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Abstract

Nanocomposites based on few-layers graphene oxide
(FGO) decorated with porphyrin nanorods (PN) were
synthesized and the interfacial interaction between these
two components was investigated by using scanning
electron microscopy (SEM), photoluminescence spectro‐
scopy, resonant Raman scattering and Fourier transform
infrared (FT-IR) techniques. SEM showed good exfoliation
of FGO and its successful interaction with the PN. The
photoluminescence results showed an important interac‐
tion between FGO and PN resulting in a quenching of the
photoluminescence of the PN-FGO composite. Resonant
Raman with PN aggregates and FT-IR results revealed a π-
π intermolecular interaction confirming the energy/charge
transfer. Moreover, the investigation of X-ray diffraction
confirmed the intercalation of PN in FGO and their
disaggregation. The findings presented here are an impor‐
tant contribution to achieving the functionalization of

graphene derivative surfaces with PN for various optoe‐
lectronic applications and particularly photovoltaic cells.

Keywords Graphene oxide, self-assembled porphyrin,
photoluminescence, resonant Raman scattering, FT-IR, X-
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1. Introduction

Over the past years, huge scientific interest has been
focused on graphene due to its new and unique electronic
and optical properties. Graphene-based materials have
great potential for practical applications in nanoelectronics
[1, 2], energy storage [3], liquid crystal devices and trans‐
parent conductive film, nanoelectro-mechanical devices[4],
polymer composites and biomedicine. Recently Few-layers
graphene oxide (FGO) has emerged as a new material
based on carbon at the nanoscale. Structurally, FGO is
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similar to graphene, with a base of groups containing
oxygen [5]. As these groups have a strong affinity for water
molecules, graphene oxide is hydrophilic and can be easily
dissolved in water and other solvents.

Porphyrin nanorods (PN) are aromatic macrocycles with a
cyclic-tetrapyrrole structure, electron rich, characterized by
a remarkably high extinction coefficient in the visible range.
These nanorods are functional with a variety of chemical,
biological and unique photophysical properties [6]. In
addition, they absorb strongly on graphite surfaces.
Porphyrin nanorods are of potential interest as they can
play a major role in achieving a rapid transfer of energy
with a minimum of loss [7, 8]. Given the advantages of non-
covalent functionalization, which can avoid destruction of
π-conjugated skeleton and loss of electronic properties of
FGO, the process used in this work allows functionalization
of FGO with PN obtained by self-assembly.

The FGO/PN prepared were characterized by SEM, steady-
state photoluminescence, resonant Raman scattering,
infrared, and X-ray diffraction techniques in order to probe
the interfacial bonding and electronic interaction between
FGO and PN. These interactions showed a strong effect on
these nanocomposite transient photoluminescence proper‐
ties, as has been shown in our previous work.

2. Experimental Set-up

Graphene oxide (GO) was synthesized by our modified
Hummer’s method [9, 10]. The well-dispersed GO sheets
were prepared using (KMnO4/H2SO4), and then the
precipitate was washed many times with de-ionized water.
The final solution was diluted and sonicated for a major
exfoliation of the oxidized sheets. PN were synthesized via
an ionic self-assembly technique by mixing aqueous
solutions of two porphyrin precursors using the same
procedures developed by Wang and al. [11, 12]. Meso-
tetrakis (4-phenylsulphonicacid) porphyrin (H2TPPS4

2-)
dihydrochloride and Sn(IV) tetrakis(4-pyridyl)porphyrin
(SnTPyP2+) dichloride were purchased from Frontier
Scientific and used without further purification. To obtain
porphyrin self-assembly nanorods, equal volumes of an
acidified H2TPPS4

2- solution (10.5 µM) and a Sn (IV)-tetrakis
(4-pyridyl) porphyrin (Sn(IV)TPyP2+) dichloride solution
(3.5 µM) were mixed and left undisturbed in the dark for
~72 hours at room temperature. Rod formation is very
sensitive to solution conditions, especially pH, because it
alters the charge balance; hence, the synthesis was con‐
ducted under acidic conditions of pH ~2. First, the solution
of the porphyrin nanorods was mixed with FGO, and then
the obtained mixture was put into an ultrasound bath for
15 min at room temperature to insure homogeneity. Finally,
a thin film of the FGO-PN composite was deposited by drop
casting on a glass slide, which was rinsed with distilled
water and acetone, and dried in an oven.

