Eng Bus Manag, 2015, 7:2 | doi: 10.5772/59434

Figure 13 shows the FM overall workflow during reconfigu‐
ration. An order is received (circle 1) by the reconfigura‐
tion selection flowsystem (2, the long flowsystem on the
right side of the figure). The received order is processed (3)
to determine whether it flows to the parallel procedure of
bill and ship (4) or the sequential procedure (5). The default
flow can be altered by interrupting the process stage with a
triggering signal (6) to determine which configurations
should be used.

5. Discussion

BPMN and FM can be contrasted and compared at two
different levels: the overall model and the level of technical
details.

5.1 Some remarks on the BPMN and FM representations

Contrasting the FM representation of Figure 11 with the
BPMN modelling (Figure 6), it can be noted that the
sequence flow in BPMN (solid arrows) may or may not
subsume the message flow (dashed arrows). For example,
in Figure 6 the “Receive order”, parallel gateway, and “Call
bill” are connected by solid arrows representing the
sequence of execution. It is understood, implicitly, that the
order is also flowing in the same direction. The same BPMN
representation can depict two situations: one in which the
control flow coincides with the data flow, and one where
they do not, e.g., a message arrives, activating a sequence
of processes that do not use the message. Additionally,
there is an implicit “jump” in message (data) flow, as
illustrated previously in Figure 10.

In FM, the semantics of flow are clear. The flow of data
implies a possible chronological sequence. If a piece of data
moves from one sphere to another, it is received (after
transfer) sometime after it is sent (released/ transferred).
Additionally, one clear weakness of BPMN representation
is the infinite number of processes that can be specified, e.g.,
in Figure 6, receive, call, calculate, send, ship; in principle,
all natural language verbs could be used to denote activi‐
ties, whereas FM uses only six generic “processes.”

5.2 General comparison, BPMN vs. FM

The Flowthing Model presents an alternative conceptual
representation for use in the context of change during
reconfiguration activities. FM-based description concen‐
trates on identifying flowthings and their flows. In FM,
flowthing movement (solid arrows) is a fundamental
characteristic that denotes an actual or logical flow. The
structure of the FM representation reflects a map of the
system, in the same way a blueprint serves as the map of a
high-rise construction project. By contrast, the BPMN
depiction has a prevailing “control flow” distinction that
reflects, in general, the network (e.g., sequence) of tasks to
be performed; e.g., in the construction analogy: import
material, calculate cost, lay foundation, pour concrete, etc.

Accordingly, this implies that an FM schema precedes and
is more basic than the BPMN scheme.

Figure 14 shows the superimposing of the BPMN original
configuration of Figure 6 over the corresponding FM
schemata of Figure 11. In Figure 14, the BPMN designations
and symbols seem heterogeneous (e.g., shapes, icons, text,
etc.) over the FM map. If the purpose of such “shorthand”
diagramming of BPMN is to make “easier the communica‐
tion and coordination between non-technical and technical
users by offering a common language” [27], the FM
description can be simplified as shown in Figure 15.

Accordingly, the opinion expressed in this paper is that

FM representation seems more systematic as a foundation

for building a conceptual schema of business processes

and their relationships. This observation can be made

throughout the paper in the ‚sketchiness‛ of the BPMN

diagrams, ambiguity in their connections, and excess

kinds of activities, e.g., almost any English verb is used.

While such an observation is not a conclusive result, FM

is potentially worth pursuing to facilitate modelling in

this area of application, because it may lead to more

precise

tools, and it improves understanding of modelling

notions (e.g., differences and combinations of types of

flows: control flow, data flow, triggering).

Future work may explore the possibility of enhancing the

two models with each other. For instance, the basic

notions of FM can be injected into workflows, or the rich

constructs of workflows can be incorporated into FM.

Process

Create

Process

Receive Transfer Main/Order

Process
Ship

Details

Order

Process

Receive

Office workflow

Receive

7

2
1

Copy A Copy B 4 5

6

3

8

9

10

12

2

13 15
14

16

Create Create

Transfer

Transfer

Process

Order

Transfer

Ship sphere

Main/ Ship

Details

Transfer

Release

Bill

calculation

Transfer

Release

Main/Bill

calculation

Bill sphere

Release
 Main/

Sending

Create

Transfer

Release
Receive

Transfer

Receive

Transfer
11

17

CALL Ship

DETAIL

CALL Bill

CACULATE

Receive Receive

Call in parallel

Send

Figure 14. The BPMN representation of Figure 6 is superimposed over the FM representation of Figure 11.

