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GENERALIZED SHALIKA MODEL ON SO4n(F ),
SYMPLECTIC LINEAR MODEL ON Sp4n(F ) AND THETA

CORRESPONDENCE

Marcela Hanzer

Abstract. We show that if an irreducible admissible representation
of SO4n(F ) has a generalized Shalika model, then its small theta lift to
Sp4n(F ) has the symplectic linear model, thus answering a question posed
by D. Jiang. Here F is a non-archimedean field of characteristic zero.

1. Introduction

The fundamental results of Arthur led to the classification of the automor-
phic discrete spectrum of classical groups. The automorphic representations
of a classical group are grouped into global (Arthur) packets. Global Arthur
packets are formed using local Arthur packets. It is very important to have
a way to distinguish representations inside a local packet, being it Arthur or
Langlands packet. The characterization of the representations in a packet by
models they have turns out to be very important; let us just mention the
landmark work of Gan, Gross, Prasad, Waldspurger and others on restriction
problems for classical groups and existence of Bessel and Fourier-Jacobi mod-
els ([4],[5], etc.). The second use of models for groups over local fields is their
application for the determination of poles of the global L-functions. In that
way D. Jiang introduced the generalized Shalika model for the split group
SO4n(F ), where F is a local non-archimedean field of characteristic zero. In
more detail, Jiang introduced this model in [10] with the Langlands-Shahidi
method to characterize irreducible automorphic cuspidal representations π
of GL2n whose global L–function L(s, π,Λ2) has a pole for s = 1. Moreover,
Jiang formulated conjectures about the characterizations of local Arthur pack-
ets containing a member having a non-zero generalized Shalika model (cf. the
fourth section of [9]); these conjectures can be viewed as a specific case of
on-going research into spherical varieties (cf. [13]).
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Jiang also observed the following: let σ be an irreducible cuspidal sym-
plectic representation of GL2n(F ), where F is a non-archimedean field of char-
acteristic zero. If we induce parabolically from the representation σ twisted by
1/2 to a representation of SO4n(F ), we get a reducible representation whose
Langlands quotient has a generalized Shalika model. Similarly, if we induce
from σ (twisted by 1/2) parabolically to Sp4n(F ), the representation is re-
ducible, and its Langlands quotient has a non-zero symplectic linear model.
It turns out that these two Langlands quotients are related through theta
correspondence. This fact fits nicely into interpretation of symplecticity of
representations of GL2n(F ) in terms of various functorialities and models ex-
isting on members of a dual pair (O4n(F ), Sp4n(F )); this is nicely explained
in [8], p. 541.

In this note, we answer a question of Jiang posed in [8], p. 542. Namely,
as we mentioned above, in the specific cases of induction from an irreducible
supercuspidal symplectic representation of GL2n(F ), the corresponding Lang-
lands quotients, which have a non-zero generalized Shalika model, and a non-
zero symplectic linear model, respectively, are related through the theta corre-
spondence. We prove that this feature occurs generally; i.e., if an irreducible
smooth representation of SO4n(F ) has a non-zero generalized Shalika model,
then its small theta lift to Sp4n(F ) is non-zero and has a non-zero symplectic
linear model. This result suggests that the functorialities mentioned in the
preceding paragraph (cf. [8], p. 541) can be generalized in an appropriate
setting, raising further questions about Gelfand-Graev models and Fourier-
Jacobi models of the representations of SO4n(F ) and Sp4n(F ).

Our proof is based on a direct calculation of a twisted Jacquet module of
the Weil representation (for a fixed additive character), and not on the more
thorough study of the properties of representations having generalized Shalika
or symplectic linear model. We adopted the latter approach in a toy example
where we worked out the case of n = 1 ([3]). Here a slight disambiguation
is needed (as we explain in the next subsection), since actually O4n(F ) and
Sp4n(F ) occur as a dual reductive pair, so we need to extend this irreducible
representation of SO4n(F ) to an irreducible representation of O4n(F ).

