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Abstract

The application of protective gel, which is a subprocess
of  the electronic  assembly of  the exhaust  gas recircula‐
tion sensor, is a highly capable process with the fraction
of nonconforming units as low as 200 ppm. Every unit is
inspected immediately after gel application. The conven‐
tional  Shewhart  chart  is  of  no  use  here,  and  the  ap‐
proach  based  on  the  Bernoulli  process  is  therefore
considered.  The number  of  conforming items in  a  row
until the occurrence of first or the r-th nonconforming is
determined and CCC-r, CCC-r EWMA, and CCC CUSUM
charts are applied. The aim of the control is to detect the
process  deterioration,  and  so  the  one-sided  charts  are
used.  So  that  the  charts  based  on  the  geometric  or
negative  binomial  distribution  can  be  compared,  their
performance is assessed through the average number of
inspected  units  until  a  signal  (ANOS).  Our  study
confirmed that CCC-r EWMA and CCC CUSUM are able
to detect the process shift more quickly than the CCC-r
chart. Of the two charts, the first is easier to construct.

Keywords CCC-r, CCC-CUSUM, CCC-r EWMA, highly
capable process, ANOS

1. Introduction

The statistical process control (SPC) has been widely used
in industry, and the control of attribute data represents a
considerable part of it. Until recently, the same approach
was used to monitor variables or attribute data. In this
approach, subgroups of items are taken from a process and
sample characteristics are plotted to see whether their
variation is only random or whether it is affected by an
assignable cause.

When items are classified as conforming or nonconform‐
ing, the proportion of nonconforming units in a process
(fraction nonconforming) is traditionally monitored by p-
chart (or np-chart). Due to new manufacturing technolo‐
gies and concepts, many processes are of such high quality
that the fraction nonconforming or the probability of
observing a nonconforming unit is very small. This
probability is a parameter of the background binomial
distribution, and the size of the subgroups would have to
be enormously large to enable the normal approximation,
on which the computation of control limits in the conven‐
tional control charts is based.

The impossibility of meeting such conditions has the
following consequences: real properties of the chart such
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as the average run length or the risk of false signal differ
from those assuming the normal distribution, and the
lower control limit of the p-chart is located at zero and does
not enable the recognition of process improvement.
Moreover, the appearance of the p-chart containing most
zero points is inappropriate. Consequently, the concept
based on the sample characteristics is no longer useful for
high-quality processes.

Several alternatives based on the Bernoulli process rather
than on normal approximation have recently been present‐
ed. These methods assume continuous inspection; 100% of
these items do not necessarily need to be inspected. For
example, Reynolds and Stoumbos in reference [1] admit a
situation when ‘the production rate is higher than the
inspection rate’. In [2] authors also mention an interval
sampling, when the items are inspected at scheduled
periods. In reference [3] it is emphasized that ‘the pattern
of the sampling inspection can be quite haphazard without
causing any difficulty’ for the performance of the control
chart studied.

In the Bernoulli process, random variables Xi, i = 1, 2,...
express whether an inspected item is conforming or
nonconforming. The in-control state of a process is defined
by a constant probability p0 of an occurrence of a noncon‐
forming item. Usually, a sustained shift to the out-of-
control state is considered; the process repetitively
produces units at level p0 until it suddenly shifts to an
unacceptable level p and remains at this level until a
remedial measure is taken.

The situation p > p0 in particular must be detected as soon
as possible, and sometimes a minimum value p1 for p is
given. Nevertheless, the inverse inequality p < p0 may also
be of interest because it indicates a process improvement.

In [2] the authors consider four groups of methods for
monitoring the nonconforming fraction: Shewhart-type
charts based on the geometric distribution, Shewhart-type
charts based on the negative binomial distribution, CU‐
SUM charts, and EWMA charts also based on the geometric
or the negative binomial distribution. The CCC chart
representing the first group was designed by Calvin, see
[4], and further studied and expanded in [5-7]. The name
CCC stands for the cumulative count of conforming units,
but more frequently the variable Y that is monitored also
includes the immediately following nonconforming unit.
Other names such as the conforming run-length CRL in [8]
or run-length RL1 in [6] can be found. We consider the
variable Y, and use the inaccurate but more widely known
name CCC, in our paper.

