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ORTHOGONAL PROJECTION OF AN INFINITE ROUND

CONE IN REAL HILBERT SPACE

Mate Kosor

Abstract. We fully characterize orthogonal projections of infinite
right circular (round) cones in real Hilbert spaces. Another interpreta-
tion is that, given two vectors in a real Hilbert space, we establish the
optimal estimate on the angle between the orthogonal projections of the
two vectors. The estimate depends on the angle between the two vectors
and the position of only one of the two vectors. Our results also make a
contributions to Cauchy-Bunyakovsky-Schwarz type inequalities.

1. Introduction and literature overview

Let us introduce the topic in two simple settings.

Example 1.1. Let CR2 (v, ϕ) =
{
u ∈ R2 : 〈u, v〉 ≥ cosϕ ‖u‖ ‖v‖

}
. We

call it a filled angle or a one-sided infinite cone in R2. Let V be any line
trough the origin and P any projection on V . Not just orthogonal, but any
projection of C(v, ϕ) on V can be characterized as either a whole line, or a
closed half-line (bounded with the origin), or just the origin.

From this point on, we investigate orthogonal projections only.

Problem 1.1. The one-sided right circular (round) infinite cone in R3

with apex in the origin, half-aperture ϕ ∈ [0, π], and axis direction given by
vector v ∈ R3 is defined by

(1.1) CR3 (v, ϕ)
def
=
{
u ∈ R3 : 〈u, v〉 ≥ cosϕ ‖u‖ ‖v‖

}
.

Let V be a two-dimensional subspace in R3. What is the orthogonal projection
of CR3 (v, ϕ) onto V ? If the orthogonal projection is a round infinite cone in
V , what is its direction and aperture?
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The aim of this paper is to solve a generalization of Problem 1.1 to real
Hilbert spaces. Our main result is Theorem 2.2. When applied to Problem 1.1,
Theorem 2.2 distinguishes among three cases, based on ϕ (the angle between
u and v) and the angle between v and V . Interestingly, orthogonal projections
of round infinite cones in any real Hilbert space produce only these three cases
already present in three dimensional Euclidean space.

1. In the case when ∠ (v, V ) > π
2 − ϕ, the orthogonal projection of the

cone is the whole subspace V .
2. When ∠ (v, V ) < π

2 − ϕ, the orthogonal projection P [CR3 (v, ϕ)] is
CR2(P v, ϕ1), which is a cone in V with apex in the origin, the axis
direction given by P v and half-aperture1

(1.2) ϕ1 = arccos

√
cos2 ϕ− sin2 ∠ (v, V )

1 − sin2 ∠ (v, V )
.

3. The border case, when ∠ (v, V ) = π
2 − ϕ, further depends on ϕ.

(a) When ϕ = 0 and v ⊥ V , then P [CR3 (v, 0)] = {(0, 0, 0)}.
(b) When v ∈ V and ϕ = π/2, then P [CR3(v, π/2)] is a cone in V

with half-aperture π/2 and axis given by Pv (a closed half-space
in V ).

(c) When 0 < ϕ < π/2 and ∠ (v, V ) = π
2 − ϕ, then the projection

P [CR3 (v, ϕ)] is the union of the interior of the half-space in V
oriented by P v and the origin:

P [CR3 (v, ϕ)] = {(0, 0, 0)} ∪ {y ∈ V : 〈y, Pv〉 > 0} .

Cones are well known objects in Hilbert space [3, p. 86], of which round cones
(right circular cones) are a special case. Infinite round cone is a rotational
body with a filled angle as a radial cross-section. Therefore, the problem of
round cone projection is related to problems of planar angle projection, which
have long been studied in three-dimensional (3D) Euclidean space [2,6,9–12].
Papers [9] and [2] studied the relationship between a fixed planar angle and
the orthogonal projection of that angle to another plane, which is another
planar angle. Their method was to set up the appropriate coordinate system
and then analytically calculate the formulas for value and position of the
projected angle. These formulas could be applied to the rotational body in
order to deduce formula (1.2) in 3D Euclidean space. On the other hand, the
projection of an infinite round cone in 3D could be computed by “extending
to infinity” the projected area of a finite right circular cone [7]. Note that
applying coordinatization to circular cones in [14] provided results valid only
in finite dimensions.

Our method is different and suits naturally to general Hilbert space set-
ting. We express geometric intuition from 3D in terms of the standard inner

1Formula for ϕ1 in Theorem 2.2 is in terms of ∠
(

v, V ⊥
)

.
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product calculus and real analysis. In equation (1.1), a round cone in 3D is
defined using a so-called reverse Cauchy-Bunyakovsky-Schwarz (CBS) type
inequality, and we will use the same inequality to define a round cone in gen-
eral Hilbert space (Section 2). In Section 3, we show few applications, among
which Example 3.5 is in (infinite dimensionsional) Lebesgue space.

Fifty years ago, paper [4, p. 89] mentioned connection between cones and
reverse2 triangle inequality in Hilbert spaces. Thus, it is not surprising that
results on round infinite cone projections are directly related to new CBS-type
inequalities (Section 4).