Order

Ship Details

Order
Office

workflow

Figure 15. Simplified FM representation of the original configuration.

Copy A Copy B

Order

Receive and send in parallel

Ship

sphere

Ship Details

Bill calculation

Bill calculation

Bill

sphere

Main Final report

Figure 14. The BPMN representation of Figure 6 is superimposed over the
FM representation of Figure 11

Accordingly, the opinion expressed in this paper is that

FM representation seems more systematic as a foundation

for building a conceptual schema of business processes

and their relationships. This observation can be made

throughout the paper in the ‚sketchiness‛ of the BPMN

diagrams, ambiguity in their connections, and excess

kinds of activities, e.g., almost any English verb is used.

While such an observation is not a conclusive result, FM

is potentially worth pursuing to facilitate modelling in

this area of application, because it may lead to more

precise

tools, and it improves understanding of modelling

notions (e.g., differences and combinations of types of

flows: control flow, data flow, triggering).

Future work may explore the possibility of enhancing the

two models with each other. For instance, the basic

notions of FM can be injected into workflows, or the rich

constructs of workflows can be incorporated into FM.

Process

Create

Process

Receive Transfer Main/Order

Process
Ship

Details

Order

Process

Receive

Office workflow

Receive

7

2
1

Copy A Copy B 4 5

6

3

8

9

10

12

2

13 15
14

16

Create Create

Transfer

Transfer

Process

Order

Transfer

Ship sphere

Main/ Ship

Details

Transfer

Release

Bill

calculation

Transfer

Release

Main/Bill

calculation

Bill sphere

Release
 Main/

Sending

Create

Transfer

Release
Receive

Transfer

Receive

Transfer
11

17

CALL Ship

DETAIL

CALL Bill

CACULATE

Receive Receive

Call in parallel

Send

Figure 14. The BPMN representation of Figure 6 is superimposed over the FM representation of Figure 11.

Order

Ship Details

Order
Office

workflow

Figure 15. Simplified FM representation of the original configuration.

Copy A Copy B

Order

Receive and send in parallel

Ship

sphere

Ship Details

Bill calculation

Bill calculation

Bill

sphere

Main Final report

Figure 15. Simplified FM representation of the original configuration

6. Conclusion

This paper has applied an alternative representation of
workflows to the problem of dynamic reconfiguration in
the context of business processes. A new solution to the
problem is not introduced; rather, the paper proposes a
novel form of depicting the problem and its solution.

It is difficult to prove technically that a certain diagram‐
ming method is better or worse than another, especially if
they are at the same level of abstraction. One way to achieve
a reasonable comparative analysis is to apply the same
problem to both methodologies and then inspect the
resultant diagrams side by side.

Accordingly, the opinion expressed in this paper is that FM
representation seems more systematic as a foundation for
building a conceptual schema of business processes and
their relationships. This observation can be made through‐
out the paper in the “sketchiness” of the BPMN diagrams,

7Sabah Al-Fedaghi:
Schematic Approach to Information Services Reconfiguration

ambiguity in their connections, and excess kinds of
activities, e.g., almost any English verb is used. While such
an observation is not a conclusive result, FM is potentially
worth pursuing to facilitate modelling in this area of
application, because it may lead to more precise tools, and
it improves understanding of modelling notions (e.g.,
differences and combinations of types of flows: control
flow, data flow, triggering).

Future work may explore the possibility of enhancing the
two models with each other. For instance, the basic notions
of FM can be injected into workflows, or the rich constructs
of workflows can be incorporated into FM.

7. References

[1] Swanson BE (1994) Information systems innovation
among organizations. Manage. Sci. 40(9): 1069–
1092.

[2] Magalhaes R (1999) The organizational implemen‐
tation of information systems: towards a new
theory. PhD thesis, London School of Economics.
Available: http://etheses.lse.ac.uk/284/1/Magal‐
haes_The%20organizational%20implementation
%20of%20information%20systems.pdf

[3] Nelson T (2013) First-Order Models for Configura‐
tion Analysis. Ph.D. thesis, Worcester Polytechnic
Institute. Available: https://www.wpi.edu/
Pubs/ETD/Available/etd-042513-142414/unrestrict‐
ed/1nelson.pdf

[4] Turing AM (1936) On computable numbers, with an
application to the entscheidungs problem. Proc.
Lond. Math. Soc., Ser. 2, 42:230–265.

