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BRIEF REVIEW OF MOTOR CURRENT  
SIGNATURE ANALYSIS

Dubravko, MILJKOVIĆ, HEP, Zagreb, CROATIA, Phone: (1)6113032; dmiljkovic@hep.hr

ABSTRACT - Motor electrical current signature analysis (MCSA) is sensing an electrical signal con-
taining current components that are direct by-product of unique rotating flux components. Anomalies 
in operation of the motor modify harmonic content of motor supply current. This paper presents brief 
introductory review of the method including fundamentals, fault detection techniques and current 
signatures of various faults. 
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1.  INTRODUCTION
Induction motors are widely used in industrial  
drives because they are rugged, reliable and  
economical, [1]. They became an industry  
workhorse and play a pivotal role in industry for 
conversion of electrical into mechanical energy, 
[2]. Motor Current Signature Analysis (MCSA) 
is a condition monitoring technique used to  
diagnose problems in induction motors, [3-12]. 
Concept originates from early 1970s and was 
first proposed for use in nuclear power plants 
for inaccessible motors and motors placed 
in hazardous areas, [13]. It is rapidly gain-
ing acceptance in industry today. Tests are  
performed online without interrupting  
production with motor running under the 
load at normal operating conditions, [4,13]. 
MCSA can be used as predictive mainte-
nance tool for detecting common motor faults 
at early stage and as such prevent expensive  
catastrophic failures, production outages and 
extend motor lifetime. It can be used as a  
diagnostic tool and powerful addition to vibra-
tion and thermal monitoring (verifying a fault 
with more than one technology), [14-16]. MCSA 
is method from wider field of Electrical Signature 
Analysis (ESA), [17], useful for analyzing not 
only electrical induction motors, but also gener-
ators, power transformers as well as other elec-
tric equipment. Most popular of these techniques 
are: Current Signature Analysis (CSA), Voltage  
Signature Analysis (VSA), Extended Park’s Vector  
Approach (EPVA) and Instantaneous Power  
Signature Analysis (IPSA), [11].  ESA also  

includes Motor Circuit Analysis, [18], involving 
analysis of resistance, impedance, inductance, 
phase angle, current/frequency response and 
insulation to ground faults, [19].

2.  MOTOR CURRENT SIGNATURE 
ANALYSIS BASICS
Motor Current Signature Analysis is the tech-
nique used to analyze and monitor the trend of 
dynamic energized systems, [11]. 

 
Figure 1  Stator current monitoring system

MCSA is monitoring stator current (more pre-
cisely supply current) of the motor, [7]. Typical 
stator current monitoring system is illustrated 
in Figure 1. Single stator current monitoring  
system is commonly used (monitoring only one 
of the three phases of the motor supply current). 
Motor stator windings are used as transducer 
in MCSA, picking the signals (induced currents) 
from the rotor (but also revealing information 
about the state of the stator).
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Motor current is sensed by a Current Sensor 
(clamp probe, current transformer) with resis-
tive shunt across its output, [21], and recorded 
in time domain. Picked current signal is then led 
to a spectrum analyzer or specialized MCSA  
instrument. In ideal case motor current should 
be pure sinusoidal wave. In reality in motor  
current many harmonics are present. Current 
spectrum of a typical induction motor is illustrat-
ed in Figure 2. Various electrical and mechani-
cal fault conditions present in the motor further 
modulate motor current signal and contributes 
to additional sideband harmonics. Faults in  
motor components produce corresponding 
anomalies in magnetic field and change the 
mutual and selfinductance of motor that appear 
in motor supply current spectrum as sidebands 
around line (supply, grid) frequency, [22]. Based 
on fault signatures motor faults can be identified 
and its severity accessed. Frequency range of 
interest in MCSA is typically 0-5 kHz, [11]. This, 
according to a Nyquist theorem, requires sam-
ple rate of at least 10000 samples per second. 
During the test motor should be run at loading 
greater then 70%. It should be noted that fault 
signals detected in motor supply current may 
also be influenced by operation of neighboring 
motors and system’s environmental noise.