Known reverse CBS inequalities [5] provide ways to estimate cosϕ in (1.1)
from below, based on some knowledge about the projections of u and v. For
example, the Pólya-Szegö inequality in Rn [8] estimates cosϕ in (1.1) based
on lower and upper bounds of coordinates mu ≤ ui ≤ Mu and mv ≤ vi ≤ Mv.
Cassels’ inequality [13, page 330] and its refinement by Andrica and Badea
[1] provide a bound on cosϕ in (1.1) based on the bounds of the ratio m ≤
ui/vi ≤ M . On the other hand, in this paper we estimate the angle (1.2)
between orthogonal projections Pu and Pv based on the value of cosϕ in
(1.1). Our result on a reverse CBS inequality, Theorem 4.3, by contraposition
gives a sufficient condition for an estimate that is more strict then the classical
CBS: 〈u, v〉 ≤ α‖u‖‖v‖ (see Example 4.2).

2. Assumptions, Notation and the Main result

Throughout the remainder of the paper we make two assumptions.

1. H is a real Hilbert space, ‖x‖ =
√

〈x, x〉 denotes vector norm and O
denotes zero vector,

2. V is a closed subspace of H , and V ⊥ denotes its orthogonal comple-
ment.

From classical Hilbert space theory we know that there exists the unique
orthogonal projection onto V , which we denote by P : H → V . Given any
set Ω ⊆ H , its orthogonal projection onto V is denoted by P [Ω]. We define
angles between vectors u and v, and between vector u and subspace S with3

∠(u, v)
def
= sup {ϕ ∈ [0, π] : 〈u, v〉 ≤ cosϕ ‖u‖ ‖v‖} ,(2.1)

=

{
arccos 〈u,v〉

‖u‖‖v‖ , if u 6= O and v 6= O,

π, if u = O or v = O.
(2.2)

∠(u, S)
def
= inf {∠(u, v) : v ∈ S}(2.3)

2In [4] the inequality is called “complementary” to CBS or “running the other way”.
3Angle definition in (2.1) allows the trivial cases V = H, V = {O}, and v = O to

be naturally included in Theorem 2.2, without any special considerations. We use sign
def
=

throughout the paper in order to indicate that the relation is actually a definition.
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Thus ∠(u, {O}) = π = ∠(O, V ). Note that ∠
(
v, V ⊥) + ∠ (v, V ) = π

2 , except
when v = 0, or V = H , or V = {O}.

Definition 2.1. The infinite one-sided solid right circular (round) cone
in H with apex a ∈ H, axis direction given by v ∈ H, and half-aperture
ϕ ∈ [0, π] is defined by

CH (a, v, ϕ)
def
= {u ∈ H : 〈u− a, v〉 ≥ cosϕ ‖u− a‖ ‖v‖} .

The infinite one-sided solid right circular (round) cone with the apex included
but with the rest of the boundary excluded is defined by

C◦
H (a, v, ϕ)

def
= {a} ∪ {u ∈ H : 〈u− a, v〉 > cosϕ ‖u− a‖ ‖v‖} .

When the apex is O, the notation is abbreviated:CH (v, ϕ)
def
= CH (O, v, ϕ)

and C◦
H (v, ϕ)

def
= C◦

H (O, v, ϕ). By definition, we have CH (a,O, ϕ) = H
and C◦

H (a,O, ϕ) = {a}. By CBS inequality, we have CH (a, v, π) = H and
C◦
H(a, v, 0) = {a}. Dilation (Minkowski addition) is denoted by X + Y =

{x+ y : x ∈ X and y ∈ Y }. Thus, CH (a, v, ϕ) = CH (v, ϕ) + {a}.
Given a ∈ H , v ∈ H and ϕ ∈ [0, π], the aim of this paper is to determine

the projection P [CH (a, v, ϕ)]. The main result is the following theorem.

Theorem 2.2. Let CH (a, v, ϕ) be an infinite one-sided solid cone in H
and

(2.4) ϕ1 =





arccos

√
cos2 ϕ− cos2 ∠

(
v, V ⊥)

1 − cos2 ∠ (v, V ⊥)
, ∠

(
v, V ⊥) ∈

〈
0, π2

]

ϕ, else.

Given the values of ϕ and ∠
(
v, V ⊥) in the first two columns of the following

table, the orthogonal projection P of CH (a, v, ϕ) onto a closed subspace V can
be determined from the third column of the same table.

ϕ ∠
(
v, V ⊥) P [CH (a, v, ϕ)]

ϕ = 0 ∠
(
v, V ⊥) = 0 {P a}

ϕ = ∠
(
v, V ⊥) ∠

(
v, V ⊥) ∈ 〈0, π/2〉 C◦

V (P a, P v, π/2)

∠
(
v, V ⊥) ≥ π/2

CV (P a, P v, ϕ1)
ϕ < ∠

(
v, V ⊥) ∠

(
v, V ⊥) > 0

ϕ > ∠
(
v, V ⊥) V

Proof. Suppose that the apex is a = O. We prove the theorem on a
case by case basis. Technical work is deferred to Section 4, which deals with
reverse CBS inequalities that underlay the definition of the cone.
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Case v = O. This case is trivial as CH (O,ϕ) = H , P [CH (O,ϕ)] = V =
CV (O,ϕ1), ∠

(
O, V ⊥) = π, and ϕ1 = ϕ.