1.1. Notation and Preliminaries. Let F be a non-archimedean field of char-
acteristic zero. We use Howe duality conjecture, which is now proved for any
residual characteristic (cf.[6]), so we do not need any additional assumptions
on residual characteristic. We fix a non-trivial additive character ψ : F → C∗.

Let

Jn :=




1
1

. .
.

1


 ∈ GLn(F ).
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We realize the F–points of (split) special orthogonal group O4n as

O4n(F ) = {A ∈ GL4n(F )|AtJ4nA = J4n, }
and SO4n(F ) is realized a subgroup of O4n(F ) consisting of matrices of deter-
minant 1. We fix the maximal diagonal torus T and the Borel subgroup B of
upper triangular matrices in SO4n(F ). We let P = MN be a standard max-
imal parabolic subgroup of SO4n(F ), whose Levi subgroup M is isomorphic
to GL2n(F ).

It is embedded via

ι : GL2n(F ) →֒ SO4n(F ), g 7→
(
g 0
0 J2ng

−tJ2n

)

and the F -points of the unipotent radical N of P are given by all matrices

y(X) =

(
I2n X
0 I2n

)
,

such that Xt = −J2nXJ2n. We refer to P as the Siegel subgroup. The
subgroup H ⊂ P (F ) generated by all ι(g) for g ∈ Sp2n(F ) and all y ∈ N(F )
is called the generalized Shalika subgroup of SO4n(F ). Here Sp2n(F ) is the
symplectic group realized as

Sp2n(F ) =

{
A ∈ GL2n(F )|At

[
0 Jn

−Jn 0

]
A =

[
0 Jn

−Jn 0

]}
.

We consider ψ to be a character of N by

ψ(y(X)) = ψ

(
tr

((
−In 0

0 In

)
X

))

and then we extend it to a character ψH of H by demanding it is trivial
on ι(Sp2n(F )) (this is well defined because it is easily checked that H is the
stabilizer of a character ψ in P ).

Definition 1.1. An irreducible admissible representation π of SO4n(F )
is said to have a non-zero generalized Shalika model if

HomH(π, ψH) 6= 0.

The group Sp2n(F ) × Sp2n(F ) injects into Sp4n(F ) via

(1.1)

((
a b
c d

)
,

(
a1 b1

c1 d1

))
7→




a b
a1 b1

c1 d1

c d


 .

Here a, b, c, d, a1, b1, c1, d1 are n× n matrices.
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Definition 1.2. An irreducible admissible representation π on Sp4n(F )
has a symplectic linear model if

HomSp2n(F )×Sp2n(F )(π, 1Sp2n(F )×Sp2n(F )) 6= 0.

Since we need representations of the full orthogonal group to enter the
theta correspondence, we recall the following well-known criterion. Let ǫ ∈
O2n(F ) be the element

ǫ =




In−1

1
1

In−1


 .

For an irreducible admissible representation τ of SO2n(F ), we denote by τ ǫ

representation of SO2n(F ) on the same space, defined by τ ǫ(g) = τ(ǫgǫ−1).
We can pass between irreducible admissible representations of O2n(F ) and
SO2n(F ) as follows:

Lemma 1.3 (cf.[12] 3.II.5, Lemme).

1. Let π be an irreducible admissible representation of O2n(F ). Then
π|SO2n(F ) is irreducible if and only if π ≇ π ⊗ det.

2. Let τ be an irreducible admissible representation of SO2n(F ). Then
either

(A) τ ≇ τ ǫ; then Ind
O2n(F )
SO2n(F )(τ) =: π is irreducible and satisfies π =

π ⊗ det, or
(B) τ ∼= τ ǫ; then Ind

O2n(F )
SO2n(F )(τ) is reducible and the direct sum of

two non-equivalent irreducible representations π and π ⊗ det.