3. FAULTS THAT CAN BE  
DETECTED WITH MCSA
The major faults of electrical machines can 
broadly be classified by the following [3,13,23]:

a.  Static and/or dynamic air-gap irregularities.
b.  Broken rotor bar or cracked rotor end-rings.
c.  Stator faults (opening or shorting of one coil   
     or more of a stator phase winding)
d   Abnormal connection of the stator windings.

e. Bent shaft (akin to dynamic eccentricity)  
  which can result in a rub between the  
     rotor and stator, causing serious damage to  
     stator core and windings.
f.   Bearing and gearbox failures

The most common faults are bearing faults, 
stator faults, rotor faults and eccentricity or any 
combination of these faults. When analyzed 
statistically, about 40% of the faults correspond 
to bearing faults, 30-40% to stator faults, 10% 
to rotors faults, while remaining 10% belong to 
a variety of other faults, [11,24]. Frequencies 
induced by each fault depend on the particu-
lar characteristic data of the motor (like syn-
chronous speed, slip frequency and pole-pass 
frequency) as well as operating conditions, 
[2,18,25]. Main classes of faults that can be  
detected with MCSA are listed bellow.

3.1.  AIR-GAP ECCENTRICITY

Air-gap eccentricity represents a condition 
when air gap distance between the rotor and the  
stator is not uniform. Two types of abnormal 
air-gap eccentricity exist: static and dynamic. 
In case of static eccentricity the position of  
minimal radial air gap is fixed, while in case of 
dynamic eccentricity position of

Figure 2  Current spectrum of induction motor, [20]

Figure 3 Air gap: a) normal (concentric),  
b) static eccentricity and c) dynamic eccentricity

minimal air gap follows turning of the rotor.  
Normal (concentric) state, static and dynamic 
eccentricity are illustrated in Figure 3, [26]. As 
the rotor bars recede or approach the stator 
magnetic fields, they cause a change to the cur-
rent in the stator. In case of static eccentricity 
sideband components appear at frequencies 
determined by (1), [3] and shown in Figure 4, 
[3-5,8,11,18,25].

where

(1)
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fec is eccenticity frequency
fg is electrical supply (grid) frequency
R is the number of rotor bars
s = slip
p = pole-pairs
nd = ±1
nws = 1, 3, 5, 7 …

The slip is determined from (2)

starting duty cycles (with fivefold the full load 
bar currents) and pulsating mechanics loads 
(like reciprocating machinery). They can cause 
sparking and overheating in a motor, [4]. By 
examining the frequency spectrum of the  
stator currents, early stages of rotor bar failures 
can be detected, [5,18,25,27-29]. When broken 
rotor bars are present, current components in 
stator windings can be detected at frequencies 
given by (4), [5]:

(2)

where

s is per unit slip
Nr is rotor speed
Ns is synchronous speed

Central frequency fc on Figures 4 and 5 is  
determined by (3):

where R is the number of rotor bars.

Figure 4 Air gap – static eccentricity [11]

When dynamic eccentricity is present, frequency 
components from static eccentricity are further 
modulated with the rotational frequency fr, as 
shown in Figure 5.

Figure 5 Air gap- dynamic eccentricity [11]

3.2.  BROKEN ROTOR BARS

Primary causes of broken bars are direct online

(3)

(4)

where

fbrb is broken rotor bar frequency
fg is electrical supply (grid) frequency
p is number of pole pairs
s is per unit slip
k = 1, 2, 3, …

Figure 6 Frequency spectrum from motor with  
broken rotor bars, [29]

Upper and lower sidebands around supply com-
ponent separated by twice the slip frequency 
are shown in Figure 6. The slip frequency is  
determined from (5):

(5)

where

fslip is slip frequency
fg is electrical supply (grid) frequency
s is per unit slip

As a simple rule, if the difference between the 
main and sideband components is greater than 
50 dB rotor has no faults, when difference is in 
range between 40 and 50 dB there is probably 
one bar broken and with difference less than 40 
dB there are several broken bars or broken end 
ring, [23].
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3.3.  BEARINGS DAMAGE