Case dim V = 0. Projection collapses everything to V = {O}, ϕ1 = ϕ,
and ∠

(
v, V ⊥) = 0. We have either ϕ = ∠

(
v, V ⊥) = 0, or ϕ > ∠

(
v, V ⊥) and

both corresponding rows in the table of the theorem provide the valid answer.
Case V = H . Let CH (v, ϕ) be a cone, such that v 6= O. We have P v = v,

P [CH (v, ϕ)] = CV (v, ϕ), ∠ (v, V ) = 0, ∠
(
v, V ⊥) = π and ϕ ≤ ∠

(
v, V ⊥).

From formula (2.4), ϕ1 = ϕ. Thus, P [CH (v, ϕ)] = CH(P v, ϕ), which is the
conclusion of the theorem.

Case ϕ = 0. Note that cosϕ = 1, CH (v, 0) = {t v : t ≥ 0} and
P [CH (v, 0)] = {t P v : t ≥ 0} = CV (P v, 0) unless P v = O. Note also
that formula (2.4) produces ϕ1 = 0 when ϕ = 0. In the special case when
P v = O, then ∠

(
v, V ⊥) = 0 and P [CH (v, 0)] = {O}.

Case ϕ < ∠
(
v, V ⊥). As ϕ ≥ 0, we must have ∠

(
v, V ⊥) > 0. Therefore

P v 6= O. The cases dimV = 0, and V = H have already been solved. In this
case the main part of the proof is Theorem 4.3. The first part of Theorem
4.3 states that: u ∈ CH (v, ϕ) implies P u ∈ CV (P v, ϕ1), i.e. P [CH (v, ϕ)] ⊆
CV (P v, ϕ1). In the subcase dim V ≥ 2, the second part of Theorem 4.3
establishes existence of u ∈ CH (v, ϕ) such that Pu 6= O, and 〈P u, P v〉 =
cosϕ1 ‖P u‖ ‖P v‖. By Lemma 4.9, we get CV (P v, ϕ1) ⊆ P [CH (v, ϕ)], and
the subcase dim V ≥ 2 is solved.

In the subcase dim V = 1, there are just 2 unit vectors in V , which we
denote with 1V and −1V . Also, there are just 4 different “cones” with the
apex O in V : {0}, V , CV (1V , 0) and CV (−1V , 0) (cf. Example 1.1). There-
fore CV (P v, π/2) = CV (P v, ϕ1) = CV (P v, 0), as ϕ1 ∈ [0, π/2]. Without the
loss of generality, we can assume that 1V and P v are pointing in the same
direction (we are free to swap the names between 1V and −1V ). Thus, we get
CV (1V , 0) = {t Pv : t ∈ R} ⊆ P [CH (v, ϕ)] and CV (P v, 0) = CV (1V , 0).
Together, we have CV (P v, ϕ1) ⊆ P [CH (v, ϕ)]. As noted before, from Theo-
rem 4.3 we get P [CH (v, ϕ)] ⊆ CV (P v, ϕ1). Therefore, P [CH (v, ϕ)] =
CV (P v, ϕ1).

Case ϕ > ∠
(
v, V ⊥). This implies V 6= H , because of the angle definition

in (2.1). The main part of the proof in this case is moved to Proposition 4.4
and Lemma 4.9. Proposition 4.4 shows that there is u ∈ CH (v, ϕ) such that
Pu 6= O, and 〈P u, P v〉 = cosπ ‖P u‖ ‖P v‖. From there, Lemma 4.9 con-
cludes that CV (P v, π) ⊆ P [CH (v, ϕ)]. By the definition of cone and by the
CBS inequality we know that CV (Pv, π) = V . Thus we get P [CH (v, ϕ)] = V ,
which is just what the theorem states in this case.

Case ϕ = ∠
(
v, V ⊥). Because of the other cases that have been discussed

already, we can safely assume that ϕ = ∠
(
v, V ⊥) ∈ 〈0, π/2] and dim V ≥ 1.

Note that Pv 6= O and ϕ1 = π/2.
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First, suppose dimV = 1. As we noted earlier, there are just four cones
to distinguish in V . Note that C◦

V (P v, π/2) = CV (P v, π/2) = CV (P v, 0).
From Pv 6= O we get CV (P v, 0) ⊆ P [CH (v, ϕ)]. From Lemma 4.6
we get P [CH (v, ϕ)] ⊆ CV (P v, π/2). Thus, we conclude P [CH (v, ϕ)] =
CV (P v, π/2) = C◦

V (P v, π/2).
Next, suppose dim V ≥ 2 and V 6= H . We discuss two subcases: either

ϕ = ∠
(
v, V ⊥) ∈ 〈0, π/2〉 or ϕ = ∠

(
v, V ⊥) = π/2. Suppose ϕ = ∠

(
v, V ⊥) ∈

〈0, π/2〉. By Proposition 4.5 and Lemma 4.9: CV (Pv, π/2 − ε) ⊆ P [CH (v, ϕ)],
for each ε ∈ 〈0, π/2]. Furthermore, Proposition 4.8 yields CV (−Pv, π/2) ∩
P [CH (v, ϕ)] = {O}, and therefore P [CH (v, ϕ)] = C◦

V (Pv, π/2).
Finally, we prove the subcase ϕ = ∠

(
v, V ⊥) = π/2 and dim V ≥ 2. Then,

Pv = v and CV (v, π/2) = CH (v, π/2) ∩ V ⊆ P [CH (v, π/2)]. Lemma 4.6 shows
that 〈u, v〉 ≥ 0 implies 〈Pu, Pv〉 ≥ 0. Thus P [CH (v, π/2)] ⊆ CV (v, π/2).
From ϕ = ϕ1 = π/2 we conclude P [CH (v, ϕ)] = CV (Pv, ϕ1).