We use this lemma to adapt the theta correspondence to representations
of SO2n(F ). Let ωm,k denote the Weil representation (with respect to an
additive character ψ′) of a dual pair consisting of the split orthogonal group
O(V )(F ) where dimension of V is 2m and of the symplectic group Sp(W )
where the dimension of W is 2k. The maximal quotient of ωm,k on which
O(V )(F ) = O2m(F ) acts as a multiple of an irreducible representation π
decomposes as π ⊗ Θ(π, k), where Θ(π, k) is a finite-length Sp2k(F )–module.
This module has the unique irreducible quotient (Howe conjecture) which
we denote by θ(π, k). We analogously define an irreducible Sp2k(F )–module
θ(τ, k) for an irreducible representation τ of SO2m(F ). We have

(1.2) θ(τ, k) ∼= θ(π, k) if (A)

θ(τ, k) := θ(π, k) ⊕ θ(π ⊗ det, k) if (B).

In the remainder of this paper, we are concerned with the theta lifts of irre-
ducible representations of SO4n(F ) to irreducible representations of Sp4n(F ),
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so we are always dealing with the Weil representation ω2n,2n so we denote
θ(τ, 2n) by θ(τ).

We retain the notation from Lemma 1.3. Assume that τ is in irreducible
representation of SO4n(F ) such that it satisfies condition (A) from Lemma
1.3 and that it has a non-zero generalized Shalika functional, say λ. Then,
π|SO4n(F ) = τ ⊕ τ ǫ and we can define a generalized Shalika functional on the
representation π by prescribing that it is equal to λ on τ and zero on τ ǫ. If
τ with a non-zero generalized Shalika model satisfies (B) then the situation
is even more straightforward since then π|SO4n(F ) = τ. So, we may conclude
that we can always extend generalized Shalika functional from irreducible
representation of SO4n(F ) to an irreducible representation of O4n(F ) in the
sense of Lemma 1.3.

We note that in (very limited number) of explicitly known representations
τ with the non-zero generalized Shalika models ([8],[10],[3]), we always had
in these examples the situation (A). We know that the following holds ([14]):

Theorem 1.4. Assume that σ is an irreducible admissible representation
of the split O2m(F ). Then the following holds:

n(σ) + n(σ ⊗ det) = 2m.

Here n(σ) denotes the rank of the first non-zero occurrence of the representa-
tion σ in theta correspondence.

Because of that, if τ is irreducible representation of SO4n(F ) in situation
(A), we have that n(π) = 2n and θ(τ, 2n) = θ(π, 2n) 6= 0. We denote θ′(τ) =
θ(τ, 2n).

If τ is in situation (B), at least one of the representations π, π ⊗ det has
a non-zero theta lift to the rank 2n. Now, we denote by θ′(τ) one of the non-
zero lifts θ(π, 2n) or θ(π ⊗ det, 2n) (and both π and π ⊗ det have a non-zero
generalized Shalika model).

We use ind to denote the compact induction, and Ind to denote the non-
compact induction. By ։ we denote a surjective mapping. From now on, we
study representations of groups SO4n(F ) and Sp4n(F ) for n ≥ 2, since n = 1
case is resolved in [3].

2.

We continue to assume that (π, V ) is an irreducible representation of
O4n(F ) with a non-zero generalized Shalika model such that θ(π) 6= 0. We
want to express a property of having non-zero generalized Shalika model in
terms of twisted Jacquet modules. We continue to use the notation from the
previous section. We form a subspace

Vψ(N) := span{π(n)v − ψ(n)v : v ∈ V, n ∈ N},



60 M. HANZER

where N is the unipotent radical of the Siegel standard parabolic sub-
group of SO4n(F ). Then, it is straightforward that the twisted Jacquet
module RH,ψ(π) := V/Vψ(N) is a Sp2n(F )–module, since, by definition,
Sp2n(F ) ⊂ GL2n

∼= M is a stabilizer of a character ψ of N. Now, the ex-
istence of the non-zero generalized Shalika model on π is equivalent to the
fact that RH,ψ(π), as a Sp2n(F )–module, has the trivial quotient, i.e., there
exists a non-zero functional λ on RH,ψ(π) satisfying

λ(π(s)v + Vψ(N)) = λ(v + Vψ(N)).