Motor bearings faults are more difficult to detect 
then rotor cage problems, [5,7]. Four types of 
bearing misalignments exist, as is described in 
[5]. Such misalignments are common result of 
defective bearing installation. MCSA can detect 
bearing faults by detection of frequency com-
ponents f0 and f1 that are for most bearings with 
between six and twelve balls determined by (6) 
and (7), [5, 25]:

(6)

(7)

where

f0 is lower frequency,
f1 is upper frequency,
n is the number of balls in the bearings
frm is the rotor’s mechanical frequency

Frequencies due to bearing damage are  
illustrated in Figure 7.

Figure 7 Sideband frequency components due to 
bearing damage

3.4.  SHORTED TURNS IN STATOR  
WINDINGS

Most stator failures are related to stator wind-
ings. Shorted turns produce excessive heat in 
stator coil and current imbalance, [13]. MCSA 
exploits the fact that rotating flux waves can 
induce corresponding components in the  
stator windings, [3,30]. Motor current  
components that are influenced only by shorted 
turns can be detected at frequencies shown in 
Figure 8 and described by (8):

where

fst is the component related to shorted turn
fg is electrical supply (grid) frequency
n = 1,2,3,…

(8)

Figure 8 Frequency components corresponding to 
shorted turns, [3]

3.5.	 Load Effects

Electrical motors are converters of electrical  
energy to a mechanical torque. Load torque may 
vary with rotor position. These variations cause 
corresponding variations in the motor current. 
In that case supply current will contain spectral 
components related to load torque variability, 
[5,31]. Variability in load torque at multiples of 
rotational speed mfr produces stator currents at 
frequencies fload as described in (9):

where
fload frequencies related to load torque  
variation
fs is electrical supply (grid) frequency
fr is rotational frequency
p is number of pole pairs
s is per unit slip
m=1, 2, 3, ...

Example of MCSA applied to monitoring gear 
vibrations (produced by load fluctuations on the 
gearbox) is described in [22].
3.6.	 EQUIPMENT WEAR
With equipment wear motor current spectrum 
changes as well. This is applicable to transmis-
sion system failures and attached load failures. 
There is not available general formula for fre-
quency components associated with equipment 
wear. However, since most wear is random, 
faults appear in current spectrum as change in 
tilt (noise floor), Figure 9, [4].

(9)
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Figure 9 Change in current spectrum due to  
equipment wear, [4]

Multiple faults present in induction motor can be 
detected simultaneously, as described in [31]. 
Fault detection is not limited only to large mo-
tors powered by 50 Hz o 60 Hz current, but also 
on smaller motors, like one used in airborne  
application and powered by 400 Hz current, 
[32].

Brief intro regarding practical application of 
MCSA for previously mentioned faults and 
more, bypassing advanced math and complex 
considerations can be found in [22,33].

4.  FAULT DETECTION  
TECHNIQUES
As already mentioned, motor faults modify 
the harmonic content of motor supply current.  
Several methods may be used in preprocessing 
stage for extracting features of measured motor 
supply current for the sake of comparison with 
known motor fault signatures, [21].

4.1.  FAST FOURIER TRANSFORM

Motor current readings are recorded in time 
domain. After the signal conditioning analog-to-
digital conversion is performed. Spectar of the 
motor current is typically analyzed using some 
of spectral analysis techniques. If signal is  
represented by x(t) as N discrete samples it can 
be expressed as a sum of N sinusoidal compo-
nents of frequencies ωi, and phase shifts θi, as 
described in (10) and (11):

(10)

(11)

where ωi, is circular frequency and fs signal 
sampling rate.

Same signal expressed using sinus and  
cosinus terms is given in (12):

Values of coefficients can be determined by  
Discrete Fourier Transform, (13),(14),(15):

(12)

(13)

(14)

(15)

where

         is cosinus term,
         is sinus term
         amplitude for frequency component i.
For analyzing signals in frequency domain the 
most common technique used is Fast Fourier 
Transform (FFT), [34]. It is a computational  
efficient version of Discrete Fourier Trans-
form algorithm that greatly reduces the nec-
essary number of computations (from O(N2) 
to O(NlogN)). After applying FFT to stator  
supply current, amplitudes of resulting fre-
quency components are normalized by the 
value of the amplitude of first harmonic. The 
normalization process reduces influences of 
motor’s load conditions, [25]. FFT is suitable 
for characterization of stationary signals. How-
ever it is not suitable for signals with transitory  
characteristics, [5].