We have proved the theorem for apex a = O. The general case follows
from the properties of dilation

P [CH (a, v, ϕ)] = P [CH (v, ϕ) + {a}] = P [CH (v, ϕ)] + {P a} .

3. A Few Applications

Remark 3.1. Let d be a vector orthogonal to V . Then Π
def
= V + {d}

is an affine subspace in H . Orthogonal projection of u onto Π is defined by
PΠu = P u + d. Orthogonal projection of cone CH (a, v, ϕ) onto Π yields
PΠ [CH (a, v, ϕ)] = P [CH (a, v, ϕ)] + {d} ⊆ Π, where P [CH (a, v, ϕ)] is given
in Theorem 2.2.

Remark 3.2. We can use Theorem 2.2 to describe projections of solid
cones with the apex included but without the rest of the boundary. It is easy
to see that

(3.1) P [C◦
H (a, v, ϕ)] = P [

⋃

ε>0

CH (a, v, ϕ− ε) ] =
⋃

ε>0

P [CH (a, v, ϕ− ε)] .

Therefore, if we extend the formula for ϕ1 in (2.4) by setting ϕ1 = 0 when
ϕ = ∠

(
v, V ⊥) = 0 we get

(3.2) P [C◦
H (a, v, ϕ)] =

{
C◦
V (Pa, Pv, ϕ1) , ϕ ≤ ∠

(
v, V ⊥) ,

V, ϕ > ∠
(
v, V ⊥) .

Furthermore, a relation equivalent to (3.2) is also valid for "open" cones.

Example 3.3. Let v ∈ H such that Pv 6= O. Which is the widest half
aperture ϕ of an infinite solid cone with the apex a ∈ H , axis and direction
given by v such that the half aperture of a projected cone is at most ϕ1 < π/2?
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Solving formula (1.2) for ϕ yields

(3.3) ϕ = arccos
√

cos2 ∠ (v, V ⊥) + cos2 ϕ1 − cos2 ∠ (v, V ⊥) cos2 ϕ1.

Theorem 2.2 establishes P [CH (a, v, ϕ)] = CV (Pa, Pv, ϕ1) and any larger ϕ
would yield aperture of projected cone larger then ϕ1.

Fact 3.4. The widest half aperture of an one-sided infinite cone that fits

inside an orthant (hyperoctant) of Rn is ϕ = arccos
√

n−1
n . As dimension

n → ∞, the aperture ϕ → 0.

Proof. All the projections onto coordinate 2D planes Vij of such a infi-
nite one-sided cone need to fit into a quadrant, which is a directed cone with
half aperture ϕ1 = π/4 around directed axis P v = (1, 1). Therefore, the di-
rected cone with the widest aperture needs to have the axis v = (1, 1, . . . , 1).
By formula (4.1) ∠ (v, Vij) = arccos

√
2√
n

and cos2 ∠
(
v, V ⊥

ij

)
= n−2

n . Formula

(1.2) yields ϕ = arccos
√

n−1
n and Theorem 2.2 establishes the fact.

Example 3.5. Let α ∈ (0, 1) and H = L2 (0, 1) Lebesgue space. What is
the smallest t > 0 such that for all u ∈ H ,

(3.4)
∫ 1

0
u ≥ α

√∫ 1

0
u2

︸ ︷︷ ︸
⋆

=⇒
∫ t

0
u ≥ 0 ?

Let v = 1(0,1) ∈ H , where we denote with 1X the characteristic function
of X . Then u ∈ CH(v, arccosα) if and only if u satisfies ⋆ in (3.4). Let Vt =
{f ∈ L2 (0, 1) : f(x) = 0 for almost all x ∈ (t, 1)}. Vt is a closed subspace
of H and isometrically isomorphic with L2 (0, t). Let PVt

be the orthogonal
projection onto Vt. Then PVt

(v) = 1(0,t). We calculate the angles ∠(v, Vt) =
∠(v,1(0,t)) = arccos

√
t and ∠(v, V ⊥

t ) = ∠(v,1(t,1)) = arccos
√

1 − t.
From Theorem 2.2, if arccosα > arccos

√
1 − t, then PVt

[CH(v, arccosα)]
= Vt. In other words, when t < 1 −α2, then for appropriate u that satisfies ⋆
in (3.4) we can get

∫ t
0 u < 0. On the other hand, for arccosα ≤ arccos

√
1 − t,

PVt
[CH(v, arccosα)] is either CVt

(1(0,t), ϕ1) or C◦
Vt

(1(0,t), π/2), where ϕ1 < π/2

can be calculated from (2.4) with ϕ = arccosα. In any case, if t ≥ 1 − α2,

then for any u that satisfies ⋆ in (3.4) we have
∫ t

0 u ≥
√
t− 1 + α2

√∫ t
0 u

2.

