
Kolomiets L., Orobey V., Lymarenko A.                                                                                                            Non-conservative problems of the stability of bar structures 

 

ISSN 1846-6168 
UDK 539.3 

 
 
 

NEKONZERVATIVNI PROBLEMI STABILNOSTI ŠTAPNIH KONSTRUKCIJA 
  

NON-CONSERVATIVE PROBLEMS OF THE STABILITY OF BAR STRUCTURES 
 

Leonid Kolomiets, Viktor Orobey, Aleksandr Lymarenko 
 

Stručni članak 

Sažetak: U članku je predstavljen algoritam za korištenje numeričko-analitičke verzije metode graničnih elemenata 

(MGE) za rješavanje nekonzervativnih problema stabilnosti štapnih konstrukcija kao što su kontinuirane grede i 

ravninski okviri. Cilj ovog rada je proučiti ponašanje kompleksnih mehaničkih sustava pod djelovanjem 

nekonzervativnih tlačnih sila. Slični problemi se javljaju u visoko opterećenim konstrukcijama te je karakter njihovog 

ponašanja od velikog znanstvenog značaja. Pri rješavanju nekonzervativnih problema korištena je dinamička metoda i 

algoritam MGE. Pokazano je da je ponašanje složenih štapnih konstrukcija pod djelovanjem tlačnih nekonzervativnih 

sila kvalitativno se razlikuje od ponašanja pojedinačnih stupova i greda. Rezultati rada dopunjuju i proširuju znanje o 

ponašanju različitih konstrukcija što se može iskoristiti u razradi projektnih rješenja u visokotlačnim cjevovodima, 

izgradnji strojeva, avio i brodogradnji, gradnji raketa, u izgradnji bušaćih strojeva i sl. Proračuni kritičnih sila 

napravljeni su u programu MATLAB. 

 

Ključne riječi: MATLAB, metoda graničnih elemenata, nekonzervativni problem stabilnosti, štapnih sustavi 

 

Professional paper 

Abstract: An algorithm for the use of numerical-analytic version of boundary element method (MGE) for solving the 

problems of stability of non-conservative bar systems such as continuous beams and plane frames is presented. The aim 

of this work is to learn the behavior of complex mechanical systems, loaded with non-conservative compressive forces. 

Similar problems occur in heavily loaded structures and their behavior is of great scientific and practical importance. 

Dynamic method and algorithm of MGE are applied in solving the non-conservative stability problems. It is shown that 

the behavior of complex systems under the action of the bar non-conservative compressive forces are qualitatively 

different from the behavior of individual bars and beams. The results of the work complement and extend the knowledge 

about the behavior of different designs that can be used in such design solutions as high-pressure pipelines, machine 

building, aerospace, shipbuilding, rocket, on drilling rigs, etc. Calculations of the critical forces are made in the 

MATLAB environment. 
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1. INTRODUCTION 
 

Mechanical systems with non-conservative forces are 

widely used in the life of modern society.  Systems with 

internal sources of energy can be attributed to such 

systems: these are rockets, planes, space stations, oil der-

ricks and platforms, turbines, internal combustion 

engines, metal-cutting machines, various cranes, high-

pressure pipelines and etc. 

The conservative problems of the stability can be 

solved only with a static method while the non-

conservative tasks can be served with the help of 

dynamic method only [1]. The main element of BEM for 

the dynamic method is solution of Cauchy problem for 

the bar lateral oscillations considering the longitudinal 

force. The given solution is convenient to be introduced 

in the matrix form [1]. 
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where fundamental orthonormalized functions have the 

following view: 
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Expressions (2) proceed to the famous A.N. Krylov 

functions at F = 0. 

In contrast to the static method, critical force in the 

dynamic method is defined in the point where two 

neighboring frequencies of free oscillations become 

equal (merge). Therefore, the initial data of compressing 

force is input in the program and frequencies (at least 

two) of free oscillations from the BEM frequency 

equation are defined [2], 

 

  0,  FA      (3) 

 

where A*(F,) – is the frequency matrix of the bar 

structures built according to the BEM algorithm. Then 

the value of the compressing force is increased and the 

frequency change is backtracked. The process continues 

until two neighboring frequencies become equal with the 

certain precision. At the same time, the value of the 

compressing force will be critical and the whole process 

of its identification is comfortable to be presented in the 

form of diagrams. 