To improve sensitivity in detecting small upward shifts in
the nonconforming fraction, a chart based on r successive
run lengths has been developed. Bourke in [6] first consid‐
ered RL2 chart for r = 2 with the moving sums RL2 = Yi-1 + Yi

for i = 2, 3,..., but later the separated sums Y1 + Y2, Y3 + Y4

etc. were used, see e.g., [9].

The more general case r ≥2 is considered in [10-12]. Often r
values of 2 or 3 are recommended; see [8] or [13]. In [14] an
economic model is constructed to find the best value of r.
All of these charts are based on the negative binomial
distribution of the monitored variable. A common name for
these charts is the CCC-r chart, although other names may
appear, e.g., SCRL chart in [8]).

The CCC and CCC-r charts are sometimes called the
Shewhart-type charts because of the similar idea of control
limit construction, but the geometric or negative binomial
distribution is assumed instead of the normal distribution.
Besides, their control limits are probability limits, which
correspond to the percentiles of an appropriate distribution
determined by a chosen risk of a false signal.

Cumulative sum (CUSUM) charts use information from all
prior observations, and are considered an efficient alterna‐
tive to the Shewhart chart when small process shifts are of
interest. CUSUM charts can be applied to various distribu‐
tions, see [15]. As for the Bernoulli process, both the
individual observations Xi and the run lengths Yi, defined
above can be used. The corresponding CUSUM charts are
called the Bernoulli CUSUM or geometric (or CCC)
CUSUM, respectively.

Exponentially weighted moving average (EWMA) charts
are also based on all prior observations, and have a similar
efficiency to the CUSUM charts. The EWMA charts for the
Bernoulli and geometric distributions are studied; e.g., in
[16], the use of EWMA charts for the negative binomial
distribution is suggested [17]. Other references can be
found in [2].

Numerous authors have studied the efficiency of these
control charts (see further in the paper) but only few case
studies have been published; see [18, 19] or [20]. This paper
deals with the practical application of various control
charts for high yield processes to the highly capable
electronic assembling of the exhaust gas recirculation
(EGR) valve component. The optimal design and compa‐
rative study of statistical properties of CCC-r, CCC CU‐
SUM and CCC EWMA charts with the aim to select the
most suitable SPC method for the analysed electronic
assembly are the main goals of this study. The paper is
organized as follows: at the beginning, all four groups of
methods for monitoring the fraction nonconforming based
on the Bernoulli process, i.e., Shewhart-type charts based
on the geometric distribution, Shewhart-type charts based
on the negative binomial distribution, CCC-CUSUM charts
and CCC-r EWMA charts, will be described. The ERG
sensor and the process of the EGR sensor manufacturing
will then be characterized. In the next chapter, optimal
parameters of the selected control charts (CCC-r, CCC
CUSUM and CCC-r EWMA) will be designed. Then, a
comparative study of the selected control charts’ efficiency
will be performed. Based on this study and application of
the chosen control charts, the best alternative will be
recommended.
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2. SPC Methods for High Yield Processes

As mentioned above, attribute control charts for monitor‐
ing and controlling very low fraction nonconforming units
based on the Beroulli process can be divided into four
groups.

2.1 CCC chart

The variable Y monitored in the CCC chart represents the
cumulative count of conforming units to the occurrence of
nonconforming unit (often including this immediately
following nonconforming units). Determination of the
variable Y values monitored in the CCC chart is outlined in
Figure 1.

Figure 1. Determination of Y values in CCC chart

Values of runs Y follow the geometric distribution G(p)
with the probability function:

( ) ( ) 1 , 1,21 ,yf y p p y-
== - (1)

where p is the probability of observing a nonconforming
unit in any inspection. The centreline CL in the CCC control
chart can be set as the median of the geometric distribution:

( )
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2

ln 1
CL

p
=

-
(2)

The two-sided probability control limits (the upper control
limit UCL and the lower control limit LCL) are set with the
desirable risk of false alarm α, see [21]:
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As these limits are highly asymmetric, the log-scale is
sometimes used (for example, see [21]).

As soon as a nonconforming unit is observed the value Yi
is plotted in the chart, and counting starts again from zero.
The interpretation of such a control chart is quite different
from the interpretation of the conventional Shewhart p-
chart: the point above UCL means indicates a probable
process improvement, and the point below LCL shows
probable process deterioration.