Therefore we have shown that t = 1 −α2 is the smallest number that satisfies
(3.4).

4. Reverse CBS Inequalities

In this section we provide technical results used in the proof of Theorem
2.2 on cone projections. Cones have been defined in terms of reverse CBS
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inequality. Given a reverse CBS inequality in Hilbert space H , we need to
establish an “optimal” reverse CBS inequality for orthogonal projections onto
a closed subspace V . This is the converse from reverse CBS inequalities
in survey [5, Section 5]. The contraposition of our results provides sufficient
conditions for an estimate that is more strict then the classical CBS inequality:
〈u, v〉 < α ‖u‖ ‖v‖. This is described in Example 4.2.

Remark 4.1. Throughout this section we use subscripts to denote u1
def
=

P u and u2
def
= u − P u, for any u ∈ H . For the unique decomposition of

u ∈ H as the sum of two orthogonal vectors, one from V and other from V ⊥

we write u = u1 ∔ u2. For u 6= O we use formulas

(4.1) ∠
(
u, V ⊥) = arccos

‖u2‖
‖u‖ =

{
arctan ‖u1‖

‖u2‖ , u2 6= O,
π
2 , u2 = O,

Example 4.2. Suppose we have set v ∈ H , V closed subspace of H ,
and α ∈ (0, 1). We are looking for a sufficient condition on the component
u1 = P u, that can establish an inequality stronger then the CBS inequality:
〈u, v〉 < α ‖u‖ ‖v‖.

We use contraposition of Theorem 4.3. Condition α = cosϕ >

cos∠
(
v, V ⊥) = ‖v2‖

‖v‖ gives ‖v2‖ < α√
1−α2

‖v1‖. If that condition is met, then
〈u1, v1〉 < cosϕ1 ‖u1‖ ‖v1‖ is the sufficient condition for 〈u, v〉 < α ‖u‖ ‖v‖,
where ϕ1 is the same as in (2.4). Therefore,

(4.2)

(
‖v2‖ < α‖v1‖√

1 − α2
and 〈u1, v1〉 <

√
α2‖v‖2 − ‖v2‖2

‖v‖2 − ‖v2‖2 ‖u1‖ ‖v1‖
)

=⇒ 〈u, v〉 < α ‖u‖ ‖v‖ .

The following result is a cornerstone in the proof of Theorem 2.2.

Theorem 4.3. Let v ∈ H, V closed subspace of H, ϕ such that 0 ≤ ϕ <
∠
(
v, V ⊥) and ϕ1 as in (2.4). Let α = cosϕ and α1 = cosϕ1. Then for

arbitrary u ∈ H,

(4.3) 〈u, v〉 ≥ α ‖u‖ ‖v‖ =⇒ 〈P u, P v〉 ≥ α1 ‖Pu‖ ‖Pv‖ .

Moreover, when dim V ≥ 2 and v 6= O then our α1 is the largest possible in
(4.3). In other words, when dim V ≥ 2, then there exists u ∈ H such that
Pu 6= O, 〈u, v〉 ≥ α ‖u‖ ‖v‖ and 〈P u, P v〉 = α1 ‖Pu‖ ‖Pv‖.

Proof. We use notation v = v1 ∔ v2 and u = u1 ∔ u2 as in Remark 4.1.
If v1 = O or V = H , (4.3) is trivial. Thus, without the loss of generality we
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can suppose v1 6= O and 0 ≤ ϕ < ∠
(
v, V ⊥) ≤ π/2. Then4,

0 ≤ ‖v2‖
‖v‖

(4.1)
= cos∠

(
v, V ⊥) < cosϕ ≤ 1.(4.4)

‖v2‖
‖v1‖ =

cos∠
(
v, V ⊥)

√
1 − cos2 ∠ (v, V ⊥)

(4.5)

When u1 = O then (4.3) is trivial. The main part of the proof investigates

(4.6) min
〈u1, v1〉

‖u1‖ ‖v1‖ = min
cos θ ‖u‖ ‖v‖ − 〈u2, v2〉

‖u1‖ ‖v1‖ =

= min cos θ

√
1 +

‖u2‖2

‖u1‖2

√
1 +

‖v2‖2

‖v1‖2 −
〈

u2

‖u1‖ ,
v2

‖v1‖

〉

︸ ︷︷ ︸
(�)

under the conditions that u1 6= O and 〈u, v〉 = cos θ ‖u‖ ‖v‖ ≥ cosϕ ‖u‖ ‖v‖,
for some θ ∈ [0, ϕ] that depends on u and v. Under these conditions

(�) ≥ cosϕ

√
1 +

‖u2‖2

‖u1‖2

√
1 +

‖v2‖2

‖v1‖2 − ‖u2‖ ‖v2‖
‖u1‖ ‖v1‖ = f

(‖u2‖
‖u1‖ ,

‖v2‖
‖v1‖

)

where f(a, b) = cosϕ
√

1 + a2
√

1 + b2 − ab.
As ‖u2‖/‖u1‖ ≥ 0 and v has been fixed from the start, together with

condition (4.4), it is sufficient to examine the function a
g7−→ f(a, b) for all

a ≥ 0 and a fixed b, taking into account that cosϕ > b/
√

1+b2. The conti-
nuity of g, the first, and the second derivative of g, together show that g
is convex with the only minimizer a = b/

√
cos2 ϕ(1+b2)−b2 and the minimum√

cos2 ϕ (1 + b2) − b2. Therefore

(�) ≥

√√√√cos2 ϕ

(
1 +

‖v2‖2

‖v1‖2

)
− ‖v2‖2

‖v1‖2
(4.5)
=

√
cos2 ϕ− cos2 ∠ (v, V ⊥)

1 − cos2 ∠ (v, V ⊥)
> 0.