SEM images were obtained using a JEOL JSM 7600F and
steady-state photoluminescence measurements were
carried out at room temperature with a Jobin Yvon Fluo‐
rolog-3 spectrometer using a Xenon lamp (500 W) and a

CCD detector. Raman spectra were carried out using a
Bruker spectrometer SENTERRA Raman Stokes and a
spectral range of 90-3200 cm-1 with an excitation wave‐
length λ = 785 nm; for our samples the laser power was
adjusted to a low power 10 mW. A Jobin Yvon T64000
Raman spectrometer was used to record spectra at excita‐
tion wavelength of 514 nm; laser power was adjusted to 7
mW. Infrared absorption measurements were performed
using a Fourier transform VERTEX 70 Series FT-IR spec‐
trometer. X-ray diffraction (XRD) patterns of FGO, por‐
phyrin nanorods and composites were established with
Bruker’s D8 advanced X-ray diffractometer using CuKα
radiation (λ=1.5418 Ǻ).

3. Results and Discussion

3.1 SEM

Scanning electron microscopy (SEM) images show gra‐
phene oxide layers and FGO-PN. The FGO images (Fig.
1(a)) present a network of randomly oriented sheet-like
structures, and a wrinkled texture was observed. The SEM
images of the FGO-porphyrin nanorods composite materi‐
als reveal that a better exfoliation of FGO and a good degree
of homogeneity with a micrometre order of magnitude
were achieved, resulting in the uniform and dense surface
observed in Fig. 1(b). TEM images of PN aggregates and
their disaggregation after their interaction with FGO can be
seen in our previous work [13].

Figure 1. SEM images of FGO and FGO-PN

3.2 Steady-state Photoluminescence

Steady-state  photoluminescence  is  widely  used  to
investigate  the  efficiency  of  charge  carrier  trapping,
migration  and  charge  transfer  and  to  understand  the
behaviour of electron-hole pairs in nanoparticles.  Fig.  2
shows the PL spectra acquired at room temperature and
under excitation wavelength of 420 nm for FGO, PN and
FGO/PN  composite.  The  PL  spectrum  of  GO  shows
similar peaks to the results reported in the literature for
as-produced GO [14, 15]. These peaks originate from the
recombination  of  electron-hole  (e-h)  pairs,  localized
within small sp2  carbon clusters embedded within a sp3

matrix  and  agglomeration  phenomena.  Recently,  Tho‐
mas  et  al.  [15]  have  shown  that  as-produced  GO  con‐
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tains a mixture of lightly oxidized graphene-like sheets,
together  with  heavily  oxidized  low-molecular-weight
materials.  These  authors  suggest  that  the  intense  PL
observed for GO is due to the presence of oxidative debris
on the surface of the graphene-like sheets. The presence
of this oxidative debris will play an important role in the
interaction of FGO with nanostructured PN. The steady-
state photoluminescence spectrum of PN exhibits bands
of around 640 and 714 nm, associated with 0–0 and 0–1
transitions [16]; these peaks are characteristics of porphyr‐
in monomers and J-aggregated, respectively [13, 17].

Figure 2. Steady-state photoluminescence acquired at 420 nm for FGO (a),
FGO-PN (c) and PN (b)

It is to be noted that the PL intensity of the PN spectrum
drops when the FGO is inserted in the PN solution,
indicating the high probability of electron-hole recombina‐
tion in PN [18]. The emission intensity was significantly
weakened by introduction of FGO [19]. It is known that the
PL emission is the result of recombination of excited
electron-hole pairs; lower PL intensity indicates a lower
electron-hole recombination rate. Thus, FGO plays an
important role in accepting the electrons photogenerated,
a necessary factor to improve the photocatalytic activity of
PN-FGO [20].

