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Abstract

Inventory represents an essential part of current assets,
which are typically characterized by their transience.

This paper aims to outline a numerical solution of the
inventory balance equation supplemented by an order-up-
to replenishment policy for a case in which the problem is
described by a differential equation with delayed argu‐
ment. The results are demonstrated on a specific example
and the behaviour of the model is presented using a
computer simulation. The results are graphically shown in
the Maple system. The solution makes use of the theory of
functional differential equations, especially the part
dealing with differential equations with delayed argu‐
ments.

Keywords inventory management, differential equations
with delay, modelling

1. Introduction

Increasing emphasis has been placed upon increasing
labour productivity and the efficiency of managerial
processes, as well as other activities within the company.
Despite their undoubtedly positive function, inventories
tend to be considered as a flaw in management work and
the tendency is to reduce their amount to a minimum. As

the state of the inventory is easily measurable and, thanks
to the quality of current computer technology, the state of
the inventory can be monitored across entire supply chains,
inventory management has become a focus of specialists in
mathematical methods in management.

One way of incorporating the dynamics of processes in a
model is to describe it with differential equations. This
paper deals with a numerical solution of the inventory
balance equation supplemented by an order-up-to replen‐
ishment policy described by a differential equation with
delayed argument. In the application section, the construc‐
tion of a model is presented, including the possibilities of
its solutions in a particular case. The behaviour of the model
is demonstrated by means of computer simulation. Further,
the equation of the model is solved by the modern theory
of so-called ‘functional differential equations’, a specific
part of which is a theory of linear differential equations
with delayed arguments. The graphical presentation of the
results uses the Maple system.

2. Literary review

Inventory represents the biggest investment in many
companies. Lambert et al. [1] claim that inventory may
account for more than 20% of total assets in production
companies, while in business enterprises it may reach more
than 50%. The increase in inventory has been caused by
competition in the market over the past 20–25 years as
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companies have significantly expanded their assortment in
an effort to meet the needs of various market segments. At
the same time, customers have begun to demand very high
availability of products.

A range of studies on inventory management in retail have
been carried out, taking into account different aspects (e.g.,
see [2-5]).

Modern supply chains are often prone to instability in
orders relating to the bullwhip effect (which is sometimes
referred to as the ‘amplification effect’). The bullwhip effect
refers to a problematic situation in a supply chain where,
with a limited amount of information and locally limited
decision-making, small variations in the end user’s de‐
mand amplify upwards in the chain. Strictly speaking,
starting with end users via shops and manufacturers and
their suppliers, variability in demand in supply chains
becomes increasingly higher.

The bullwhip effect was first mentioned by Forrester [6-7].
Other studies, e.g., [8-10], contain data on inventory
volatility describing a similar effect. Similarly, Sterman in
his BeerGame [11], designed for teaching the theory of
inventory management, shows the same phenomenon. In
the 1990s, Procter&Gamble experienced the bullwhip effect
related to the production of and demand for Pampers
nappies.

Countless studies have been carried out over the years and
there is an extensive literature related to this issue [12-25].
The problem was examined using various possibilities
provided, e.g., by probability theory [12-13], management
theory [17-19], differential equations with delay [20], linear
analysis of stability [21], the stochastic method of inventory
management [22-23] and chaos theory [24]. Among other
studies, Kim and Springer [25] can be mentioned, exploring
two volatilities using systemic dynamics of a model which
derives conditions of oscillation.

However, most of the studies aim to prove the existence of
the bullwhip effect or to identify its causes, or else to
determine possible counter-measures.

In his pioneering study, Forrester [6] examines the impact
of demand on the function defining the state of inventory
and the consequences of delay time in the process. The
author also deduced an ordinary second-order differential
equation with delay defining the examined model. War‐
burton [19] also employs differential equations with delay
and takes advantage of the possibility of exponential
approximation for a solution (Lambert’s W function). The
difficulty of this method lies in the fact that the resulting
characteristic equation is transcendent and, as a result, the
solution is conditioned by errors in the roots’ approxima‐
tion as well. The pitfalls of methods solving the mathemat‐
ical models of the above-mentioned pioneer studies can be
avoided by using solutions for differential equations and
their systems with delay, which have been derived over
recent decades. The method mentioned below is based on

the fixed point theorem, more specifically on an operator
affiliated with the problem. The method has a ‘global’
character (the solution is obtained by successive approxi‐
mations simultaneously across the whole solution interval)
and, from the numerical point of view, is stable.

