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Abstract In this paper, the analysis of charge injection
from metal to a contacted graphene nanoribbon (GNR) is
developed by means of a scattering matrix approach. The
charge transport, described by the Schrodinger equation
in the 2D domain of the GNRs, is solved, together with
the 3D Poisson equation for the potential distribution.
Varying the work function of the metal contacted to the
GNR, alters the so-called “metal doping”, i.e., the amount
of charge in the GNR. As easily expected, this in turn
affects the I-V characteristic of a GNR channel across two
electrodes. Interesting effects appear as the contribution
of GNR sub-band is considered and included in the self-
consistent calculation.

Keywords Graphene nanoribbon, double channel GNR-
FET, Coulomb interaction, Scattering Matrix

1. Introduction

The planar carbon nanostructures, such as graphene

nanoribbon (GNR), are fated to become an important
alternative to the established silicon devices, as they hold
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promise for extremely low noise and high speed
electronics [1-35]. The limitations of Moore’s law in term of
physics, but also in terms of manufacturability, flexibility
and multi-functionality, have motivated research and
development to implement new technologies and new
wireless architectures. In this context, the properties of
graphene, coupled with CMOS compatibility, offer
promise for a new generation of smart miniaturized
systems. The electromagnetic response of
graphene and graphene nanoribbons under plane wave
excitation can be represented by a macroscopic complex
conductivity. A spatially non-dispersive model, expressed
by an integral in k-space, holds when slow variation of the
e. m. field, with respect to charge spatial dynamics, is
assumed [20]. This is typically well-verified unless the e.m.
wavelength is very short, for example, if the frequency lies
above the terahertz range. Moreover, at such high
frequencies, self-sustained surface modes having rapid
spatial variation may also exist and contribute to invalidate
the hypothesis of long e.m. wavelength. In some cases, the
latter assumption can be avoided, but a compact
expression for the conductivity may still be obtainable: if
the photon energy is much smaller than the Fermi level of
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GNR, the Boltzmann theory can be applied, just at the price
of assuming that only intraband transitions contribute to
the conductivity, which is true up to the terahertz range.

In general, all the integral expressions mentioned above
follow from the knowledge of the graphene dispersion
curves and, when non-ballistic behaviour is to be
accounted for, of the charge lifetime.

One of the most challenging and not completely
understood problems that limits the production and
reproducibility of nanodevices arises due to the difficulty
of engineering the contact resistance between metal and
one- or two-dimensional nanostructures. At the contact,
band alignment arises from a self-consistent charge
diffusion between metal and nanostructure, and vice
versa: equilibrium is reached when the electric potential
due to the charge redistribution compensates for the
initial difference of Fermi energy at the two sides of the
contact. Fermi level alignment, band bending and the
Schottky  barrier are all consequences of this
redistribution of charges, and are relatively easily
obtained by standard numerical routines. In such an
analysis, the main input parameters are the work
functions of the joint materials.

Although the above mechanisms are relatively clear, in
nanocontacts carbon  structures
difficulties arise from the need to account for a multitude
of different effects that contribute to the contact
characteristics [21-24]: the overall geometry, the operation
temperature, the material work functions, the external
voltages, the low dimensionality, the lattice orientation,
the scattering due to defects/impurities or to other effects
such as phonon-coupling
Furthermore, the fabrication process is a key feature as it
decides the quality of the nanostructure and of the metal
morphology responsible for good charge-coupling. On
the experimental side we observe in the literature that
very different values of nanocontact resistance can be
found even for similar devices.

involving some

and charge interaction.