4.2.  INSTANTANEOUS POWER FFT

Application of instantaneous power requires  
additional measurement of supply voltage 
(it is not considered strict MCSA as it needs  
additional instantaneous voltage measure-
ments). Instantaneous Power p(t) is the product 
of supply voltage u(t) and the motor current i(t), 
(16):

ia
ib
iA



20

B
R

IE
F 

R
EV

IE
W

 o
f M

O
TO

R
 C

U
R

R
EN

T 
SI

G
N

AT
U

R
E 

A
N

A
LY

SI
S

(16)

Amount of information provided by instan-
taneous power is greater than available in  
motor supply current alone (including less noise 
and well bounded dynamic range of remaining  
harmonics in the absence of power grid  
component) providing more reliable analysis, 
[5,11], as shown in Figure 10, [5].

Figure 10 a) stator current spectrum,
b) instantaneous power spectrum, from [5]

a)                                      b)

4.3.  DEMODULATED CURRENT SPECTRUM

Carrier frequency (50 Hz in EU, 60 Hz in USA) 
presents the dominant peak in the FFT spec-
trum. Lot of the information is blurred in the noise 
floor of the current spectrum. Demodulation is 
the process of removing the carrier frequency 
from the spectrum. Use of demodulation as a 
step in MCSA is illustrated in Figure 11. After 
the carrier frequency is removed, the remaining 
frequencies related to repetitive load variations 
appear distinctively in the demodulated current 
spectrum, [9,20], as shown in Figure 12

Figure 11 Use of demodulation step in MCSA

Figure 12 a) Machine current spectrum and
 b) demodulated spectrum, [20]

Interesting approach for removing fundamen-
tal component in MCSA using synchronous  
reference frame is described in [35].

4.4.	 WAVELET ANALYSIS

Disadvantage of a Fourier series expansion is 
that it provides only frequency resolution but 
lacks time resolution. Wavelet is a basis func-
tion isolated with respect to time or spatial loca-
tion and frequency or wavenumber, [36,37]. It 
enables analysis localized in the time-frequency 
or the time-scale domain, [5]. Wavelet transform 
decomposes a signal into a family of wavelets, 
providing a time-frequency representation of 
the signal. [38, 39]. Wavelets are irregular in 
shape and finite in length. They can be success-
fully applied to analysis of signals with transitory 
characteristics and variable spectral content, 
[38]. The Continuous Wavelet Transform (CWT) 
for a continuous signal x(t) is defined by follow-
ing relation, (17):

(17)

Where g(t) is the mother or basic wavelet,
* denotes a complex conjugate, a is the scale 
factor and τ is a time shift, [37].

The complex-valued Morlet’s wavelet is  
common choice for signal analysis using the 
CWT. Morlet’s wavelet, shown in Figure 13, is 
defined in (18):

Figure 13 Morlet wavelet

(18)
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In real world we are dealing with discrete (sam-
pled) signal and Discrete Wavelet Transform 
(DWT) is used. DWT is any wavelet transform 
for which the wavelets are discretely sampled. 
Because of localization property of wavelets, 
the wavelet transform can represent the signal 
of interest with few coefficients. One algorithm 
for application of MCSA during startup tran-
sients using wavelets is described in [40]. 