2.1. Calculation of RH,ψ(ω2n,2n). Recall that we view ω2n,2n as a represen-
tation of O4n(F ) × Sp4n(F ). The above discussion motivates us to examine
RH,ψ(ω2n,2n) more thoroughly. This is obviously an Sp2n(F ) × Sp4n(F )-
module. Note that we have a non-trivial additive character ψ appearing in the
definition of the generalized Shalika model; assume that an additive character
ψa(x) := ψ(ax), where a ∈ F ∗, enters the definition of theta correspondence
(we do not emphasize ψa in the notation of ω2n,2n). A general description of
the twisted Jacquet modules of this kind is given in ([12], pp. 72, 73). We
further elaborate on this description which is given not necessarily for the
Weil representation, but in the more general context.

We study the Schroedinger model of the Weil representation ω2n,2n de-
fined in the following way: let V = V ′

2n ⊕ V ′′
2n be a complete polariza-

tion of the quadratic space V on which O4n(F ) acts. Let W be 4n–
dimensional skew-symmetric space on which Sp4n(F ) acts. We denote by
W = V ⊗W = V ′

2n⊗W ⊕V ′′
2n⊗W. Then, the Schroedinger model of ω2n,2n is

realized on the Schwartz space S(V ′
2n⊗W ). Sometimes we use an isomorphism

V ′
2n ⊗W ∼= W 2n, so that given a basis {e1, . . . , e2n} of an isotropic space V ′

2n
we have

e1 ⊗ w1 + · · · e2n ⊗ w2n 7→ (w1, . . . , w2n).

To be able to directly apply formulas for the Weil representation given in ([11],
p. 38) we take a little bit different matrix realization of O4n(F ) (isomorphic
to ours defined above) where in the definition of O4n(F ) the symmetric form

is defined not by using the matrix J4n but the matrix

[
0 I2n

I2n 0

]
. Then,

N =

{
n(S) =

[
I2n S
0 I2n

]
: St = −S

}
.

Note that then the action of N in ω2n,2n is given by the homothety ([11], p.
38)

ω2n,2n(n(S), 1)φ(w) = ψa(
1
2
tr(〈w,w〉S))φ(w),

where w = (w1, . . . w2n) ∈ W 2n, φ ∈ S(W 2n). Here 〈x, x〉 denotes 2n × 2n
skew-symmetric matrix whose (i, j)-entry is 〈wi, wj〉. We examine (we adopt
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the notation of [12], p. 72)

Ω(ψ) =

{
w ∈ W 2n : ψa(

1
2
tr(〈w,w〉S)) = ψH(S) = ψ(tr(

[
0 In

−In 0

]
S))

}
,

where the action of the Shalika character is adjusted because of the modified
definition of N. By changing a 7→ a−1, we get the condition

Ω(ψ) =

{
w ∈ W 2n : ψ(tr(S(1

2 (〈w,w〉 − a

[
0 In

−In 0

]
))) = 1,

∀St = −S ∈ Mn(F )

}
.

By Lemma on p. 73 of [12], the restriction on Ω(ψ) gives the isomorphism
of RH,ψ(ω2n,2n) with the action of Sp2n(F ) × Sp4n(F ) on S(Ω(ψ)). Now we
examine this action more throughly.

We can get rid of ψ in the above definition of Ω(ψ). We see that in the
following calculation. We define an skew-symmetric matrix A := 1

2 〈w,w〉 −
a

[
0 In

−In 0

]
. We put A =

[
x b

−bt d

]
, where xt = −x, dt = −d and S =

[
a1 b1

−bt1 d1

]
with at1 = −a1, d

t
1 = −d1. The condition becomes

ψ(tr(a1x− b1b
t − bt1b+ d1d)) = 1,

for all

[
a1 b1

−bt1 d1

]
. We take a1 = d1 = 0 and b1 = λei,j , where ei,j is a

n × n matrix whose entries are all zero except the entry (i, j) which is 1.
We get that ψ(2λbi,j) = 1, for all λ ∈ F ∗. Since ψ is non-trivial, we get
that bi,j = 0. This holds for every (i, j) so that b = 0. Since n ≥ 2, we can
take a1 = d1 = λei,j − λej,i, for some i 6= j. Then, the condition becomes
ψ(2λ(x + d)j,i) = 1, ∀λ ∈ F ∗. We get that (x + d)j,i = 0, for all j 6= i. We
get that x + d = 0. If we take a1 = −d1 = λei,j − λej,i, for some i 6= j, we
analogously get (x− d)j,i = 0 and then we get x = d = 0. Thus,

