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ABSTRACT - An overview of the Vibration and Experimental Modal Analysis (EMA) and system identification 
method and possible applications in non-destructive testing (NDT) is provided. The system identification in time, 
frequency and scale-time domain methods are presented. The illustrative examples of stiffness, mass and damping 
identification are provided. The theoretical and experimental basis of for mechanical system condition assessment is 
given. Displayed NDT method is based on the residual force vector and dynamic properties of the system. Theoreti-
cally, the method is applicable to any structure that can be accurately modeled using the finite element method and 
whose frequencies and mode shapes can be reliably obtained. To confirm the method numerically, it is applied to the 
numerical model of story frame, where the damage was simulated for three different cases: change in mass, change 
in stiffness and both change in mass and change in stiffness simultaneously. The practical, experimental, validity 
of the method is demonstrated by applying it to the free-free beam. It is shown that the practical application of the 
method requires additional actions, without which the method can be difficult to implement. This is a model update 
with which it is possible to achieve reliable modal parameters and the model reduction is used with which enables the 
equality of degrees of freedom between numerical and experimental model to be obtained.

1. INTRODUCTION

The non-destructive testing correlates with Vibration Testing in a number of aspects. As far as the vibration is influ-
enced by the system properties (stiffness, mass and damping) the structural changes that involve these properties can 
be observed throw dynamic-vibration system behaviour. 

Vibration testing comprises a very wide area that includes Experimental modal analysis (EMA), operational mode 
analysis (OMA), System identification, Dynamic testing with deferent focuses including fatigue tests, functional-
ity tests, Force detection,… The vibration testing area can additionally divided by the tested object to structure and 
machine dynamics. The machine includes moving parts and consequently intrinsic excitation sources what requires 
specific tests correlated to the machine speed... etc.

In what follows an overview of the EMA with NDT application will be given.

2. EMA and NDT

EMA basically detects system modal parameters i.e. natural frequencies, natural modes and modal damping. The 
modal properties are functions of the stiffness, mass and energy dissipation densities. The changes in these densities 
will affect modal parameters and structural change will be noted. The next steps are detection of location of struc-
tural change and further step is detection of amount of this structural change.

How do we perform EMA? Modal parameters we can detect in specially designed experiments when we excite the 
structure at some points with so called vibration exciters and measure structure response at some points with ac-
celerometers (or velocimeters). By the ways we excite the structure (type of excitation forces) we can divide the EMA 
tests to impact test (impact excitation), random excitation, modal excitation,… However, it is also possible to detect 
modal parameters during regular operation (when the structure is excited by operational forces). The EMA test can 
be presented by input-output scheme. Depending on the number of inputs and outputs we divide tests to: SISO (sin-
gle input single output), SIMO (single input multiple output), SIMO, MISO, MIMO,… SISO and SIMO tests with 
random excitation prevail. 

In the EMA we can distinguish segments: a) experiment and data acquisition and b) data processing and system iden-
tification. The first segment deals with the experiment i.e. excitation and measurement technique and battle with 
noise. The second segment involves advanced techniques of identification of the system parameters. 
Although there are considerable amount of software that are specialized in EMA, there is always need to use specially 
designed procedures to handle specific tasks. 
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3. MODEL VALIDATION AND MODEL UPDATE

Before using FE models for simulation process, those models should be correlated with experimental data to ensure 
that dynamic properties of models are related with the real structures. If dynamic properties of the model are not 
related to the real structure, then model must be updated so that its dynamic response more closely matches the dy-
namic of the real structure. Hence, mass and stiffness of FE model are modified.

While FE model has numerous degrees of freedoms (DOFs), including rotational DOFs, experimental analysis for 
practical reasons is limited to just on subset of the translational DOFs. To overcome this difficulty, model reduction 
process is needed.

For example let FE model of free-free beam be updated. Model reduction should be used to eliminate at least all rota-
tional DOFs. Genetic algorithm can be used to minimize object/cost functions.

4. FE MODEL AND SEREP MODEL REDUCTION

In this example, free-free beam is used to update mass of beam elements. The length of the beam is 1.196 m, density 
7800 kg/m3, modulus of elasticity 2.1e11 N/m2, rectangular cross-section with dimensions 60.7 by 12.2 mm. The 
beam is divided into 10 beam elements, with 4 DOFs per element, two translations and two rotations. Simulated 
structural dynamic modification is mass added at fourth element, 20% of element mass.