3. An equation of inventory balance

A detailed derivation of an equation of inventory balance
(which will be used in this chapter) can be found in the
following publications [6, 19].

Let us assume that retailers attempt to minimize their
inventory while maintaining it at a sufficient level to deal
with standard fluctuations in demand. Thus, their objective
is to fully satisfy the demand using inventory levels and
allowing for stochastic effects. Demand for the supply of a
certain amount of goods D(t) (the extent of demand per
time unit) is always fulfilled. Failure to deliver is forbidden.
The aim of inventory management is to maintain the
current level of inventory I (t) around the required value
Ip. Inventory levels decline at the same rate at which
demand D(t) is met and increases by the amount of
replenished goods R(t). The balance of inventory is thus
defined by equation (1):

( ) ( )I R t D t
t
¶

= -
¶

(1)

We assume, in accordance with reality, that there is a
certain time delay between an order and the supply of
goods thereby caused, e.g., by the transportation time. It
follows that the amount of replenished goods at time t
equals the order made at the preceding time. Equation (2)
can be applied to a situation in which the amount of
replenished goods equals the amount of goods ordered at
time t −  τ :

( ) ( ).R t O t t= - (2)

As the inventory is gradually depleted based on demand,
it is also replenished to in order to bring the inventory back
towards the desired value. In paper [19] an equation of a
replenishment policy is defined in which the size of an
order is directly proportional to the shortage of inventory:

( ) p
p

I I(t)
O t  for I(t) I

T
-

= < (3)

and:

( ) 0 .O t otherwise= (4)

Ip represents the required level of inventory. If the demand
unexpectedly increases, the inventory is gradually replen‐
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ished but, thanks to a facultative parameter T, the replen‐
ishment can be spread over a longer period. If delays in
supplies are long, this might result in a significant increase
in inventory, which is unwelcome [6]. Therefore, it is
advisable to include equation (4) in the model, which adds
constraints allowing for the suspension of any replenish‐
ment if its level exceeds the required value [12, 18-19].

4. Differential equations with a delay argument

Modelling phenomena which arise from economic reality
and which are described by statistical data are possible
thanks to methods based predominantly on mathematical
disciplines, such as statistics, numerical methods, opera‐
tional research, linear and dynamic programming, and
optimization, etc. (e.g., see [26-30]). One way of giving a
true picture of the dynamics of processes in a model is to
describe a dynamic model using differential equations. If
we utilize this possibility, we have to understand time as a
continuous quantity, which allows us to exploit an elabo‐
rate mathematical setup of differential and integral
calculus. The outcome is not an estimate of the parameters
of a pre-defined function but rather is a function per se,
whose shape gives evidence of the nature of the examined
quantities.

Let us focus on special cases of functional differential
equations, i.e., differential equations with a delayed
argument and their solutions. As early as the 1950s, new
mathematical models were being developed which could
be used for a real description of various processes from
practical life [31-34.]. This development went hand in hand
with the development of ‘Carathéodory’s theory’ of
differential equations, specifically with the theory of
functional differential equations.

The available literature dealing with the solvability of
systems of differential equations with delayed arguments
offers a range of results applicable when solving problems
from economic practice. In their papers, the authors deal
with conditions for the solvability of the given problems
(i.e., existence and unambiguity of a solution), conditions
for their correctness (i.e., a small change in initial conditions
corresponds with a small change in the final solution),
conditions for the non-negativity of a solution, and many
others. A description of the method enabling the construc‐
tion of a numerical solution can also be found there.

The general theory, which focuses on solutions for the
above-stated problems and related problems, can be
studied in [35-38]. An application problem based on
solving systems of differential equations with delayed
argument, including the description of a solution, can be
found in, e.g., [39], and in the literature cited in it.

The construction of a solution for our problem was made
using the Maple system. Maple is mathematical software,
an advantage of which is the possibility of finding a
solution in a symbolic manner.

In order to find a solution for our problem, numerical
methods built in Maple are used which are designed to find
solutions for ordinary differential equations as well as the
above-mentioned modern theory of solving differential
equations with a delayed argument.

5. Analysis of the solution of an equation using modern
theory

Given the current familiarity with differential equations
with a delayed or - more generally - deviated argument (or
so-called ‘functional differential equations’), we have the
possibility to apply the method of solving a significantly
more general mathematical model, which may provide us
with a wider range of results, including a comparison of the
impact that various parameters might have.