4.5.	 PARK’S VECTOR APPROACH

This approach requires current sensing not on 
one but on all three phases, Figure 14. Park’s 
current vector can be computed from the  
symmetrical three-phased current system,  
having the components: ia, ib and ic giv-
ing Park’s vector components id and iq, as  
described in (19) and (20), [5]:

Figure 14 Block Diagram of MCSA using Park’s 
vector approach

When no faults are present in the motor  
previous components may be expressed as  
follows, (21), (22):

(19)

(20)

(21)

(22)

where iM is the maximal value of the sup-
ply phase current and ω is its frequency.  
Presented in a plane vector components id and iq  
produce circular pattern. In the presence of 
various faults supply current contains sideband 
components and circular pattern will be distort-
ed, [24,38,41,42]. Method for damage detection 
is based on detection of the distortion suffered 
by circle of Park. The three phases of currents 
in a healthy motor can be described by simple 
reference figure shown in Figure 15. Faults in 
motor contribute to distortion of the reference 
figure, as shown in Figure 16.

Figure 15 Reference figure – healthy motor

Figure 16 Distorted figure - faulty motor

Instead of detecting distortion in shapes of 
Park’s vector patterns in Enhanced Park’s  
Vector Approach (EPVA) magnitudes that Park’s 
vector takes through time are monitored and 
analyzed, [11,24], Figure 17. Value of the radius 
oscillates between its extreme values

twice during each power grid cycle. When  
analyzed in frequency domain, these oscil-
lations appear in the spectrum as frequency 
component located at twice the motor supply 
frequency, [11,24]. The amplitude value of this 
frequency component is related to

Figure 17 Block Diagram of the EPVA technique
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Figure 18 Use of demodulation step in MCSA

the relevance of the fault, [24]. Example of faults 
present in the stator coils is shown in Figure 18.

5.  ARTIFICIAL INTELLIGENCE  
TECHNIQUES APPLIED TO MCSA
Recognition of motor current fault signatures  
requires from user considerable degree of  
expertise and experience. After fault signa-
ture is obtained it can be used for diagnostics,  
either by experienced engineer/technician or  
using some of techniques from the field of Artificial  
Intelligence (AI). Expert systems and various 
pattern recognition techniques from the field 
of Artificial Intelligence (AI) can be applied to 
MCSA.

Automatic diagnosis and analysis of MCSA  
using expert system as is illustrated in block 
diagram shown in Figure 19, according to [11].

Figure 19 Automatic diagnosis and analysis system

Expert system may also employ fuzzy logic 
knowledge and rules, [31], that may be ex-
pressed using linguistic variables, fuzzy mem-
bership functions and IF-THEN rules, Figure 
20. Domain expert knowledge in such a system 
may be expressed in more natural way.

Figure 20 Fuzzy logic applied to MCSA

When a sufficient number of current signatures 
that correspond to various motor fault condi-
tions are available, statistical methods may 
be applied for the task of data classification.  
General overview of a system

Figure 21 MCSA using statistical pattern  
recognition (drugačija slika)

that uses statistical pattern recognition is  
illustrated in Figure 21. After the signal  
conditioning, analog-to-digital conversion is  
performed. Some of preprocessing techniques 
are used (FFT, wavelets, etc) are used for feature  
extraction. Dimensionality reduction follows in 
the next step. Classification of unknown cur-
rent signature is preformed by statistical pattern  
recognition with recognizers previously trained 
on a large number of correct and faulty  
signatures.

Support Vector Machine (SVM) is a machine 
learning method successfully applied to a wide
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range classification and pattern recogni-
tion problems. The most important benefit is  
efficiency of SVM in high dimensional classifica-
tion problems. SVM can be applied to MCSA as 
well, as described in [43]. 

Classification can also be performed using  
decision trees like Classification And Regres-
sion Tree (CART). Application and comparison 
of three different classification methods (CART, 
Discriminant Analysis and SVM) applied to 
MCSA is described in [44] and illustrated in 
Figure 22. System consists of four steps: data 
acquisition, feature extraction, feature selection 
and fault classification. During feature extrac-
tion statistical parameters are calculated from 
acquired current signal.  Feature selection and 
dimensionality reduction is performed using 
Principal Component 

Analysis (PCA). Trained classifier can detect 
most common faults: stator winding interturn 
short (I), rotor dynamic eccentricity (E) as well 
as both of these faults (B). Output H corre-
sponds to a healthy motor state.