In the case of GNR lying over a conducting substrate, we
address the issue that with just one atomic layer - or a few
layers if double or three layer graphene is considered - a
continuum of energy states around the Fermi level of the
substrate is induced in the GNR by the exponential tails
of the substrate wavefunctions. Thus, the GNR Fermi
level only aligns to the conductor Fermi level, moving up
or down depending on its initial position, and this results
in a sort of n- or p-type doping for the GNR [21-23].
Hence, the potential distribution has to be computed
accounting for proper boundary conditions at the
electrodes, determined by work functions and applied
voltages.
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Within this relatively simple model, the metal contact
produces an n/p-type doping on contacted graphene: the
smaller the metal work function, the larger the electron
density on the contacted graphene. The electron density
in turn affects directly the current-voltage characteristic
by means of an increased change injection that means a
better ohmic contact. This gives rise to a so-called
“induced uniform metal
nanocontacts of #n or p type are simply obtained by using
respectively low or high work function metals.

doping”. For instance,

Recently, we have introduced full-wave techniques both
in the frequency (energy)-domain [25-32] and the time-
domain [33-40] for the investigation of new devices based
on carbon materials, e.g., multiwall (MW) CNT, graphene
and graphene nanoribbon (GNR). The quantum transport
is described by the Schrodinger equation, or its Dirac-like
counterpart, for small energies. The electromagnetic field
provides source terms for the quantum transport
equations that in turn provide charges and currents for
the electromagnetic field.

2. Device under test and modelling

In the present work, we use the frequency (energy)-
domain method reported in [25-32]. We assume that the
e.m. wavelength is small as compared to the charge
spatial variation, and that the frequency of the e.m. field
is very small as compared to the time dynamic, i.e., the
energy of the travelling particles. This kind of analysis
can be applied in order to explore the basic working
principles of graphene in its use as an interconnect and as
a channel for FET. For instance, a lumped circuit model
with parasitic capacitances, including the quantum
capacitance of the graphene channel, can be easily
derived from the simulation results. This leads to a rough
estimation of the gain and the unit-gain frequency. In
practice, the non-ballistic effects reduce the conductance
of the interconnect and the unit-gain frequency of the
transistor.

The main result of the present work resides in that it
shows, by means of some new examples, the effectiveness
of the scattering matrix approach for the solution of
relatively large graphene systems involving thousands of
carbon atoms and consequent multichannel transport.

In fact, differently from simulations performed at the
atomic scale, where it is very difficult to deal with large
carbon devices, we consider structures made of many
thousands of carbon atoms. Other common approaches
that, similarly to ours, avoid ab initio calculation, like Non
Equilibrium Green'’s (NEGF), could be
successfully applied. The NEGF [24] describes the carrier
interaction through a spatial charge density that locally
perturbs the graphene neutrality. The scattering matrix

Function
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approach is equivalent to the NEGF, but, in our opinion,
it better highlights the physical behaviour of the system,
because: i) it makes use of electronic modes that are easily
normalized with respect to the physical current, ii) it
considers the physical ports of graphene circuits by the
same standard as the virtual ports, i.e., all the accessible
electronic wavefunctions, iii) it treats all the ports as
adapted ones, i.e., transparent or perfect absorbing, iv) it
allows an easy check of the lossless and reciprocity
constrains involved in charge transport through the
scattering matrix properties, v) it allows the use of
concepts
community, such as cascade of transmission lines,
transformers, lumped circuit elements, etc., all useful in
order to model long graphene structures eventually
containing  defect, bending, discontinuities and
electrostatic perturbations.

well-known in the microwave and RF

An important parameter for the operation of an FET is
given by the gate differential capacitance: this parameter
directly affects the frequency characteristics of the
transistor as the unit gain frequency. The derivative, with
respect to the gate bias of the charge density in the
channel  after  self-consistent solution of the
transport/electrostatic problem, provides the channel
contribution to the gate capacitance. Some simple models,
based on the geometric and dielectric characteristics of
the gate and the channel, may provide some partial
results, by employing a metallic approximation for the
channel.
electromagnetic screening is much less effective in two
dimensions than in three dimensions, and graphene
behaves, to some extent, as an ideal two-dimensional
electron gas. Hence, a rigorous analysis must include the
knowledge of the actual electronic structure of the GNR
channel and its change under external voltage. The result
is what is usually referred to as quantum capacitance,
that is, the change of the channel energy levels and of the
corresponding wavefunction distributions due to an
external applied voltage.