A =
1
2

〈w,w〉 − a

[
0 In

−In 0

]
= 0.

Thus,

Ω(ψ) =

{
w ∈ W 2n :

1
2

〈w,w〉 − a

[
0 In

−In 0

]
= 0

}
.

Recall that the action of Sp2n(F ) × Sp4n(F ) on w = e1 ⊗ w1 + · · · e2n ⊗ w2n

is given as follows: for (g1, g2) ∈ Sp2n(F ) × Sp4n(F ) we have

(g1, g2)(e1 ⊗ w1 + · · · e2n ⊗ w2n) = g1e1 ⊗ g2w1 + · · · + g1e2n ⊗ g2w2n.
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We put g1ei =
∑2n

l=1 al,iel, i = 1, . . . , 2n. So we get
(2.1)

(g1, g2)(e1⊗w1+· · · e2n⊗w2n) = e1⊗(
2n∑

i=1

a1,ig2wi)+· · ·+e2n⊗(
2n∑

i=1

a2n,ig2wi).

We denote w′
j =

∑2n
i=1 aj,ig2wi. Now, it is a straightforward that

(2.2) 〈w′
i, w

′
j〉 = 〈wi, wj〉, ∀i, j

(we use that g1 ∈ Sp2n(F ), where we now realize Sp2n(F ) as

Sp2n(F ) =

{
g1 ∈ GL2n(F ) : gt1

[
0 In

−In 0

]
g1 =

[
0 In

−In 0

]}
).

This is, of course, what we knew in advance and it just means that the action
of Sp2n(F ) × Sp4n(F ) preserves Ω(ψ).

We want to analyze the orbits of this action.

Lemma 2.1. The action of Sp2n(F ) × Sp4n(F ) on Ω(ψ) is transitive.

Proof. Note that for w = e1 ⊗ w1 + · · · + e2n ⊗ w2n = (w1, . . . , w2n) ∈
Ω(ψ) the defining relation of Ω(ψ) guarantees that the set {w1, w2, . . . , w2n}
is linearly independent (these vectors form a symplectic basis (up to scalar)
of 2n–dimensional non-degenerate subspace of W ). An element g2 ∈ Sp4n(F )
turns span{w1, w2, . . . , w2n} into another non-degenerate 2n–dimensional sub-
space of W with a (up to scalar) symplectic basis {g2w1, . . . g2w2n}, and then
g1 acts on the {g2w1, . . . g2w2n} by turning it into another basis of the same
space.

Let w = (w1, . . . , w2n), w′ = (w′
1, . . . , w

′
2n) ∈ Ω(ψ) and denote

V1 = span{w1, . . . , w2n} and V2 = span{w′
1, . . . , w

′
2n}.

We define f : V1 → V2 with f(wi) = w′
i, i = 1, 2, . . . , 2n. It is obvious that f

is an isometry. By the Witt’s theorem, there exists an isometry on W (thus
an element g2 ∈ Sp4n(F )) extending f. This means that (1, g2)w = w′.

We fix w0 = (w1, . . . , w2n) in Ω(ψ) and let G1 ⊂ Sp2n(F ) × Sp4n(F ) be the
stabilizer of that point. By the known results (cf. [12], p.73), since there is
only one orbit for this action on Ω(ψ), we have

(2.3) RH,ψ(ω2n,2n) ∼= indSp2n(F )×Sp4n(F )
G1

ωw0 .