The PL quenching and the band shift of PN/FGO composite
excited at 420 nm, in resonance with the Soret band of the
PN, is due to charge/energy transfer between the PN and
GO sheets. The decrease of the PL intensity of the FGO
indicates that the mixture of PN solution at pH = 2 with
FGO solution can lead to a quenching of the FGO PL. This
behaviour may originate from the debris contained in FGO,
as reported in previous work by Thomas et al. [15], which
interacts with the PN leading to a quenching of the FGO
PL. Our results show that one can modulate the PL of this
nanocomposite by controlling the pH and concentration of
the nanostructured PN.

3.3 Resonant Raman Scattering

Resonant  Raman  spectra  of  the  FGO  and  porphyrin
nanorods obtained at different excitation wavelengths 514
and  785  nm  are  shown  in  Figs.  3(a)  and  (b).  These
excitation  wavelengths  are  in  resonance  with  PN
aggregate  absorption  bands  presented  in  our  previous

work [13].  The fluorescence was automatically subtract‐
ed  by  the  spectrometer.  In  Fig.  3(a),  with  514  nm
excitation,  the  Raman  spectra  exhibit  two  prominent
peaks, of the D band and G band, as well as a weak and
broad 2D band,  which is  typical  of  chemically  derived
graphene; it can also be used to determine the number of
sheets in GO. Fig. 3(b), 785 nm excitation, shows Raman
spectra of FGO, PN and composites. The FGO spectrum
displays a D band located at 1306 cm-1,  characteristic of
defects  present  on  its  surface;  a  G-band  is  observed
around 1595 cm-1 and corresponds to the E2g mode [21,
22].  In  the  case  of  the  PN,  which  show  resonance
behaviour,  the  514  nm  excitation  enhances  vibrational
bands at low frequencies. The band centred at 1236 cm-1

can be attributed to the stretching of the Cm-Cϕ bond; the
band at 1386 cm-1 is related to the asymmetrical stretch‐
ing of the Cα-Cβ-NH bonds [23, 24]; the band at 1526 cm-1

originates from the stretching of the Cβ-Cβ’ bond; and the
band  centred  at  1637  cm-1  corresponds  to  the  C-C
stretching bond in the phenyl ring [25]. The spectrum of
the  composite  FGO-PN  shows  the  two  main  bands  of
FGO overlapping with the PN bands; the D band at 1318
cm-1  and  the  G-band  at  around  1600  cm-1  may  be
attributed to the carbon-carbon stretching. Generally, the
ratio of the intensities (ID/IG) of the two bands D and G
is used to provide additional information on the quality
of the nanostructured carbon-based materials.  It  is  well
known  that  the  quality  decreases  when  the  ID/IG  ratio
increases [26, 27].

Figure 3. Resonant Raman spectra recorded at 514 nm and 785 nm for FGO
(a), PN (b) and composite FGO-PN (c)

It can be seen that the intensity ratio of FGO-PN (ID/IG = 1.44)
increases with respect to the GO ratio (ID/IG = 1.40), which
is consistent with the introduction of defects on the FGO
surface. These changes may be due to the π-π interaction
between the FGO and PN, which is in agreement with
results presented recently by other researchers [28].