When only the upward shift in the process fraction non‐
conforming is followed, the one-sided lower control limit
is given by:
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ln 1
ln 1

LCL
p
a-

=
-

(4)

2.2 CCC-r chart

Variable Y monitored in the CCC-r chart represents the
cumulative count of units until the r-th nonconforming unit
is observed – see Figure 2.

Figure 2. Determination of Y values in CCC-r chart

Y follows the negative binomial distribution with the
probability function:
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Assuming that the probability of a nonconforming unit is
equal to p, the two-sided control limit and the centreline are
determined by solving the following equations; see [22]:
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When only the upward shift is followed, the one-sided
lower control limit must satisfy the equation:
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for the specified risk of false signal α. The interpretation of
the CCC-r chart is similar as in the case of the CCC chart.

When an increase in parameter r, the CCC-r chart is more
sensitive to small upward shifts in p. On the other hand,
more and more Bernoulli observations are needed to obtain
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a point on the chart, and this means that the inspection cost
increases (see [14]). For this reason it is necessary to set the
optimal parameter r.

2.3 CCC-CUSUM chart

The geometric (or CCC) CUSUM chart (see [6]) is based on
the schemes, introduced in [23], expressed by:

( )
( )

1

1

max 0,

min 0,  1,  2,
i i i

i i i

S S y K

S S y iK

+ + +
-

- - -
- =

= + -

= + -
(10)

where yi is a value of Y that follows the geometric distribu‐
tion G(p) and K+ (K-) is a constant. Often S0 = 0 is used, but
a head start can be chosen to quickly detect an initial out-
of-control state; see [6].

Only the lower scheme used to detect an upward process
shift is considered here. If the process deteriorates, i.e.,
when the fraction nonconforming p increases, values yi less
than K- predominate and Si

− becomes more and more
negative. As soon as Si

− drops under a specified limit H- for
some i, an out-of-control signal is given. The value of H-

determines the chart performance: the more negative it is,
the longer the time to the signal.

When a shift from the in-control p0 to a higher value p is to
be detected, the minimum value p1 that is considered
inappropriate must be chosen. If p ≤ p0, the level of the
fraction nonconforming is acceptable; if p ≥ p1, the level is
unacceptable. As a matter of the fact, hypotheses H0: p = p0

versus H1: p = p1 are tested. H0 is rejected when Si
− is less

than H-.

2.4 CCC-r EWMA chart

The exponentially weighted moving average (EWMA) is
defined as:

( ) 11t t tz y zl l -= + - (11)

where 0<λ ≤1 is a smoothing constant and the starting
value z0 = y0 is usually the process target. The construction
of EWMA control limits is based on normal distribution,
but it is known that the EWMA chart is quite robust to non-
normality [24]. The control limits of the EWMA chart are:
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where L denotes a constant determining the distance
between the limits, and consequently the chart perform‐

ance. Due to the fact that the term 1−(1−λ)2i  approaches
unity as i gets larger, sometimes the steady-state limits are
given as follows:

*
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For Y~ NB(p, r) the target value is:
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and the standard deviation of the in-control process is:
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3. Electronic Assembly Description

The methods described in the previous chapter were
applied to the highly capable process of EGR sensor
manufacturing. The current cars contain numerous
electronic parts with various functions. The EGR valve is a
part of the combustion motor which greatly reduces
nitrogen oxide (NOx) emissions and therefore helps to
protect the environment. One of the components enabling
control of the EGR valve is the EGR pressure sensor, which
detects the exhaust gas flow. The electronic assembly of the
EGR sensor consists of several subprocesses - see Figure 3.

Figure 3. Structure of the electronic assembly of the EGR sensor

The last but one subprocess is the manual application of the
protective gel. The amount of gel is given by the dosing
device. The operator presses the pedal and so applies the
predetermined amount of the gel. Every sensor is visually
inspected – this means that the continuous 100% inspection
is carried on. The difference between a conforming and
nonconforming unit can be seen in Figure 4 and 5. The gel

4 Int J Eng Bus Manag, 2015, 7:14 | doi: 10.5772/60758



must not get to the groove for the following ultrasonic
sealing of the plastic sensor cap. Each sensor with the gel
in this groove is considered to be the nonconforming unit
that must be separated. This subprocess works with in-
control fraction nonconforming p0 = 0.0002 (200 ppm) [25].