 

 

2. ANALYSIS OF RECENT RESEARCHES AND 
PUBLICATIONS 

 

Literature analysis on solution of non-conservative 

problems of steadiness shows [1], that behavior of 

complex bar systems such as continuous beams and 

frames. Therefore, let us show BEM algorithm ideally 

suits for identical problem-solving models with any 

structure of elastic system. A random set of bars can be a 

model of the object. Each of those bars can have an 

infinite number of degrees of freedom. Moreover, 

displacement, rotation inertia, inside and inner friction, 

optional laws of mass and rigidity change, longitudinal 

forces and other factors. Non-conservativeness of 

compressing forces in BEM is considered with a proper 

formulation of boundary conditions for an elastic system. 

Boundary conditions are non-linear for a separate bar and 

are linearized considering a smallness of proper 

dislocation, i.e. the equalities are true. 

 

1cos;sin   tg ,   (4) 

 

where  ψ – is an angle between the force of  F  and a 

normal to the bar axis (Fig. 1). 

 

 
a) 

 

 
b) 

Figure 1. Alternatives of behavior for the compressing 

non-conservative forces: а) following up the rotation 

angle of the beam section; в) the force of F has a fixed 

line of action 

 

Boundary conditions for the force of F in Fig.1, а are 

quite simple: 
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In boundary section of the beam for the force of F in 

Fig.1, b there arise the bending moment and shear. 
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If non-conservative pressure forces are applied to the 

assemblies of continuous beams and frames, then their 

behavior should be considered with boundary conditions 

of bars that are a part of this assembly. Let us review the 

tasks of bar structures stability on the force application in 

Fig.1. 

 

3. THE PURPOSE OF WORK 
 

The purpose of work is to solve new non-

conservative tasks of continuous beams and plate frames 

and learn the behavior of these sys-tems at the 

application of increasing non-conservative compressing 

forces.  

 

4. MAIN PURPOSE OF THE ARTICLE 
 

Continuous beam (Figure 2). According to the BEM 

[1] algorithm, it is divided into separate bars, assemblies 

are numerated and the start and end of each bar are 

marked with arrows. Then the matrices of initial and 

finite beam parameters are formed. These matrices con-

sider the end conditions, boundary conditions and a 

connection between the boundary elements in assem-

blies. 

Load non-conservativeness in Fig. 2, а is shown in 

the Matrix Y in the rows from 13 to 16. If we transfer all 

parameters from Y to the matrix X*, we will receive the 

matrix A*(F,) of equation (3) for the given beam. 

 

 

 

 
Figure 2. Continuous beam loaded with non-conservative forces 
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For the case of applying force of F according to Fig. 2, b, 

there will be added next elements to the matrix 

 

    .13,16;9,15
EI

F
A

EI

F
A     (9) 

 

Let us review a plane frame, which studdings 4 times 

longer than cross-bars with the same masses of m and 

rigidity of EI (Fig.3). Simularly, when building matrices 

with initial and finite data and considering boundary data 

and frame topology, we will come to a dynamic stability 

matrix (10) for the frame in Fig. 4, а. Calculation of 

inertia force of linear movable bars 0-1 and 1-2 leads to 

the increase of the bars 1-3 and 4-2 distributed mass, i.e. 
31

m  and 
24

m  [3]. 

 

 

 

 
 

 

Here we should use A.N. Krylov functions from the 

bars that are free from compressing forces: 
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a) 

 
b) 

Figure 3. Plane frame: а) force of F follows up the 

assembly rotation angle 1; b) force of F has a  

fixed action line. 

 

As in the case with continuous beam, force of F con-

sideration in accordance with Fig. 3, в leads to extension 

of elements: 
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4. RESULTS 
 

Diagrams representing the changes in frequencies of 

beam free oscillations during force of F increase are pro-

vided in Fig. 4. 

The calculations are made in the MATLAB environ-

ment at m = EI = l = 1 [4]. From the diagrams in Fig.4 it 

follows that two types of compressing forces lead to the 

same behaviour of continuous beam. First ensues buck-

ling mode due to non-conservative forces (flatter or di-

vergence) and then, if the beam is not destroyed, comes 

Euler's buckling mode. Critical non-conservative forces 

are 0,65/0,06468=10 times higher than the first critical 

force of beam compared to Gallilei's "dead" force. 

The relationships between compressing forces and 

frequencies of free oscillations are provided in Fig.5 (the 

calculations are made in the MATLAB environment at      

m  = EI = l =1[4]). 

 

 
a) 

 

 
b) 

Figure 4. Dependencies of the beam oscillation 

frequency from compressing forces:  

а) - force follows the slope of the elastic curve;  

b) force has a fixed line of action. 

 

 
a) 

 

 
b) 

Figure 5. Dependencies of the frame oscillation 

frequency from compressing forces: а) force follows up 

the assembly rotation angle 1;  

b) force has a fixed line of action. 
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