3.4 FT-IR Measurements

In the graphene oxide (FGO) FT-IR spectrum (Fig. 4) we
observe the bands located at 1226 cm-1 and 1420 cm-1, and
1620 cm-1 may be respectively attributed to C-OH and C=C
stretching. The peak at 1718 cm-1 may be assigned to C=O
stretching of the carboxylic group [27, 29]. In relation to the
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porphyrin nanorods we note the presence of a broad
intense band centred at 3400 cm-1, which is attributed to N-
H stretching, and the band situated at 2914 cm-1 is related
to the stretching vibration of aromatic C-H bonds. In
addition, a band is observed at around 1629 cm-1 and
corresponds to the C=C stretching in the phenyl nuclei.
Moreover, the band at 1540 cm-1 is attributed to Cβ-Cβ'

stretching, which may be due to symmetrical deformation
of the pyrrole rings and the bending strain Cα-N-Cα’. The
band at 1415 cm-1 is attributed to the symmetric stretching
of Cα-N-Cα’ and the Cβ-Cβ' bond stretching in pyrrole nuclei;
there is also a band which appears at 1318 cm-1 correspond‐
ing to the asymmetric HN-Cα-Cβ stretching bond. The peak
at 1261 cm-1 may be assigned to the asymmetric Cα-N-Cα'

stretching [23, 30]. In FGO-PN we find that the relative
intensities of these bands change significantly. Moreover,
the absence of the band at 1408 cm-1 and the shift of the N-
H band indicate a strong interaction between FGO and PN
[28], confirming our results obtained by resonant Raman
spectroscopy and steady-state photoluminescence.

Figure 4. FT-IR spectra of FGO (a), PN (b) and composite FGO-PN (c)

3.5 X-Ray Diffraction

Dummy Text Fig. 5 shows the XRD patterns of FGO, PN,
and FGO-PN. The FGO spectrum exhibits an intense and
strong peak at 2θ = 11.4°, which is attributed to the (001)
lattice spacing of 0.78 nm due to the interlamellar water
trapped between the hydrophilic graphene-oxide layers
[29, 31, 32]. For porphyrin nanorods the XRD patterns show
a strong peak at 2θ =31.75°, attributed to the (701) [33, 34].
The FGO-PN composite shows a peak at 2θ = 10.03° (d-
spacing = 0.881 nm); this can be explained by the increase
of the inter-planar distance (001) due to the effect of PN
trapped by FGO. The increase in the intensity ratio (ID/IG)
observed in Raman spectra corresponding to the FGO
surface modification after the intercalation of PN and XRD
results is in agreement with this observation.

Figure 5. XRD patterns of FGO, PN and FGO-PN

4. Conclusion

The morphological, structural and optical properties of PN
and their interactions with FGO have been investigated.
SEM showed good adhesion and exfoliation of FGO in PN.
The interaction with FGO was seen to alter the aggregate
structure of the PN. Strong π-π interaction and charge/
energy transfer between PN and FGO were confirmed by
photoluminescence, resonant Raman spectroscopy and FT-
IR, suggesting that FGO functionalized with nanostructure
PN, with their tuneable structural and optical properties,
can yield new opportunities for optic limiting, optoelec‐
tronics and photovoltaic devices.

5. References

[1] Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemi‐
cally Derived Ultrasmooth Graphene Nanoribbon
Semiconductors. Science 319: 1229-1232.

[2] Kamat P V (2011) Graphene-Based Nanoassemblies
for Energy Conversion. J. Phys. Chem. Lett. 2 (3):
242-251.

[3] Stoller M D, Park S, Stoller, Zhu Y, An J, and Ruoff
R S (2008) Graphene-Based Ultracapacitors. Nano
Lett. 8: 3498-3502.

[4] Kim B -Ja, Mastro M A, Hite J, Eddy Jr C R and Kim
J (2010) Transparent conductive graphene electrode
in GaN-based ultra-violet light emitting diodes.
Optics Express 18: 23030-23034.

[5] Dreyer D R, Park S, Bielawski C W and Ruof R S
(2010) The chemistry of graphene oxide.
Chem.Soc.Rev. 39: 228-240.

[6] Lindgren B M A M (2009) Vibration and Fluores‐
cence Spectra of Porphyrin-Cored 2, 2-Bis(methyl‐
ol)-propionic Acid Dendrimers. Sensors 9:
1937-1966.