Here ωw0 is a representation of Sp2n(F ) × Sp4n(F ) satisfying

(ω2n,2n)(g1, g2)f(w0) = ωw0(g1, g2)f(w0(g1, g2)).
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Since ωw0 is a character, it must be equal to 1. Indeed, when we check the
formulas from ([11], p. 38) we get

(ω2n,2n)(g1, 1)f(w0) = f(gt1e1 ⊗ w1 + · · · + gt2e2n ⊗ w2n),

and

(ω2n,2n)(1, g2)f(w0) = f(e1 ⊗ g−1
2 w1 + · · · + e2n ⊗ g−1

2 w2n).

Lemma 2.2. Let G1 be the stabilizer of w0 with respect to Sp2n(F ) ×
Sp4n(F ) action given by (2.1). Then,

G1
∼= Sp2n(F ) × Sp2n(F )

given with

(g1, g2) 7→ (g−t
1 , (g1, g2)),

where (g1, g2) from the right hand side belongs to Sp2n(F ) × Sp2n(F ) ⊂
Sp4n(F ), and where W is decomposed as a orthogonal direct sum of non-
degenerate symplectic spaces of dimensions 2n and each copy of Sp2n(F ) is
the symplectic group of the corresponding subspace.

Proof. According to the interpretation of this action given in the proof
of Lemma 2.1, for (g1, g2) ∈ Sp2n(F )×Sp4n(F ) to be in G1, it is needed that,
for V1 := span{w1, . . . , w2n}, we have g2(V1) = V1. Since V1 is non degenerate,
we have the orthogonal direct decomposition

W = V1 ⊕ V ⊥
1 ,

where V ⊥
1 denotes the orthogonal complement of V1. Now, we immediately

have g2(V ⊥
1 ) = V ⊥

1 and g2 7→ (g2|V1 , g2|V ⊥
1

) is injective. Note that g2|V1 and

g2|V ⊥
1

belong to the symplectic groups of V1 and V ⊥
1 , respectively. Then, for

g1 such that (g1, g2) ∈ G1 we must have (from (2.1)) that g1 = (g2|V1)−t.

Note that a function f from indSp2n(F )×Sp4n(F )
G1

1 = indSp2n(F )×Sp4n(F )
Sp2n(F )×Sp2n(F )1

satisfies

f(g′−t
1 , (g′

1, g
′
2))(α, β)) = f((α, β)),

for all (α, β) ∈ Sp2n(F ) × Sp4n(F ) and (g′−t
1 , (g′

1, g
′
2)) ∈ Sp2n(F ) × Sp4n(F )).

f is also smooth and compactly supported in Sp2n(F ) × Sp4n(F ) modulo G1.
Note that this means that f((α, β)) = f(1, (αt, 1)β)), so that f is completely
determined by its restriction to Sp4n(F ). We define

φf (β) = f(1, β).

We also note that φf : Sp4n(F ) → C is left Sp2n(F )– invariant with respect
to the second copy of Sp2n(F ). We get that

f 7→ φf
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is a bijection from indSp2n(F )×Sp4n(F )
Sp2n(F )×Sp2n(F )1 to indSp4n(F )

Sp2n(F )1 (we easily get that φf is
smooth and compactly supported modulo the second copy of Sp2n(F )). The

action of Sp2n(F ) × Sp4n(F ) on indSp2n(F )×Sp4n(F )
Sp2n(F )×Sp2n(F )1 becomes

(2.4) R(g1, g2)φ(β) = φ((gt1, 1)βg2)

on indSp4n(F )
Sp2n(F )1. We have proved

Proposition 2.3. RH,ψ(ω2n,2n) is, as a Sp2n(F )×Sp4n(F ) module, iso-

morphic to indSp4n(F )
Sp2n(F )1 with the action of Sp2n(F ) × Sp4n(F ) given by (2.4).

Note that the first copy of Sp2n(F ) acts as the left translation; we denote
this action by λ.

