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COPRODUCTS FOR CLIFFORD ALGEBRAS

Pavle Pandžić

University of Zagreb, Croatia

Abstract. We define a family of graded coproducts for Clifford alge-
bras over finite dimensional real or complex vector spaces and study their
basic properties.

1. Introduction

Let V be a finite-dimensional real or complex vector space. Let B be a
symmetric bilinear form on V . The Clifford algebra C(V ) for the form B is
defined as the quotient of the tensor algebra T (V ) by the ideal generated by
elements of the form

(1) v ⊗ v +B(v, v), v ∈ V.
Note that C(V ) does not inherit the natural Z-grading of T (V ), but it does
inherit the corresponding Z2-grading, as the relations are even. So we can
also view C(V ) as a superalgebra. Also, C(V ) inherits the natural filtra-
tion from T (V ) and the corresponding graded algebra is the exterior algebra∧

(V ). There is a canonical ‘antisymmetrization’ (or ‘quantization’) map due
to Chevalley [Ch] from

∧
(V ) into C(V ), which is a linear inverse of the natural

projection. In particular, the dimension of C(V ) is 2dimV .
The structure theory and classification for Clifford algebras and their

modules (over R or C if V is real, or just over C if V is complex) are well
known and easy to describe. It turns out that C(V ) is either a matrix algebra
or a sum of two matrix algebras. Consequently the modules form a semisimple
category with either one or two irreducible objects; these are called the spin
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modules. One can equally easily describe the Z2-graded modules. A good
account for all this is in [LM]; the results are mostly from [ABS] and [Ch].

In spite of (or perhaps because of) this simplicity, Clifford algebras and
modules play an enormously important role in geometry, analysis and physics.
This is well illustrated in [LM]. For example, the definitions of the Dirac oper-
ator and its various analogues require the Clifford algebra setting, so in fact the
celebrated Atiyah-Singer index theorem uses Clifford algebras in an essential
way. In physics, Clifford formalism describes the so called fermions. Various
aspects, applications and generalizations of Clifford algebras and modules are
being studied intensively; suffice it to say there is a whole journal devoted to
these developments, Advances in Applied Clifford Algebras.

There have also been important applications to representation theory of
real reductive groups. Among many such results, let us mention the con-
struction of the discrete series representations [P], [AS], and some nice recent
results of Kostant [K] of a different flavor. Also, in [HP1], [HPR] we have
obtained some results using an algebraic version of the Dirac operator due
to Vogan. An introduction to this setting can be found in [HP2], which also
briefly mentions a special case of the construction of coproducts given below.

While in [HPR] we are investigating the role of Dirac operators in under-
standing the nilpotent Lie algebra cohomology of Harish-Chandra modules,
Dirac operators also appear in studying the (g,K)-cohomology of (unitary)
Harish-Chandra modules; see [W], [BW]. In trying to understand this last
relationship, one comes accross identities like

(2) C(V ) = S ⊗ S;

here V is an even dimensional complex vector space and S is the unique spin
module for C(V ). While the two spaces in the identity (2) obviously have
the same dimension, the identity itself is ambiguous, since we have not said
what actions are considered, and what map should identify the two sides.
For example, (2) can be interpreted as an equality of C(V )⊗C(V )-modules,
where the action of the second C(V ) on C(V ) is given by the right multipli-
cation twisted by the transpose map τ : C(V ) → C(V ) which is the unique
antiautomorphism given as id on V ⊂ C(V ). See [LM], Proposition 5.18.

Note that the above defined τ can also be used to define the dual module
S∗, which by uniqueness has to be isomorphic to S.

Getting back to general V , one can ask if we can define an interior ten-
sor product of C(V )-modules, i.e., if we can define a natural C(V )-module
structure on S1 ⊗ S2 for C(V )-modules S1 and S2. This is naturally related
to the existence of coproducts, i.e., algebra homomorphisms from C(V ) into
C(V )⊗C(V ); indeed, if c is any such homomorphism, we can use the obvious
C(V ) ⊗ C(V )-action on S1 ⊗ S2 and pull it back to C(V ) via c. [LM] offers
two easy answers (just above Proposition 5.18); we can have all the action
on the first factor only, or on the second factor only. These correspond to
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c being one of the obvious embeddings. Each of these two actions gives an
interpretation of (2).