SEREP method [4] is used to reduce mass and stiffness matrices to translational DOFs

where Φm and Φs together make mode shape matrix in which subscript m and s relate to master and slave coordi-
nates. Φ†

m is the Moore-Penrose pseudo inverse of the matrix. T is transformation matrix. M and K are full mass 
and stiffness matrices.Φ

5. FE MODEL UPDATE METHOD 

It is too complex to make update directly to components of the mass and stiffness matrices. A more practical approach 
is to change physical properties of the finite elements and translate those changes into mass and stiffness changes.
Some kind of measure between FE model and real structure has to be defined. The following two functions connect 
properties of FE model (a) and real structure (e) and can be minimized to update model

(1)
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(2)

where λ(k) and φ(k) are kth eigenvalue and eigenvector. MAC(k) is Modal Assurance Criterion between mode shapes 
for mode k.
Second mode shape for FE model and target FE model is shown in figure 1.

Figure 1. Second mode shape, model (x) – target (o)    Table 1. Natural frequencies
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Table 1 shows first five natural frequencies for FE model, target FE model, update FE model using f1 function and 
update FE model using f2 function.

It follows an application of NDT based on EMA in structure health monitoring. 

6. NDT – Delta pseudo residual force method

The serious approach to the structural health monitoring based on vibration techniques requires accurate numerical 
model of the structure (typically FEM model). As usually, many data for the model are not available (or are from 
not reliable sources) the very important step in the building of the model is model validation. The model is typically 
validated using MAC (modal assurance criteria) and other criteria. The next step is model update. The model update 
is procedure in which we match our numerical model to the tested structure. 

7. THEORETICAL BACKGROUND

Modal properties of structure can be measured experimentally or simulated using finite element method. When modal 
properties for structures are known in their original state and changes are detected, changed regions can be located. 
Motion equation of undamped dynamic problem is:

where M is the mass matrix, K is the stiffness matrix, and x are vectors representing accelerations and displacements, 
f(t) is excitation force vector. Free vibration are characterized with force f(t) equals zero. To compute the natural 
frequencies and mode shapes eigenvalue problem have to be solved

(3)

(4)
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where λi is the ith mode eigenvalue, and φi is ith mode shape. The λi and φi can be considered ith modal property.
To locate changed regions, difference in modal properties between two states has to be determined. Assuming eigen-
value problem for changed state can be written as

where subscript c indicates changed state. Stiffness and mass matrices in changed state Kc and Mc are defined as

(5)

(4)

where ΔK and ΔM is change of original stiffness and mass matrices K and M. Substituting the last equation into 
eigenvalue problem and rearranging residual force vector is

(6)

Residual force vector Ri can be simple determined if is known natural frequencies and mode shapes. Subscript i de-
note ith degree of freedom. From the last equation it is observed that residual force for ith degree of freedom is zero if 
changed in stiffness and mass matrices are zero. Furthermore, only members of residual force which belong changed 
elements are different from zero.
Theoretically, only one natural frequency and mode shape is needed to locate changed element. In real world, meas-
ured data usually include certain amount of errors which may lead to inaccuracies in residual force vector. Therefore, 
it is needed several natural frequencies and mode shapes. If it is obtained p measured frequencies and mode shapes, 
pseudo residual force vector may be expressed as

(8)

in which        is the absolute value of the jth entry of Ri. In obtained pseudo residual force vector the real signals are 
amplified, and pseudo residual force vector is more accurate.

To determine the amount of changes, natural frequencies and mode shapes in changed state are defined as

ijr

(9)
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Now, the eigenvalue equation can be updated as

(10)

The first term is equal to zero, moreover, neglecting higher order terms last two terms are equal to zero. Pre-mul-
tiplying all remaining terms by φiT, second term becomes equal to zero. Furthermore, if φi is normalized so that 
φiTMφi=1 , last equation can be reduced to

Values of ΔK and ΔM matrices are nonzero only at location where degrees of freedom are associated with changed 
elements. Reducing ΔK and ΔM to ΔK’ and ΔM’ matrices that contains only nonzero rows and columns associated 
with changed elements, and reducing φi to φi I that contains values only at corresponding changed elements, the last 
equation can be expressed as

(11)

(12)

This can be used to solve for changes in original stiffness and mass matrices. To reduce the number of unknowns that 
need to be solved from the last equation, matrices   and   are expressed as function of original element stiffness and 
mass matrices by following equations

where Ke
j  and Me

j are stiffness and mass matrices of the jth changed element, nc is the number of changed element 
and δkj and δmj are stiffness and mass proportional modification factors for changed element j, on this one way num-
ber of unknowns is reduced to two per changed element. Now we have:

(13)

where A and B are p x nc matrices, δkj and δmj column vector of size nc , and Δλ is column vector of size p, given by

(14)

Values φi I, Ke
j , M

e
j and Δλ can be obtained by measuring or modelling using finite element method struc-

tures in their original state. For unique solution only p=2nc eigenvalues needed to be determined. As far 
as measured data usually include certain errors it is necessary to have more natural frequencies than 2nc.

Further simplification of the equation can be:

(18)

To solve equation this equation an optimization procedure is needed. The least square method is used to obtain ac-
ceptable solution. If the error is denoted as

the condition from least square method that is needed to be satisfied is

(19)

dk is the kth entry of vector D. Combining the last two  equations one can obtain

(20)

(21)
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The last equation can be used to solve for all the unknown stiffness and mass proportional modification factors which 
indicate amount of changes.