However, it is well-known that the

The Schrédinger equation is formulated in its discrete
version [25]:

(Hl +H, +Hr)'/’=(E+¢)W
9]

where E is the energy, 1, ¢, r are the wavefunctions of
three consecutive GNR unit cells and the Hamiltonian has
been decomposed in three matrices which model transfer
energies between adjacent cells: matrix Hi (Hr) includes
the hopping elements from a unit cell to the previous
(following) one and Ho is the self-energy matrix of the
unit cell. The relations H=Hr" and Ho=Ho* hold. The
parameter ¢ represents the local potential seen by
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electrons in correspondence with the carbon atomic sites.
Exploiting the lattice periodicity, we have:

(H,e™ + Hy +H,e ™ Yy =(E +pw

l//:eijkyzl//[é‘(x_x[ay_y[)
@)

where i spans the atomic sites, k is the wavenumber and L
is the length of the unit cell. The solutions of (2),
corresponding to different branches of the dispersion
curves, can be distinguished as propagating modes for
real k, and evanescent modes for complex or imaginary k.
In order to provide the correct mode normalization,
wavefunctions have to be divided by:

_ \/ fr(E)
ar Im(y/*H,,e’jkLt//) 6)

where fr is the Fermi distribution function at T
temperature (T~0 has been wused). The above
normalization implies that all propagating modes carry
the same current with reference to Landauer’s formula.
The scattering matrix S of a GNR device, as defined in
[25], relates incident and reflected mode amplitudes at
port sections, which are different terminations of a many-
lead GNR circuit.

One of the difficulties of the proposed method resides in
that the scattering formulation has to be adapted to a
periodic waveguide, where the right basis to be used for
describing charge transport is given by the complete set
of Floquet, or periodic, modes. Within the latter choice
the scattering parameters can be shown to obey, for
example, the expected reciprocity and losslessness
constraints, respectively =87 and S$*S=I.

The number of modes at any port depends on the port
size, on the Fermi level and on GNR chirality. Regressive
modes, either above or below cut-off, are scattered out of
the GNR without reflection: this means perfectly
transparent ports.

In the case of a two-port GNR, the charge density is
obtained by summing the normalized wavefunctions of
carriers injected from the two opposite ports:

) (E)%(X;If’E))dE

2
4 @)

[ B)f
0=-¢Y | Bl

where the upper index “i” of I li , indicates the i-th
band, whereas the lower ones indicate the ports, fi and f>
are the Fermi probabilities for the electrons at ports 1 and
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2 respectively, e=1.6:10°C. The charge density (4) is
assumed as source term in the familiar Poisson equation
for the potential V.

For a multiport device, all physical quantities are
obtained by including the charge contributions from all
ports. For instance, the total current flowing through the
p-th port includes the contribution of all modes
transmitted from port p to all the other ports:

I, =2h—ez j(fp(E)—fq(E))S;y(E)dE ®)

i,j.q

a)

Graphene nanoribbon

where S is the scattering coefficient from mode i to
mode j and from port p to port 4.

A schematic view of the device under study is shown in
Fig. la): a semiconducting GNR connects source and
drain of an FET-like device. A potential difference of 0.1V
is applied between drain and source; the source is
assumed at 0V, equipotential with the lateral gate (G). A
rectangular waveguide approximation is assumed for the
electrodes - see [25] for further detail - and the half space
under the GNR is realistically filled by SiO2, whereas air
is assumed in the half space above. Figure 1b) shows the
armchair GNR considered in this work, with the general
definition of a m: in the present case, m=18.

Drain

N L

e N} y

G Source
b) mGNR y
OIS O
O O .. O
O O O
O O O
________ —> X

Figure 1. a) GNR-FET; b) definition of mGNR.
3. Simulation results

According to the model of the metal contact described
above, the Fermi level of the GNRs over metal is chosen
slightly away from the symmetry point of the GNR
dispersion curves, leading to a nonzero charge density. We
consider the latter as a free parameter resulting, in practice,
from the contact with metals with different work functions.