Let us present a mathematical model defined at the
beginning of the economic process on interval [0,T]:

( )( ) ( ) ( )
( ) ( )

1    

     
p p

p

I I t D t for I t IdI K
dt D t for I t I

ì
- - D - - D £ï= í

ï - - D >î

(5)

( ) ( )   [0, ]hI t I t for t- D = - D Î D (6)
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It is evident that equation (5) with condition (6) can be
written down as:
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Therefore:
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At the same time, a natural consequence of a continuous
sequence of solutions I (t) from the interval 0, T  to the
‘historic’ function h (t)  (t ϵ −Δ, 0 ) is an initial condition of
solution I (t) of equation (3) in the following way:

( ) ( )0 0 ,     hI I= (11)

Moreover, it follows from (1-4) that Ip >0,  Δ >0,  K >0 are
constants and that D(t) and h(t) are continuous functions.

Consequently, problems (5) and (6) are equivalent to
problems (10) and (11) (see [38-39]), and the listed bibliog‐
raphy on fully general linear boundary value problems for
functional differential equations gives evidence to the
following:

• The unambiguous solvability of problems (3), (4), (10)
and (11).

• The possibility of a solution using the method of succes‐
sive approximations.

Under these conditions, problems (5) and (6) have one, and
only, solution, and the solution is continuously differentia‐
ble on interval 0, T . If functions D(t) and h(t) had jump
discontinuities in corresponding intervals, the solution of
tasks (5) and (6) would be continuous but would not have
a derivative in the corresponding points.

Analogically to the method utilized in the above-men‐
tioned studies, we will use the method of successive
approximations in order to find the solution for tasks (10)
and (11):

• We select, at random, function I0, which is continuous on
interval [0,T], e.g., I0(t)=h (0),  t∈ 0, T .

• We successively calculate the nth approximation of the
sought-for solution, n∈N , using additional problems.

( ) ( ) ( )

( ) ( )(
( )

1 10,

0,

1

( ) 1 ( )[

1

1 ( ) ( )

p

p

n
I n nT

T
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dI t I t t I t
dt K

t h t

I t I D t
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c c

c

c

- -é ùë û
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-

= - - D - D - D +

ù+ - - D - D +û

+ - D -

(12)

( ) ( )0 0 ,   nI h= (13)

In order to determine the accuracy of the approximation,
we can, given the conditions of the problem, use an
estimate:

( ) ( )1[0, ]
max ,  .n n nt T

I t I t n Ne -= -
ò

ò (14)

From the correctness of problems (10) and (11) (the Cauchy
problem for the linear scalar constant coefficient differen‐
tial equation with constant delay and continuous non-

homogeneous members), and from the continuity of the
solutions for problems (12) and (13), it follows that pro‐
gression {In(t) }   converges evenly on interval [0, T]
towards solution for problems (10) and (11); therefore,
εn→0 for n→ + ∞. The calculation itself, εn, may be replaced
by an estimate calculated in a ‘sufficiently’ large number of
points of interval [0,T]. This procedure can be applied to
constructing the nth approximation of a solution with the
accuracy given in advance.

In order to explore more profoundly the features of our
problem’s solution, we will apply the existing results
concerning the oscillatoricity of a solution for a first-order
linear differential equation with constant delay. For
example, it follows from [40] that each equation:

( ) ( ) ( )´x t p t x t= - D (15)

is oscillatory (i.e., it has infinitely many zero points) if:

( ) 1lim .
t

t
t

inf p s ds
e¥®+

-D

>ò (16)

Therefore, the condition for the oscillatoricity of a solution
of a homogeneous equation affiliated with (10) is:

1 1 1lim lim
t

t t
t

inf ds
K K K e¥ ¥® ®

-D

D
= D = >ò (17)

Consequently, the linearity of a problem means that the
solution for our non-homogeneous problems (10) and (11),
while meeting condition (17), will not be monotonous.

Figure 1. Approximation (source: Ourselves)
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The model’s behaviour in specific situations is comprehen‐
sively summarized in Tables 1 and 2:

Conditions for oscillation are met

Historical function

Non-constant Constant

Non-constant
demand

the graph oscillates
around the constant

the graph oscillates around
the constant, growing
moderately

Constant demand
Oscillates around the
constant, with the
amplitude decreasing

Oscillates around the
constant

Table 1. The model’s behaviour when conditions for oscillation are met
(source: author’s own solution)

Conditions for oscillation are not met

Historical function

Non-constant Constant

Non-constant
demand

The graph levels off,
falling to the constant
value

The graph levels off, falling to
the constant value

Constant demand

The graph does not
oscillate, decreasing
gradually while
fluctuating slightly

The graph does not fluctuate,
decreases gradually while
fluctuating slightly

Table 2. The model’s behaviour when conditions for oscillation are met
(source: author’s own solution).