[7] Franco R, Jacobsen J L, Wang H, Wang Z, Istva'n K,
Schore N E, Song Y, Medforthcd C J and Shelnutt J
A (2010) Molecular organization in self-assembled
binary porphyrin nanotubes revealed by resonance
Raman spectroscopy. Phys. Chem. Chem. Phys. 12:
4072-4077.

4 Nanomater Nanotechnol, 2015, 5:7 | doi: 10.5772/60111



[8] Kiessling D, Katsukis G, Malig J, Lodermeyer F,
Feihl S, Roth A, Wibmer L, Kehrer M, Volland M,
Wagner P, Wallace G G, Officer D L and Guldi D M
(2013) Novel nanographene/porphyrin hybrids-
preparation, characterization, and application in
solar energy conversion schemes. Chem. Sci. 4:
3085-3098.

[9] Dreyer D R, Park S, Bielawski C W and Ruof R S
(2010) The chemistry of graphene oxide. Chemical
Society Reviews 39: 228-240.

[10] Khenfouch M, Baitoul M, Maaza M (2014) Raman
study of graphene/nanostructured oxides for
optoelectronic applications. Optical Materials 36:
27-30.

[11] Mongwaketsi N, Ndungu P G, Nechaev A, Maaza
M, and Sparrow R (2010) Ionic self-assembly of
porphyrin nanostructures on the surface of charge-
altered track-etched membranes. Journal of Por‐
phyrins and Phthalocyanines 14: 446-451.

[12] Mongwaketsi N, Khamlich S, Klumperman B,
Sparrow R, Maaza M (2012) Synthesis and charac‐
terization of porphyrin nanotubes/rods for solar
radiation harvesting and solar cells. Physica B 407:
1615-1619.

[13] Khenfouch M, Baïtoul M, Maaza M, Wéry J (2014)
Photoluminescence and dynamics of excitation
relaxation in graphene oxide-porphyrin nanorods
composite. Journal of Luminescence 145: 33-37.

[14] Chien C -Ta, Li S -S, Lai W -J, Yeh Y -C, Chen H -A,
Chen I -S, Chen L - C, Chen K -H, Nemoto T, Isoda
S, Chen M, Fujita T, Eda G, Yamaguchi H, Chho‐
walla M, and Chen C -W (2012) Tunable Photolu‐
minescence from Graphene Oxide. Angew. Chem.
Int. 51: 6662-6666.

[15] Thomas H R, Valles C, Young R J, Kinloch I A,
Wilson N R and Rourke J P (2013) Identifying the
fluorescence of graphene oxide. J. Mater. Chem. C
1: 338-342.

[16] Bala Murali Krishna M, Venkatramaiah N, Venka‐
tesanb R and Narayana Rao D (2012) Synthesis and
structural, spectroscopic and nonlinear optical
measurements of graphene oxide and its compo‐
sites with metal and metal free porphyrins. J. Mater.
Chem. 22: 3059-3068.

[17] Serpone N (1999) Photoluminescence and Transient
Spectroscopy of Free Base Porphyrin Aggregates. J.
Phys. Chem. B 1, 103: 761-769.

[18] Wiglusz R, Legendziewicz J, Radzki S, Gawryszew‐
skaa P, Sokolnicki J (2004) Spectroscopic properties
of porphyrins and effect of lanthanide ions on their
luminescence efficiency. Journal of Alloys and
Compounds 380: 396-404.

[19] Loh K P, Bao Q, Eda G and Chhowalla M (2010)
Graphene oxide as a chemically tunable platform
for optical applications. Naturechemistry 2:
1015-1024.

[20] Liu Z D, Zhao H X, Huang C Z (2012) Obstruction
of Photoinduced Electron Transfer from Excited
Porphyrin to Graphene Oxide: A Fluorescence
Turn-On Sensing Platform for Iron (III) Ions. PLOS
ONE 7: 1-8.