8. NUMERICAL EXAMPLE

The numerical example is performed on the story steel frame.
The results are obtained using finite element method, each node has three degrees of freedom – two translational 
and one rotational, stiffness and mass element matrices are given by Chandrupatla and Belegundu. The algorithm is 
developed and coded in order to perform computations and present results.
A two connected five-story steel frame shown in figure 2 is analyzed. It has 31 elements and 24 nodes. For the first 
node degrees of freedom are labeled as 1, 2, 3, for second 4, 5, 6 and etc. All 31 elements have area moment of inertia 
2e-10 m4 and cross section 9e-5 m2, elastic modulus used for steel was 210 GPa and density 7800 kg/m3.
The first four natural frequencies are listed in table 2 and corresponding eigen modes are shown on figure 3.

Three different types of change are investigated on element 9 and the same changes on element 28: case 1: 15% stiff-
ness reduction; case 2: 15% mass reduction; and  case 3: 15% stiffness and 15% mass reduction. Obtained pseudo 
force vector for degrees of freedom which belong to the changed element are in range 10, for other degrees of freedom 
pseudo force vector is less than 10-8. Example of the pseudo residual force vector for the case of change on element 9 
is shown on figure 4. The table 3 presents the results of detected amount of change for three above cases.
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Figure 2 Model of the structure

Table 2 Natural frequencies of 5-story frame

Figure 3 The first four eigen mode of 5-story frame
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Figure 4 Residual force vector - element 9 is change Table 3 Detected amount of change (%) of 5-story 
frame

So, we find the method presented very reliable and efficient. The calculated values are very close to actual changes 
in all three cases. Minimum deviations are the result of numerical errors and errors due to neglecting higher order 
terms.

9. EXPERIMENTAL IMPLEMENTATION

Practical implementation was realized on a free-free beam, Figure 5. The beam is mounted with two cords and meas-
urement was carried out in a direction perpendicular to the cords in order to avoid its impact. The beam is divided into 
ten elements, or 11 nodes. In order to implement the presented algorithm, the numerical model of beam is reduced 
(SEREP) to match the measured model. In the numerical model only those DOFs are left which are being measured.
The measurement was performed in two steps: the original (unchanged) beam and beam with added mass at 6th ele-
ment. The amount of added mass is 55.1% of the mass of the element itself.

Before practical applications, the effect of reduction on the numerical model of beam is tested. The numerical model 
of beams which is used is equal to the experimental model. The figure 6 shows the residual vector before any reduc-
tion. As in the case of frame a method determines the location of the damage without any problem. Four values 

jumped out, those that belong to the nodes which surround 
the damaged element, and each node has two degrees of 
freedom.
Figure 7 shows the effect of reduction.  The numerical 
model has been reduced in a way that only the translations 
DOFs in every tenth node are left. The remaining trans-
lation DOFs and all rotational DOFs were removed. The 
blurring of the residual vector is due to the reduction, but 
the area where the damage occurs is still clearly visible.

          Figure 5 Practical implementation

Figure 6 Residual force vector, numerical example of 
beam, reduction 

Figure 7 Residual force vector, numerical example of 
beam, without reduction
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Observing the pseudo-residual force vector calculated without model update we find considerable amount of noise 
which hinders the detection of damaged elements. Despite all, the vector has the highest value at members 6 and 
7, which belong to the changed element (element 6). Applying the model update and calculating the delta pseudo-
residual vector situation has significantly improved. Although not eliminated, the noise is significantly reduced with 
modal update and it is quite clear which element of the structure is damaged.
Also, the detection of added mass is made according to the above mentioned algorithm and the results are shown in 
Table 4. Table 4 shows excellent detection of added mass, while the stiffness which should be equal to zero is slightly 
increased.

M
AT

ES
T 

20
11

Table 4 Detected amount of change (%) free-free beam

On this practical example the method proved to be very effective with using model updates and model reduction.

10. CONCLUSION

The possibilities of the application vibration testing to NDT and structural health monitoring are discussed. In this 
paper NDT and health monitoring methods that involve structural changes in stiffness and mass are presented. This 
approach typically requires knowledge of the observed system/structure. The structure is modelled numerically (typi-
cally FEM model) and model is validated and updated according experiments to prove that model is reliable.

Here, we presented and compared FE model update for two different object functions. Object functions are tested on 
free-free beam model. Genetic algorithm is used to minimize the object functions. 

The pseudo-residual force and delta pseudo-residual force approach is presented as NDT in structural health monitor-
ing. The numerical simulation of the whole damage detection procedure is used to illustrate practical application of 
the method. Additionally, the accuracy and reliability of the method in practical applications are discussed.
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