6. Illustrative examples

1. Let us assume that the ‘historical’ function (labelled Ih)
expressing the value of inventory in a period prior to
the examined period may be replaced by a constant,
while the demand function will be equally constant.

a. Solution when the condition of oscillatoricity is
met:

( ) 1000,   10,0 ,hI t t= Î< - >

( ) 20,   0, 60 ,  D t t= Î< >

1000,    4,      10 .pI K= = D =

Even in this case, the condition of oscillatoricity was met
and the calculated solution is shown in Fig. (2). It is evident
that the value of inventory will indeed oscillate over time.

Figure 2. Oscillating solution (Source: ourselves)

b. Solution when the condition of oscillatoricity is not
met:

( ) 1000,   10,0 ,hI t t= Î< - >

( ) 20,   0, 60 ,  D t t= Î< >

1000,  25,    10. pI K= = D =

In this case, the condition of oscillatoricity was not met. The
calculated solution is shown in Fig. (3) and it is apparently
monotonous and falls towards a constant value.

Figure 3. Non-oscillating solution (source: ourselves)
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2. However, the initial assumptions of Problem 1 are very
simplistic. Modern methods of solving this particular
differential equation with delay [39] enable us to even
model situations in which the ‘historical’ function or
demand function are not constant.

a. Solution in the case of a non-constant historical
function:

( ) ( ) ( )1000 200sin 0,2 ,   10, 0   20,    0,60 ,hI t t t D t t= + Î< - > = Î< >

1000,   25,    10.   pI K= = D =

Figure 4. Non-constant historical function, (source: ourselves)

b. Solution in case of a non-constant demand function:

( ) 1000,   10,0 ,hI t t= Î< - >

( ) ( )20 5sin 0,2 ,    0,60 , D t t t= + Î< >

1000,   25,   10. pI K= = D =

c. Solution in the case of a non-constant demand function
and non-constant historical function:

( ) ( )1000 200sin 0,2 ,    10, 0  hI t t t= + Î< - >

( ) ( )20 5sin 0,2 ,    0,60 , D t t t= + Î< >

1000,   25,   10. pI K= = D =

Figure 6. Non-constant demand and non-constant historical function
(source: ourselves)

d. Solution in the case of I(0)≠ Ip, a non-constant demand
function and a non-constant historical function:

( ) ( )1000 200sin 0,2 ,   10, 0  hI t t t= + Î< - >

( ) ( )20 5sin 0,2 ,    0,60 , D t t t= + Î< >

Figure 5. Non-constant demand (source: ourselves)
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800,   25,   10. pI K= = D =

Figure 7. I(0)≠ Ip (source: ourselves)

In all four cases (2a, 2b, 2c, 2d), the model’s parameters do
not lead to an oscillatory solution. However, the non-
constantness of functions Ih (t) and  D(t) deforms the
solution by moderate oscillation (Figs. 4-7). We can observe
in 2d that a change in parameter Ip (a decrease) results in a
change in the level at which inventory tends to level out
over a longer period of time (in Fig. 2d it is a lower value
than in Fig. 2c).

7. Conclusion

When modelling complex economic problems, we are often
faced with the fact that the relations of particular quantities
are variable in time. One way of incorporating the dynam‐
ics of processes in a model is to consider time as a contin‐
uous quantity and to describe dynamical models by means
of differential equations. When specifying a model’s
structure, the dynamic character may be taken into account
by incorporating the delayed impact of both exogenous and
endogenous variables.

This paper presented a solution of the inventory balance
equation supplemented by an order-up-to replenishment
policy if it is presented by an ordinary differential equation
with delayed argument. The equation is solved using the
modern theory, and the impact of specific parameters of the
model on its solution is analyzed.

We have also analysed the conditions for the oscillatoricity
of solutions and situations in which the historic function
and the demand function are not constant.

The theoretical results have been clarified by an illustrative
example, which also provides a graphical representation of
the specific results.

The model discussed in this paper could be expanded in
the future. One option is the generalization of the model,
which would allow us to work even with non-constant
delay, etc.
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