Now we want to analyze the biggest quotient of indSp4n(F )
Sp2n(F )1 on which

Sp2n(F ) (through λ) acts trivially. To that end, we define

S′ = span{λ(g2)φ− φ : g2 ∈ Sp2n(F ), φ ∈ indSp4n(F )
Sp2n(F )1}.

Obviously, indSp4n(F )
Sp2n(F )1/S

′ is that quotient; we consider it as a Sp4n(F )–
module.

Theorem 2.4. There is an isomorphism of Sp4n(F )–modules:

indSp4n(F )
Sp2n(F )1/S

′ ∼= indSp4n(F )
Sp2n(F )×Sp2n(F )1.

Proof. We denote

T (φ)(g) =
∫

Sp2n(F )
φ((x, 1)g)dx.

For φ ∈ indSp4n(F )
Sp2n(F )1 the integral on the right hand side converges. Indeed,

fix g ∈ Sp4n(F ). We know that there exist a compact set C1 ⊂ Sp4n(F ) such
that suppφ ⊂ ({1} × Sp2n(F ))C1. Assume that φ((x, 1)g) 6= 0, which means
that (x, 1) ∈ ({1} × Sp2n(F ))C1g

−1. We denote C′
1 := C1g

−1. Note that
C′

1 ∩ Sp2n(F ) × Sp2n(F ) is a compact set in Sp2n(F ) × Sp2n(F ). We denote
by pi, i = 1, 2 the projections from Sp2n(F ) × Sp2n(F ) to the first and the
second copy of Sp2n(F ). This means that

(x, 1) ∈ ({1} × Sp2n(F ))(p1(C′
1) × p2(C′

1)) = p1(C′
1) × Sp2n(F ).

This means that x ∈ p1(C′
1), which is a compact set in (the first copy of)

Sp2n(F ). Thus, x 7→ φ((x, 1)g) is a smooth function with the compact support
in Sp2n(F ). Thus, T (φ) is well defined function on Sp4n(F ). Also, it is smooth.
Again, if C1 denotes the compact set in Sp4n(F ) related to the support of φ as
above, then it is easy to see that suppT (φ) ⊂ (Sp2n(F ) × Sp2n(F ))C1. Also,
it is immediate that the following holds

T (φ)((g1, g2)g) = T (φ)(g), ∀(g1, g2) ∈ Sp2n(F ) × Sp2n(F ), g ∈ Sp4n(F ),
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and

T (R(g)φ) = R(g)T (φ).

Therefore, T is Sp4n(F )–intertwining operator between indSp4n(F )
Sp2n(F )1 and

indSp4n(F )
Sp2n(F )×Sp2n(F )1. We immediately see that T |S′ = 0.
We now prove the surjectivity of the operator T. We use ([1], cf. [2], p. 27)

to introduce the mapping

Pδ1 : C∞
c (Sp4n(F )) → indSp4n(F )

Sp2n(F )1

given by

Pδ1 (f)(g) =
∫

Sp2n(F )
f((1, x)g)dx.

It is known that Pδ1 is surjective ([2], p. 27). Analogously we define a (sur-
jective) mapping

Pδ2 : C∞
c (Sp4n(F )) → indSp4n(F )

Sp2n(F )×Sp2n(F )1

given by

Pδ2 (f)(g) =
∫

Sp2n(F )×Sp2n(F )
f((x, y)g)dxdy.

We immediately see that

Pδ2 (f)(g) =
∫

Sp2n(F )
Pδ1 (λ(xt)f)(g)dx =

∫

Sp2n(F )
λ(xt)Pδ1 (f)(g)dx(2.5)

= T (Pδ1(f))(g).

Thus, Pδ2 (f) = T (Pδ1 (f)) and T is surjective.
Now we prove that KerT = S′. Assume that φ ∈ KerT. Then, there

exists f ∈ C∞
c (Sp4n(F )) such that φ = Pδ1 (f). Thus, T (φ) = Pδ2 (f) = 0.

There exist an open compact subgroup K of Sp4n(F ), g1, . . . , gm ∈ Sp4n(F )
and c1, . . . , cm ∈ C such that

f =
m∑

i=1

ciχKgi
.