Artificial Neural Networks (ANN) with their learn-
ing and generalization are particularly suitable 
for performing pattern classification. Examples 
of ANN used as statistical pattern recognizers 
for MCSA are described in [26,41,44,45]. ANN 
are trained, mostly using supervised learn-
ing, on datasets involving normal and faulty  
conditions.

Figure 22 Automatic motor current signature  
classification

Figure 23 Neural net MCSA of induction motor, [26]

Figure 24 Inputs and outputs of the ANN

Solution for detection of air-gap eccentricity  
using artificial neural network is described in 
[26], and illustrated in Figures 23 and 24. Two 
different types of inputs to ANN are used, spec-
trum of the motor current organized in a number 
of frequency beans and motor speed (from the 
tachometer). Inputs have been properly scaled 
before feeding the ANN. The ANN has been 
trained using supervised learning on 120 data-
sets (including 20 datasets representing the  
eccentricity fault condition).  There are two  
outputs available from the ANN, one  
corresponding to a healthy motor and another 
for presence of an eccentricity fault.

System for detection of bearing faults in three 
phase induction motor using MCSA combined 
with ANN is described in [29]. Magnitudes of 
side band frequencies are fed to ANN that is 
later trained in supervised mode on available 
datasets representing normal and faulty condi-
tions under various loads (no-load, half load and 
full load).

6.  SOFTWARE AND EQUPMENT 
FOR INDUSTRIAL APPLICATIONS
Beside conventional use of MCSA with inter-
pretation of measured data by skilled engineer/
technicians new generation of interesting prod-
ucts has emerged. Various automatic diagnosis 
and analysis systems have been developed.
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Some products specifically developed for easier 
application of the MCSA are mentioned bellow.

AnomAlert Motor Anomaly Detector is a sys-
tem of software and networked hardware that 
continuously identifies faults on electric motors 
and their driven equipment, [46]. It’s operation 
is based on energy determined in 12 spectral 
frequency ranges. System posses learning 
ability and alarming function based on sta-
tistical analysis. It does not for the most part  
provide precision diagnostic of particular fault but  
reports indication of particular categories of 
faults for closer inspection.

Today various expert systems exist to aid 
and simplify the diagnosis process. One such  
system is Electric Motor Performance Analysis 
& Trending Hardware (EMPATH) developed 
by Framatome ANP, [47]. System consists of a  
laptop computer with signal conditioning and 
acquisition board and analyzing software.

ALL-TEST is a system for troubleshooting 
equipment using Electrical Signature Analysis. 
An ALL-TEST Pro kit includes ALLTEST IV PRO 
2000 motor circuit analyzer, the ALL-TEST PRO 
OL motor current signature analyzer, EMCAT 
motor management software, Power System 
Manager software, and ATPOL MCSA software, 
[48].

System for automatic monitoring and  
diagnosis of faults in induction motors that can 
be operated remotely (including web interface) 
and in real-time is described in [25], with block  
diagram shown in Figure 25. It can trigger 
alarms whenever a fault is detected including 
turning off a motor in case of a short-circuit  
detection.

Figure 25 General view of the system, from [25]

Končar Institute has developed the Fault Detec-
tor Smart Sensor (FDSS). It provides on-line 
analysis, measured data export, detailed off-line 
measurement data analysis, data storage and 
wireless data transfer, [49].

7.  CONCLUSIONS
Electrical machinery is the powerhouse of the 
modern industry. Failures of induction motors 
cause production downtime and may gen-
erate large losses in terms of maintenance 
and lost revenue. Timely detection of incipi-
ent motor faults is hence of great importance.  
Developing motor faults have its counterparts 
in waveform and harmonic content of the motor  
supply current. MCSA can be applied everywhere 
in industry where induction motors are used  
enabling non-intrusive on-line (even remote) 
analysis of motor supply current and detects 
faults while motor is still operational and with-
out interrupting its service. It can be efficiently  
applied to detection and the localization for 
variety of motor faults. As such it is important 
contribution to tools for condition monitoring of 
induction motors.

All references listed below can be found on the 
internet.
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