[21] Shen J, Li N, Shi M, Hu Y, Ye M (2010) Covalent
synthesis of organophilic chemically functionalized
graphene sheets. Journal of Colloid and Interface
Science 348: 377-383.

[22] Ferrari A C (2007) Raman spectroscopy of graphene
and graphite: Disorder, electron-phonon coupling,
doping and nonadiabatic effects. Solid State
Communications 143: 47-57.

[23] Aydin M (2013) DFT and Raman spectroscopy of
porphyrin derivatives: Tetraphenylporphine (TPP).
Vibrational Spectroscopy 68: 141-152.

[24] Wan J, Wang H, Wu Z, Shun Y C, Zheng X and
Phillips D L (2011) Resonance Raman spectroscopy
and density functional theory calculation study of
photodecay dynamics of tetra(4-carboxyphenyl)
porphyrin. Phys. Chem. Chem. Phys 13:
10183-10190.

[25] Elliott A B S, Gordon K C, Khoury T, Crossley M J
(2012) Probing the electronic structure of b; b0-fused
quinoxalino porphyrins and tetraazaanthracene-
bridged bis-porphyrins with resonance Raman
spectroscopy and density functional theory. Journal
of Molecular Structure 1029: 187-198.

[26] Ferrari A C, Robertson J (2001) Resonant Raman
spectroscopy of disordered, amorphous, and
diamondlike carbon. Physical Review B 64: 1-13.

[27] Sutar P K N D S, Singh G, Divakar Botcha V, Talwar
S S, Srinivasa R S, Major S S (2012) Spectroscopic
studies of large sheets of graphene oxide and
reduced graphene oxide monolayers prepared by
Langmuir-Blodgett technique. Thin Solid Films 520:
5991-5996.

[28] Zhu M, Li Z, Xiao B, Lu Y, Du Y, Yang P, and Wang
X (2013) Surfactant Assistance in Improvement of
Photocatalytic Hydrogen Production with the
Porphyrin Noncovalently Functionalized Gra‐
phene Nanocomposite. ACS Appl. Mater. 5:
1732-1740.

[29] Bykkam S, Venkateswara R K, Shilpa Chakra C H
and Thunugunta T (2013) Synthesis and character‐
ization of graphene oxide and its antimicrobial
activity against Klebseilla and Staphylococus.
International Journal of Advanced Biotechnology
and Research 4: 142-146.

[30] Alben J, Choi S S (1973) Infrared apectroscopy of
porphyrins. Annals New York Academy of Sciences
206: 278-294.

[31] Khenfouch M, Baitoul M, Maaza M (2012) White
photoluminescence from a grown ZnO nanorods/

5Omar Bajjou, Precious Nametso Mongwaketsi, Mohammed Khenfouch , Anass Bakour , Mimouna
Baïtoul, Malik Maaza and Jany Wery Venturini:

Photoluminescence Quenching and Structure of Nanocomposite Based on Graphene Oxide Layers
Decorated with Nanostructured Porphyrin



graphene hybrid nanostructure. Optical Materials
34: 1320-1326.

[32] Pham V H, Dang T T, Hur S H, Kim E J, Kong B S,
Kim S and Chung J S (2012) Chemical reduction of
an aqueous suspension of graphene oxide by
nascent hydrogen. J. Mater. Chem. 22: 10530-10536.

[33] Hu J -S, Liang H -P, Wan L -J, and Jiang L (2005)
Three-Dimensional Self-Organization of Supramo‐

lecular Self-Assembled Porphyrin Hollow Hexago‐
nal Nanoprisms. J. Am. Chem. Soc. 127:
17090-17095.

[34] Wang L, Chen L Y, Jiang J (2014) Controlling the
growth of porphyrin based nanostructures for
tuning third-order NLO properties. Nanoscale 6:
1871-1878.

6 Nanomater Nanotechnol, 2015, 5:7 | doi: 10.5772/60111