Figure 4. Conforming unit [25]

Figure 5. Nonconforming unit [25]

To keep the fraction nonconforming at such a low level, or
to lower the process, it has to be controlled; therefore, a
suitable control chart for this capable process should be
chosen.

4. Design of Parameters for Selected Control Charts

Based on the analysis of the EGR sensor electronic assembly
it the application of CCC-r charts, CCC CUSUM and CCC-

r EWMA charts was decided. For each type of control chart,
parameters corresponding to the process in-control p0 =
0.0002, out-of-control fraction of nonconforming p1 = 0.001
and various risks of false signal (α = 0.01, 0.005 and 0.002)
were set.

4.1 Design of CCC-r charts

Optimal values of parameter r for the conditions of the
analysed electronic assembling were set using the new
semi-economic model designed in [25]. This semi-econom‐
ic model is based on the economic design of the CCC-r chart
described in [14] but is easier to apply in practice. The
model is based on the idea that by increasing parameter r
the CCC-r chart becomes more sensitive to small changes
in the proportion of nonconforming units p, but on the other
hand a greater r increases the costs of testing and inspec‐
tion. The algorithm of the new semi-economic model is
based on the minimization of the overall expected costs
E(C) consisting of the expected costs induced by the
production of nonconforming units E(NJ) and the expected
costs of inspection and testing E(KT). Only the parameter r
is optimized. Costs E(NJ) and E(KT) can be computed using
the following formulae:

( ) ( )1 1E NJ g E A hv= (18)

( ) ( )E KT aE Y= (19)

where

g1................is the unit production cost when the process is not
statistically stable;

E(A1).... is the expected number of units produced when the
process is not statistically stable;

h...........is the control interval length;

v...........is the number of produced units per operation time
unit;

a...........is the unit testing cost;

E(Y).......is the expected number of units inspected until the
occurrence of the r-th nonconforming unit.

The input parameters for the semi-economic model were
derived or computed from the production records: the
proportion of nonconforming units when the process is
statistically stable was set as p0= 0.0002, the unacceptable
proportion of nonconforming units was p1= 0.0010, the unit
production cost at p1 was g1= 95 CZK, the unit testing and
inspection cost a = 0.3397 CZK, the control interval length
h = 0.003 h, the number of units produced per operation
time unit ν = 315 units [25]. Considering three values of the
risk of false signal α led to two values of the parameterr and
three different values of the lower control limit LCL (see
Table 2 in paragraph 4.4).
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4.2 Design of CCC CUSUM

The parameters K- and H- can be derived from the Wald
sequential probability test [26] when the geometric distri‐
bution (1) is considered. The reference value K- depends on
the target value p0 and the unacceptable value p1 of the
fraction nonconforming:

( )
( )
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0
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1
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p p
p p
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-

-

-
=
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The lower control limit H- is approximately:

0
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H
p
p

a- -
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-
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In fact, the use of this value does not imply ANOS(p0) equal
to 1/α. To reach a value that is nearer to a specific
ANOS(p0), the approximate method by Reynolds and
Stoumbos [1] for the Bernoulli CUSUM chart can be used.
Based on the relationship between the Bernoulli and
geometric distribution, the lower limit for the CCC CUSUM
chart can be derived.

The approximate in-control average number of observa‐
tions for the one-sided Bernoulli CUSUM chart (p1 > p0 is
assumed) is given by:
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First, HB
* is obtained from (20), e.g., by means of the Excel

function Goal Seek. Once the parameter HB
− of the Bernoulli

CUSUM chart has been found, the lower limit HG
− of the

geometric CUSUM chart can be expressed as:

( 1)G BH m H- -= - - (23)

where m = K − , i.e., K- rounded down, see [27]).

4.3 Design of CCC-r EWMA

The parameters λ and L are chosen in the same way as in
the case of a normal distribution. Based on the assumption
of normality, Crowder in [28] constructed nomograms that
can be used for the choice of λ and L to obtain the optimal
combination, in the sense that for a fixed risk of false signal
α and for a specified shift δ the ARL is the smallest possible.
With reference to the robustness of the EWMA chart, these
curves have been used for the design of the CCC-r EWMA
chart.