Thus 〈u1, v1〉 ≥
√

cos2 ϕ− cos2 ∠ (v, V ⊥)
1 − cos2 ∠ (v, V ⊥)

‖u1‖ ‖v1‖ whenever ‖u‖ 6= O. The

first part of the theorem has been proved without the assumption dim V ≥ 2.
The assumptions for the second part of the theorem include v 6= O and

0 < ∠
(
v, V ⊥). Therefore, v1 6= O. Another assumption of the second part of

the theorem is dim V ≥ 2, and so z ∈ V can be chosen such that ‖z‖ = 1 and

4Formula numbers above and under (in)equality sign establish a cross reference that
can help to understand the relationship. This notation is used throughout the article.
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z ⊥ v1. It is straightforward to check that for u = cosϕ1 v1 + ‖v1‖ sinϕ1 z +
1

cosϕ1
v2:

‖u1‖ =
√

cosϕ2
1 ‖v1‖2 + ‖v1‖2 sin2 ϕ1 ‖z‖2 = ‖v1‖ 6= 0(4.7)

〈u1, v1〉 = cosϕ1 ‖v1‖2 = cosϕ1 ‖u1‖ ‖v1‖

‖u‖ =

√

‖u1‖2 +
‖v2‖2

cos2 ϕ1

(4.7)
= ‖v1‖

√
1 +

‖v2‖2

‖v1‖2 cos2 ϕ1

(2.4)
=

(4.5)
‖v1‖ cosϕ√

cos2 ϕ− cos2 ∠ (v, V ⊥)
(4.8)

‖v‖ = ‖v1‖
√

1 +
‖v2‖2

‖v1‖2
(4.5)
=

‖v1‖√
1 − cos2 ∠ (v, V ⊥)

(4.9)

Then,

〈u, v〉 = cosϕ1 ‖v1‖2 +
‖v2‖2

cosϕ1
= ‖v1‖2

(
cosϕ1 +

‖v2‖2

cosϕ1 ‖v1‖2

)

(2.4)
=

(4.5)
‖v1‖2 cos2 ϕ√

cos2 ϕ− cos2 ∠ (v, V ⊥)
√

1 − cos2 ∠ (v, V ⊥)

(4.8)
=

(4.9)
cosϕ ‖u‖ ‖v‖

Thus, when dim V ≥ 2, formula (2.4) gives the smallest possible ϕ1 ∈ [0, π]
and α1 = cosϕ1 is the largest possible in (4.3).

From Theorem 4.3 we were able to get a useful estimate on the angle between
projections when ∠ (u, v) < ∠

(
v, V ⊥). On the other hand, the following

result shows that when the angle between vectors ∠ (u, v) > ∠
(
v, V ⊥), then

no useful estimate on the angle between projections can be provided. In other
words, the worst case scenario ∠ (Pu, Pv) = π is possible.

Proposition 4.4. Let V be a closed subspace of Hilbert space H, with
dim V ≥ 1 and V 6= H. Let P be the orthogonal projection onto V . Let
v ∈ H, v 6= O, ϕ ∈

〈
∠
(
v, V ⊥) , π

]
, and α = cosϕ. Then there exists u ∈ H

such that

(4.10) Pu 6= O, 〈u, v〉 ≥ α ‖u‖ ‖v‖ and 〈Pu, Pv〉 = (−1) ‖Pu‖ ‖Pv‖ .

Proof. We use notation from Remark 4.1. Assumption of the proposi-
tion is that either v1 6= O or v2 6= O. We will prove the proposition on a case
by case basis. We will choose a different continuous parametrization u(t) for
each case, and then investigate the continuous function

(4.11) f(t)
def
= 〈u(t), v〉 − cosϕ ‖u(t)‖ ‖v‖ .
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Consider the case v1 6= O and v2 6= O. Then π/2 > ∠
(
v, V ⊥) > 0. Let

u(t) = tv1 ∔ v2 and f as in (4.11). Then

(4.12) f(t) = ‖v1‖2
t+ ‖v2‖2 − cosϕ

√
t2 ‖v1‖2 + ‖v2‖2

√
‖v1‖2 + ‖v2‖2

(4.1)
= ‖v1‖2

t+ ‖v2‖2 − cosϕ
√
t2 ‖v1‖2 + ‖v2‖2 ‖v2‖

cos∠ (v, V ⊥)
.

Plugging t = 0 in (4.12) gives f(0) = ‖v2‖2 − cosϕ
cos∠ (v, V ⊥)

‖v2‖2 > 0. By

the continuity of f , there exists some t0 < 0 such that f(t0) > 0. Now
u = u(t0) satisfies (4.10): the first part as Pu = t0v1 6= O, the second part
because 0 < f(t0) = 〈u(t0), v〉 − cosϕ ‖u(t0)‖ ‖v‖ and the third as 〈u1, v1〉 =
〈t0v1, v1〉 = − ‖t0v1‖ ‖v1‖ = − ‖u1‖ ‖v1‖.