In the simulations of Fig. 2, the boundary conditions are given
by: V=0V, V ranges from 0 to 0.4V. Each curve corresponds
to a different metal work function, ranging from 4.1eV to
4.35eV. The GNR work function is assumed 4.5eV.

The iterative Poisson/Schrodinger (PS) scheme requires
the 3D potential solution ¢, evaluated in the (x,y) plane,
to be consistent with the 2D charge density Q, calculated
as in (4), that is also a function of x and y. Thus, the target
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solution (Q, ¢) has to converge in a two-dimensional
domain, point by point. This is a strong requirement and,
as a matter of fact, a large number of iterations, i.e., >10,
could be needed in order to obtain a stable solution.
Moreover, a well-known limit cycle problem may occur
when a particular charge density Q1 gives rise to a
certain potential @»-1 and, in the next numerical cycle, a
different pair Q» and ¢@u is produced, so that charge and
potential simply bounce back and forth from state (n-1) to
state (1), never converging. In this case, a different choice
of the starting potential should be tried.

In Fig. 3 we report the same curves as Fig. 2, with
included information about self-consistency: the self-
consistent (dashed) and not self-consistent (dot-dashed) I-
V' characteristics feature fairly small differences. The
potential profile in the GNR, in the non-self-consistent
case, is that of the device without GNR.
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Figure 2. a) I-V characteristic for different values of metal work function (Wr): higher curves correspond to smaller work functions.

Figures 2 and 3 above show that the current increases as
the metal doping increases, i.e., as the metal work
function reduces. There is however an apparently strange
behaviour at V=0.1V: in the figure below we mark in red
this particular situation where there is no significant
sensitivity of the current to the metal work function.
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Figure 3. Comparison between self-consistent (dashed) and not self-
consistent (dot-dashed) calculation: the difference is quite small.

The explanation is quite simple and can be resumed
graphically in Fig. 4(b-d), where the arrows point to the
higher values of the Fermi level of the contacted
graphene, i.e., smaller values of the metal work function.

In the situation of Fig. 4(b), marked by a blue circle, an
increase of the Fermi level allows more electrons to be
injected from the left contact so that the current increases.
In the situation c), marked by a red circle, an increase of
the Fermi level is ineffective because it allows more
electrons to be injected both from the left and right
contacts, so that the net current remains unchanged.
Actually, the charge density in the channel changes, and,
according to self-consistency, also the local potential and
the overall I-V characteristic change, but, as already
observed in Fig. 3, this effect is not very important. In the
situation d), marked by a green circle, again a situation
similar to b) is reproduced, but now just involving the
second sub-band.

www.intechopen.com

Figure 4. a) zoom of Fig. 1(a) at V=0.1V; from b) to d), a
decreasing metal work function, i.e., an increasing Fermi level, as
indicated by the arrows, is assumed in the calculation.
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4. Conclusions

In this paper, we consider the debated issue of the
metal-to-graphene contact from a numerical point of
view. The question of what happens as the metal Fermi
level varies is solved numerically, at least for small
displacements of the metal work function with respect
to the GNR work function. The result is not completely
obvious as, in fact, current-voltage characteristics do not
simply increase with the above displacement: some
more complicated effects are shown to appear as the
contribution of GNR sub-bands is included in the
calculation. We are currently working on comparing the
results from this metal-carbon model with experimental
results. Beyond the metal-carbon transition model, we
are investigating further features of the presented
techniques [25-40], with regard to using graphene in
multifunctional nano- and bio-nano-electronics [41-42].
Among the graphene properties in the THz and optical
regime, a very challenging issue to be analysed is the
quenching fluorescence of aromatic molecules that
seems to be greatly associated with photo-induced
carrier transfer [43].
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