To make use of the nomograms by Crowder in the case of
the distribution NB(p,r), the shift in the mean in multiples
of the standard deviation is expressed by:

0 1 0

0 10
2
0

1
11

r r
p p pr

p ppr
p

d
-

æ ö
= = -ç ÷

-- è ø
(24)

For a given δ and some chosen ARL(0), which is related to
ANOS(p0) according to:

( ) ( ) 0
00

p
ARL ANOS p

r
= (25)

values of λ and L can be successively read in the nomo‐
grams. As the use of nomograms gives only approximate
values, the nomograms can only be used to find λ and L;
the values of ARL for some non-zero δ can also be deter‐
mined. In this paper the nomograms were used only for λ
determination and the value of L; the corresponding ARL
was obtained through the procedure for EWMA charts
using Statgraphics Centurion computer software.

Consistently with the previous control charts, only the one-
sided lower limit of the CCC-r EWMA chart was consid‐
ered (see Table 1, paragraph 4.4). The same values of r as in
the CCC-r charts were used.

4.4 Results

Based on different values of the input parameters α, p0, p1

and the corresponding chart parameters r, K,λ and L (see
Table 1) three control charts of each type were obtained.
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α r CCC-r CCC-r EWMA CCC-CUSUM

LCL λ L LCL* K − HG
−

0.01 2 744 0.23 2.10 4648 2011 –5044

0.005 2 518 0.20 2.35 4462 2011 –5901

0.002 3 1217 0.25 2.75 5999 2011 –7545

Table 1. Designed optimal parameters of the control charts

All nine variants of the control charts were constructed and
applied to the data from the analysed electronic assembly,
see Figure 6 – 11.

Figure 6. CCC-2 chart (α = 0.005 and 0.01)

Figure 7. CCC-3 chart (α = 0.002)

Figure 8. CCC-CUSUM chart (α = 0.002; 0.005; 0.01)

It can be seen that only CCC-CUSUM for α = 0.01 or α =
0.005 and CCC-2 EWMA for α = 0.01 indicate the process

instability after the 50th, 51st, and 52nd nonconforming
item, respectively. In addition, CCC-2 EWMA gives an
earlier signal after the 14th nonconforming item. A closer
comparison of these control charts efficiency will be made
in the next chapter.

5. Comparison of the Designed Charts Performance

When the performance of different types of control charts
is to be compared, a suitable criterion must be chosen. For
the classical Shewhart, CUSUM or EWMA charts, when
both the sample sizes and the sampling intervals are equal,
the average run length ARL can be used. This represents
the expected number of samples before the first signal
occurs. This measure is inappropriate when different types

Figure 9. CCC-2 EWMA chart (α = 0.01)

Figure 10. CCC-2 EWMA chart (α = 0.005)

Figure 11. CCC-3 EWMA chart (α = 0.002)
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of charts, based on the Bernoulli process, are compared. The
observations yi correspond to different numbers of inspect‐
ed units, and this fact must be taken into consideration; this
is why another measure has been introduced. In [1] the
average number of observations to signal ANOS that
represents the expected number of inspected items to the
signal is used. The average time to signal ATS, the average
number inspected ANI, and the average number of items
sampled ANIS, are different names for the same measure
used; see [6, 8, 19]. It is common to compare the efficiency
of charts that have roughly equal ANOS(p0) (i.e., ANOS
when the process is statistically stable); see e.g., [1] or [8].
The efficiency is evaluated by means of ANOS(p1) (i.e.,
ANOS when the proportion of nonconforming is p1), which
should be as small as possible.

The values of ANOS for CCC-r charts were determined
according to:

( ) ( )
rANOS p

p F LCL
=

× (26)

To evaluate the ANOS for CCC-CUSUM chart, either an
approach based on a Markov chain or the approximate
method published in [1] and mentioned already in 4.2 can
be used. In addition to ANOS(p0) given by (22), formulae
for ANOS(p1) and ANOS(p*), where p*= r1/r2 are used in this
study:

( ) ( )* *
2 2

1
2 1 1

exp 1B BH r H r
ANOS p

r p r

- + -
»

-
(27)

( ) ( )
( )

* * * 2
2*

1 2 1

B BH H p r
ANOS p

r r r

+
»