[5] Anderson P (2006) System Configuration. USENIX
Assoc. ISBN 1-931971-42-0. http://homepag‐
es.inf.ed.ac.uk/dcspaul/homepage/live/pdf/sage-
sysconfig.pdf

[6] Ellis C, Keddara K, Rozenberg G (1995) Dynamic
change within workflow systems. In Proceedings of
the Conference on Organizational Computing
Systems (COOCS 1995). ACM.

[7] Oppenheimer D, Ganapathi A, Patterson DA (2003)
Why do Internet services fail, and what can be done
about it? In 4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03).

[8] Avishai Wool A (2010) Trends in firewall configu‐
ration errors: measuring the holes in swiss cheese.
IEEE Internet Comput. 14(4): 58-65.

[9] Abouzaid F, Bhattacharyya A, Dragoni N, Fitzger‐
ale JS, Mazzara M, Zhou M (2011) A case study of
workflow reconfiguration: design, modelling,
analysis and implementation. Working report, draft
version no.14. To be published as a technical report
at University of Newcastle.

[10] Wagner E (2004) Understanding and Debugging
System Configuration, Conference on the Human
Impact and Application of Autonomic Computing

Systems (CHIACS2). http://web.media.mit.edu/
~lieber/Publications/Understanding-System.pdf

[11] Amazon Web Services Team (2011) Summary of the
Amazon EC2 and Amazon RDS service disruption
in the US east region. http://aws.amazon.com/
message/65648/

[12] Johnson R (2010) More details on today's outage.
http://www.facebook.com/note.php?
note_id=431441338919

[13] Avizienis A, Laprie J-C, Randell B (2001) Funda‐
mental concepts of dependability.

[14] Matevska J, Hasselbring W, Reussner R-H (2007)
Software Architecture Description Supporting
Component Deployment and System Runtime
Reconfiguration. Proceedings of the 33rd EUROMI‐
CRO Conference on Software Engineering and
Advanced Applications.

[15] Wermelinger M (1998) Towards a chemical model
for software architecture reconfiguration. In
Configurable Distributed Systems, Proceedings.
Fourth International Conference, pp. 111-118.

[16] Zhou M (2011) A Case Study of Workflow Reconfi‐
guration: Design and Implementation. MS thesis,
Technical University of Denmark. http://
etd.dtu.dk/thesis/275152/ep11_10.pdf

[17] Mazzara M, Bhattacharyya A (2010) On modelling
and analysis of dynamic reconfiguration of depend‐
able real-time systems. In DEPEND, International
Conference on Dependability.

[18] Nielsen CB (2010) Towards Dynamic Reconfigura‐
tion of Distributed Systems in VDM-RT. In: Pierce
K, Plat N, Wol S, editors. Proceedings of the 8th
Overture Workshop, pages 47-56. School of Com‐
puting Science, Newcastle University, Technical
Report CS-TR-1224.

[19] Osterweil L (1988) Automated Support for the
Enactment of Rigorously Described Software
Processes. Proceedings of the Third International
Process Programming Workshop, pp. 122-125. IEEE
Press.

[20] Al-Fedaghi S (2014) Information system require‐
ments: a flow-based diagram versus supplementa‐
tion of use case narratives with activity diagrams.
Int. J. Bus. Inform. Syst. SCOPUS 15(3): 325-337.

[21] Al-Fedaghi S (2014), A Semiotics Approach to
Semantic Mismatches. 15th International Confer‐
ence on Informatics and Semiotics in Organisations
(ICISO 2014 - IFIP WG8.1 Working Conference),
Shanghai, China. Will appear in IFIP Advances in
Information and Communication Technology,
volume 0426, Springer.

[22] Al-Fedaghi S (2013) Information Management and
Valuation. Int. J. Eng. Bus. Manage SCOPUS 5(1).

[23] Al-Fedaghi S (2013) Alternative Representation of
Aspects. 10th IEEE International Conference on

8 Int J Eng Bus Manag, 2015, 7:2 | doi: 10.5772/59434

Information Technology : New Generations, IEEE
ITNG 2013, 15-17 April, Las Vegas, USA.

[24] Bender, E. Workgroup Computing, PC World
Magazine, January 1995 issue, pp.225-244.

[25] BPMN. Bpmn-business process modeling notation.
`http://www.bpmn.org/

[26] OMG. Omg-object management group. `http://
www.omg.org/

[27] SAP, Using BPMN Process Models, SAP Business
Suite, Blog, http://help.sap.com/saphelp_ewm91/
helpdata/de/1e/b250a408ff44c28ea7f1a53b5e7791/
content.htm.

9Sabah Al-Fedaghi:
Schematic Approach to Information Services Reconfiguration