Here we assume that for i 6= j Kgi ∩ Kgj = ∅ and χKgi
denotes the char-

acteristic function on the right coset Kgi. We examine the first equation in
(2.5). The integrating function,

x 7→ Pδ1 ((x, 1)g) =
m∑

i=1

ciµ{1}×Sp2n(F )((x
−1, 1)Kgig−1 ∩ {1} × Sp2n(F ))

is locally (uniformly) constant. Here µ{1}×Sp2n(F ) denotes a Haar measure on
{1} × Sp2n(F ). Indeed, if we denote by K0 := K ∩ Sp2n(F ) × {1}, which is
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compact and open in Sp2n(F ) × {1}, we see that the function

x 7→
m∑

i=1

ciµ{1}×Sp2n(F )((x
−1, 1)Kgig−1 ∩ {1} × Sp2n(F ))

is a constant on cosets K0 \ Sp2n(F ) × {1}. Also, we effectively integrate in
(2.5) over a compact set. We integrate over a finite set of different cosets of
K0 \ Sp2n(F ) × {1}. Thus, there exist x1, . . . , xl ∈ Sp2n(F ) × {1} such that

0 =
l∑

j=1

∫

K0xj

(λ(xt)Pδ1 (f))(g)dx = µ{1}×Sp2n(F )(K0)
l∑

j=1

Pδ1 (f)((xj , 1)g),

for every g ∈ Sp4n(F ). This means

λ(xt1)Pδ1 (f) = −
l∑

j=2

λ(xtj)Pδ1 (f),

so that

Pδ1 (f) = −
l∑

j=2

λ(x−t
1 xtj)Pδ1 (f).

This means

Pδ1 (f) = φ = −1
l

l∑

j=2

(λ(x−t
1 xtj)φ− φ),

and this means that KerT = S′.

2.2. Conclusion. We continue to assume that π is an irreducible represen-
tation of O4n(F ) with a non-zero Shalika model such that θ(π) 6= 0 is its
(irreducible) small theta lift. We thus have

ω2n,2n ։ π ⊗ θ(π),

and, since taking a twisted Jacquet module is exact, we have

RH,ψ(ω2n,2n) ։ RH,ψ(π) ⊗ θ(π).

Since we assumed that π has a non-zero Shalika model, there is a surjective
Sp2n(F ) × Sp4n(F ) intertwining

RH,ψ(ω2n,2n) ։ 1Sp2n(F ) ⊗ θ(π).

From Theorem 2.4 it follows that there is an epimorphism

indSp4n(F )
Sp2n(F )×Sp2n(F )1 ։ θ(π).

Taking the smooth adjoint of an epimorphism above, we get that

Hom(θ̃(π), IndSp4n(F )
Sp2n(F )×Sp2n(F )1) 6= 0,
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since
˜

indSp4n(F )
Sp2n(F )×Sp2n(F )1

∼= IndSp4n(F )
Sp2n(F )×Sp2n(F )1. This is equivalent to the

fact that the representation θ̃(π) of Sp4n(F ) has a non-zero symplectic linear

model. But if θ̃(π) has this model, the representation θ(π) also has it (cf. the
proof of Theorem 17 of [7]) and we have proved the following theorem.

Theorem 2.5. Assume τ is an irreducible smooth representation of
SO4n(F ) having a non-zero generalized Shalika model. Then, the irreducible
non-zero representation θ′(τ) (the small theta lift of τ, as explained in Intro-
duction) has a non-zero symplectic linear model.
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Generalizirani Shalikin model na SO4n(F ), simplektički linearni

model na Sp4n(F ) i theta korespodencija

Marcela Hanzer

Sažetak. Pokazujemo da ako ireducibilna dopustiva

reprezentacija grupe SO4n(F ) ima generalizirani Shalikin model,

tada njezin mali theta lift na Sp4n(F ) ima simplektički linearni

model i time odgovaramo na pitanje koje je postavio D. Jiang.

Ovdje je F nearhimedsko lokalno polje karakteristike nula.
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