-
(28)

The ANOS for CCC-r EWMA is obtained by:

( ) ( ) rANOS p ARL p
p

= (29)

Values of ARL(δ) for the common EWMA chart are
obtained by solving integral equations, see [29], and
Statgraphics Centurion can be used to find them. ARL(p1)
and ARL(p*) for the CCC-r EWMA were determined
identically. In the case of ARL(p1) δ was given by (24); for
determining ARL(p*) the proportion p1 in (24) was replaced
by p*. The values of ARL(p) are only approximate. Apart
from the non-normal distribution another issue had to be
taken into account; ARLs obtained by means of either the
nomograms or Statgraphics Centurion are two-sided. It is
expected that the one-sided and two-sided ARLs will be
approximately the same for larger δ, say about 1 and
greater. In this sense the values of ANOS (p*) for α = 0.01

and 0.005 in Table 2 (denoted by *) are slightly underesti‐
mated due to the fact that δ was equal to 0.845 in these cases.
As for ARL(0), half of the value implied from (25) was
considered for a given ANOS(p0).

Values of ANOS(p0), ANOS(p*) and ANOS(p1) for all nine
designed control charts are summarized in Table 2.

α Control chart ANOS(p0)
p0 =0 .0002

ANOS(p*)
p* =0.0005

ANOS(p1)
p1 =0.001

0.01 CCC-2 1 000 511 74 023 11 707

CCC-2
EWMA

1 000 000 28 400* 9 800

CCC-
CUSUM

1 000 000 29 701 6 406

0.005 CCC-2 2 006 896 142 157 20 980

CCC-2
EWMA

2 000 000 35 200* 11 600

CCC-
CUSUM

2 000 000 36 658 7 253

0.002 CCC-3 7 515 595 251 278 24 210

CCC-3
EWMA

7 500 000 51 600 15 900

CCC-
CUSUM

7 500 000 52 044 8 877

Table 2. ANOS values

The ANOS(p1) of the CCC-CUSUM is the best, regardless
of the value of the risk α. The ANOS(p1) of the CCC-r chart
is much larger and the worst. Although the CCC-r EWMA
chart detects shifts to the chosen p1 more slowly than the
CCC-CUSUM, smaller shifts may be detected rather more
quickly; see the column for p*. The pattern in Figure 5
corresponds to this feature.

6. Conclusions

Design of the optimal parameters of control charts suitable
for controlling the highly capable subprocess of ERG sensor
electronic assembly and the comparative analysis of the
designed control chart efficiency (i.e., CCC-r, CCC-r
EWMA and CCC-CUSUM charts), with the aim of recom‐
mending the best control charting method, were the main
goals of this paper.

Our study confirmed that the CCC-r EWMA and CCC
CUSUM charts are able to detect a process shift much more
quickly than the Shewhart type CCC-r chart. The only
advantage of the last type is its more simple construction.
Under the assumption that both former charts are designed
with regard to the smallest unacceptable proportion of
nonconforming units p1 = 0.001, the CUSUM chart gives an
earlier signal when a process shift corresponds to this level.
When a smaller shift occurs, the CCC-r EWMA chart may
react faster, as is indicated by ANOS for p = 0.0005. As a
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matter of fact, this feature of the CCC-r EWMA chart could
be rather redundant in operations where the proportion p
is acceptable unless the value p1 is crossed, as in this case
the signal might be considered a false alarm.

Based on the ANOS measure, it can be concluded that the
CCC-CUSUM chart is the best choice for this electronic
assembling process. Consider charts with ANOS(p0) =
1,000,000 and the shift from p0 = 0.0002 to p1=0.001: with the
CCC-2 chart 11 707 0.001 = 11.7 nonconforming units can
be expected, compared to 11 707 0.0002 = 2.3 units in the
process without the shift. The expected number of noncon‐
forming units until the signal is higher by 9.4. Using the
CCC-2 EWMA chart and the CCC CUSUM chart we get 7.8
and 5.1, respectively. It follows that with the CCC CUSUM,
the cost incurred by producing a larger number of noncon‐
forming units after the shift is slashed by 45% compared
with the CCC-2 chart. Considering the two larger
ANOS(p0), the cost is reduced even by 65% (63%).
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