Next, consider the case v1 = O and v2 6= O. As dim V ≥ 1 we can choose
z ∈ V such that ‖z‖ = 1. Let u(t) = tz ∔ v2 and f as in (4.11). Then

(4.13) f(t) = ‖v2‖2 − cosϕ
√
t2 + ‖v2‖2 ‖v2‖ and f(0) = ‖v2‖2 (1 − cosϕ) .

As ϕ > ∠
(
v, V ⊥) = 0 thus f(0) > 0. By the continuity of f , there exists some

t0 < 0 such that f(t0) > 0. Vector u = u(t0) satisfies (4.10) because Pu =
t0z 6= O, 0 < f(t0) = 〈u, v〉 − cosϕ ‖u‖ ‖v‖ and 〈u1, v1〉 = 0 = − ‖u1‖ ‖v1‖.

Consider the final case v1 6= O and v2 = O. Then π ≥ ϕ > ∠
(
v, V ⊥) =

π/2. As V 6= H there exists z ∈ V ⊥ such that ‖z‖ = 1. Let u(t) = tv1 ∔ z and
f as in (4.11). Then

f(t) = ‖v1‖2 t− cosϕ
√
t2 ‖v1‖2 + 1 ‖v1‖ .

As cosϕ < 0 therefore f(0) = − cosϕ ‖v1‖ > 0. By the continuity of
f there exists some t0 < 0 such that f(t0) > 0. Now u = u(t0) sat-
isfies (4.10): the first part as u1 = t0v1 6= O, the second part because
0 < f(t0) = 〈u, v〉 − cosϕ ‖u‖ ‖v‖ and the third as 〈u1, v1〉 = 〈t0v1, v1〉 =
− ‖t0v1‖ ‖v1‖ = − ‖u1‖ ‖v1‖.

The previous two results discussed the cases ∠ (u, v) < ∠
(
v, V ⊥) and

∠ (u, v) > ∠
(
v, V ⊥). The border case ∠ (u, v) = ∠

(
v, V ⊥) is different, as:

• inf ∠ (Pu, Pv) = π/2 (combine Proposition 4.5 and Lemma 4.6),
• the infimum is achieved in the case v ∈ V (see Proposition 4.8),
• the infimum is not achieved in the case v /∈ V (see Proposition 4.8).

Proposition 4.5. Let P be an orthogonal projection onto a closed sub-
space V of Hilbert space H, with dim V ≥ 2. Let v ∈ H, v 6= O,
∠
(
v, V ⊥) > 0, and ε ∈ 〈0, 1]. Then there exists u ∈ H such that Pu 6= O,

〈u, v〉 ≥ cos∠
(
v, V ⊥) ‖u‖ ‖v‖ and 〈Pu, Pv〉 = ε ‖Pu‖ ‖Pv‖ .
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Proof. We use notation from Remark 4.1. As ∠
(
v, V ⊥) > 0, we have

‖v1‖ > 0 . Without the loss of generality we assume that ‖v1‖ = 1 (if the
statement of the proposition is true for vector v/‖v1‖ then it is also true for v).

As dimV ≥ 2, there exists z ∈ V such that z ⊥ v1 and ‖z‖ =
√

1 − ε2.

Let u(t)
def
= εv1 + tv2 + z and u1(t)

def
= P u(t). Then u1(t) = εv1 + z 6= O,

‖u1(t)‖ =
√
ε2 ‖v1‖2 + ‖z‖2 = 1, and 〈u1(t), v1〉 = ε = ε ‖u1(t)‖ ‖v1‖. So we

only need to find t such that 〈u(t), v〉 ≥ cos∠
(
v, V ⊥) ‖u(t)‖ ‖v‖.

We investigate the real function

f(t)
def
= 〈u(t), v〉−cos∠

(
v, V ⊥) ‖u(t)‖ ‖v‖ = ε+t ‖v2‖2 −‖v2‖

√
1 + t2 ‖v2‖2

.

Note that f is differentiable and strictly increasing, with lim
t→+∞

f(t) = ε > 0.

Therefore, f assumes positive value for some t0 ∈ R. Vector u(t0) satisfies
the conclusion of the proposition.

Lemma 4.6. Let P be an orthogonal projection onto a closed subspace V
of Hilbert space H, with V 6= H. Let v ∈ H, v 6= O such that ∠

(
v, V ⊥) > 0.

Then

∀u ∈ H, 〈u, v〉 ≥ cos∠
(
v, V ⊥) ‖u‖ ‖v‖ =⇒ 〈Pu, Pv〉 ≥ 0.

Proof. If V = {O}, v = O, Pv = O (∠(v, V ⊥) = 0) or Pu = O the
conclusion of the lemma is trivial. Otherwise, apply Lemma 4.7.

Lemma 4.7. Let P be an orthogonal projection onto a closed subspace
V of Hilbert space H, with V 6= H and V 6= {O}. Let v ∈ H, such that
0 < ∠

(
v, V ⊥) < π/2. Then for all u ∈ H,

(
〈u, v〉 ≥ cos∠

(
v, V ⊥) ‖u‖ ‖v‖ and Pu 6= O

)
=⇒ 〈Pu, Pv〉 > 0.