The purpose of this note is to exhibit a whole family of graded coprod-
ucts, and thus tensor structures on the category of graded modules. These
coproducts are given by

(3) ct(v) = cos t v ⊗ 1 + sin t 1⊗ v, v ∈ V,
for a real parameter t. In particular, for t = 0 respectively t = π

2 we are
getting the two embeddings as above; for t ∈ (0, π

2 ), ct can be thought of as
interpolations between these two choices. The most symmetric choice, t = π

4 ,
makes both factors contribute equally to the tensor product action.

Besides the possible use in calculations like the ones mentioned above
related to (g,K)-cohomology, the obtained “pseudo-Hopf” structure seems
interesting in its own right. For example, the obtained coproducts are coas-
sociative only for t = 0 or t = π

2 ; on the other hand the only cocommutative
one corresponds to t = π

4 . There is no counit, as C(V ) does not act on C;
however, there is at least one candidate for something like an “antipode” -
the above mentioned τ .

In Section 2 we check that the coproducts given by (3) are indeed well
defined, and that they have the above mentioned properties. The reader not
familiar with the language of coalgebras can consult the book [M].

2. Coalgebra structure on C(V )

It is clear from the definition of C(V ) that it satisfies the following uni-
versal property: for any linear map φ from V into an associative algebra A
with unit, such that the relations (1) are satisfied, i.e., φ(v)2 = −B(v, v), for
all v ∈ V , there is a unique algebra homomorphism Φ : C(V )→ A extending
φ.

Thus, to check that (3) defines an algebra homomorphism ct from C(V )
into the graded tensor product C(V )⊗̂C(V ) for each t, it is enough to note
that

ct(v)
2 = (cos t v ⊗ 1 + sin t 1⊗ v)(cos t v ⊗ 1 + sin t 1⊗ v)

= cos2 t v2 ⊗ 1 + cos t sin t(v ⊗ v − v ⊗ v) + sin2 t 1⊗ v2

= (cos2 t+ sin2 t)B(v, v) · 1⊗ 1 = B(v, v).

Note how it was essential to consider the graded tensor product, in order to
have (1⊗ v)(v ⊗ 1) = −v ⊗ v.

Of course, we need not consider all t ∈ R, the relevant t are in [0, 2π).
Moreover, changing sign in one or both factors can be interpreted as applying
the unique automorphism α of C(V ) given as − id on V , and hence is also
redundant. This means we can restrict the parameter to t ∈ [0, π

2 ]. We have
proved
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Theorem 2.1. For any t ∈ [0, π
2 ], (3) defines a coproduct ct on C(V )

compatible with the superalgebra structure, i.e., a superalgebra homomorphism
from C(V ) into the Z2-graded tensor product C(V )⊗̂C(V ).

Let us now examine whether ct is coassociative or cocommutative. Coas-
sociativity of a (graded) coproduct c means that the following digram com-
mutes:

C(V )
c−−−−→ C(V )⊗̂C(V )

c

y
yc⊗id

C(V )⊗̂C(V )
id⊗c−−−−→ C(V )⊗̂C(V )⊗̂C(V )

For c = ct, the first row evaluated at v ∈ V gives

cos2 t v ⊗ 1⊗ 1 + cos t sin t 1⊗ v ⊗ 1 + sin t 1⊗ 1⊗ v,
while the second row evaluated at v ∈ V gives

cos t v ⊗ 1⊗ 1 + cos t sin t 1⊗ v ⊗ 1 + sin2 t 1⊗ 1⊗ v.
The two expressions are equal if and only if t = 0 or t = π

2 .
Cocommutativity (in the graded sense) of a coproduct c means that the

following diagram commutes:

C(V )
c−−−−→ C(V )⊗̂C(V )

=

y γ

y

C(V )
c−−−−→ C(V )⊗̂C(V )

where γ is the graded twist map: a⊗ b 7→ (−1)deg adeg bb⊗a. Since 1 is even,
γ(v ⊗ 1) = 1⊗ v and γ(1⊗ v) = v ⊗ 1; so ct is cocommutative if and only if
cos t = sin t, i.e., t = π

4 . We have proved

Proposition 2.2. The coproduct ct is coassociative if and only if t = 0
or t = π

2 , and cocommutative if and only if t = π
4 .

To finish, let us mention that the theory of coalgebras and comodules has
proved powerful and useful in contexts like algebraic group actions, quantum
groups or homotopical algebra. Therefore it could be of interest to investigate
C(V )-comodules.
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