Proof. We use notation from Remark 4.1. As 0 < ∠
(
v, V ⊥) < π/2 so

v 6= O, v1 6= O, and v2 6= O.
To prove the conclusion of the lemma, we assume u1 6= O and

(4.14) 〈u1, v1〉 + 〈u2, v2〉 = 〈u, v〉 ≥ cos∠
(
v, V ⊥) ‖u‖ ‖v‖ (4.1)

= ‖u‖ ‖v2‖
From (4.14), as ‖u2‖ < ‖u‖ we get

‖u‖ ‖v2‖ − 〈u1, v1〉
(4.14)

≤ 〈u2, v2〉 ≤ ‖u2‖ ‖v2‖ < ‖u‖ ‖v2‖ .
Thus, 〈u1, v1〉 > 0 follows by subtraction of ‖u‖ ‖v2‖ from both sides of the
previous inequality.

Proposition 4.8. Let P be an orthogonal projection onto a closed sub-
space V of Hilbert space H, such that V 6= H and dim V ≥ 2. Let v ∈ H,
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such that v 6= O and ∠(v, V ⊥) > 0. Then ∠(v, V ⊥) < π/2 if and only if for
all u ∈ H,

(4.15)
(
〈u, v〉 ≥ cos∠(v, V ⊥) ‖u‖ ‖v‖ and Pu 6= O

)
=⇒ 〈Pu, Pv〉 > 0.

Proof. One implication is proved in lemma 4.7.
Instead of proving that (4.15) implies ∠(v, V ⊥) < π/2, we prove the con-

traposition: ∠(v, V ⊥) ≥ π/2 implies that there exists an u 6= O such that
〈u, v〉 ≥ cos∠

(
v, V ⊥) ‖u‖ ‖v‖, Pu 6= O and 〈Pu, Pv〉 ≤ 0. From (4.1),

∠
(
v, V ⊥) ≥ π/2, the proposition assumptions V 6= H and v 6= O, we can

conclude that ∠
(
v, V ⊥) = π/2. Therefore cos∠

(
v, V ⊥) = 0 and v ∈ V . As

dim V ≥ 2 there exists z ∈ V such that z ⊥ v and ‖z‖ = 1. For u = z we get
〈u, v〉 = 0 ≥ cos∠(v, V ⊥) ‖u‖ ‖v‖ and 〈Pu, Pv〉 = 〈z, v〉 = 0.

The following lemma allows us to go from just one u ∈ CH (v, ϕ) such that
Pu is on the boundary of CV (P v, θ) and conclude that all of CV (P v, θ) is
inside of the projection of CH (v, ϕ).

Lemma 4.9. Let θ ∈ [0, π], u ∈ CH (v, ϕ), P u 6= O and 〈P u, P v〉 =
cos θ ‖P u‖ ‖P v‖. Then CV (P v, θ) ⊆ P [CH (v, ϕ)].

Proof. We use notation from Remark 4.1. Note that u1 6= O, and so if
ϕ = 0, then the case v1 = 0 is excluded from the conclusion of the lemma. On
the other hand, when ϕ 6= 0 then the case v1 = 0 is included in the lemma.
Notice that u ∈ CH (v, ϕ) corresponds to 〈u, v〉 ≥ cosϕ ‖u‖ ‖v‖.

We will prove that for each w ∈ V such that 〈w, v1〉 ≥ cos θ ‖w‖ ‖v1‖,

there exists z ∈ V ⊥ such that ũ
def
= w∔ z, that satisfies 〈ũ, v〉 ≥ cosϕ ‖ũ‖ ‖v‖.

Note that by the definition of ũ we get P ũ = w. Take z = u2
‖w‖
‖u1‖ , then

‖ũ‖ =
‖w‖
‖u1‖ ‖u‖ and

〈ũ, v〉 = 〈w, v1〉 +
‖w‖
‖u1‖ 〈u2, v2〉 ≥ cos θ ‖w‖ ‖v1‖ +

‖w‖
‖u1‖ 〈u2, v2〉 =

=
‖w‖
‖u1‖ (cos θ ‖u1‖ ‖v1‖ + 〈u2, v2〉) =

‖w‖
‖u1‖ (〈u1, v1〉 + 〈u2, v2〉) =

=
‖w‖
‖u1‖ 〈u, v〉 ≥ ‖w‖

‖u1‖ cosϕ ‖u‖ ‖v‖ = cosϕ ‖ũ‖ ‖v‖ .
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Ortogonalna projekcija beskonačnog kružnog konusa u realnom

Hibertovom prostoru

Mate Kosor

Sažetak. Dajemo potpuni opis ortogonalnih projekcija

beskonačnog kružnog stošca u realnim Hilbertovim prostorima.

Druga interpretacija je da smo za dva vektora dobili optimalnu

ocjenu kuta izmedu ortogonalnih projekcija tih vektora. Ta ocjena

ovisi o kutu izmedu polazna dva vektora i položaju samo jednog

od njih. Medu rezultatima je takoder doprinos nejednakostima

tipa Cauchy-Bunyakovsky-Schwarz.
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