# ON A LEMMA OF THOMPSON 

Yakov Berkovich<br>University of Haifa, Israel


#### Abstract

In Theorem 3 we improve [8, Lemma 5.41] (= Lemma 1 , below) omitting one of its conditions. In Lemma 1 the structure of $T$, a Sylow 2-subgroup of $G$, is described only. In contrast to that lemma, we describe in detail the structure of the whole group $G$ and embedding of $T$ in $G$. In Theorem 4 we consider a similar, but more general, situation for groups of odd order.


In the first part [8] of his seminal N-paper Thompson considered, in particular, a number of special situations arising in the subsequent parts of that paper. He proved there the following

Lemma 1 ([8, Lemma 5.41]). Suppose that the following holds:
(a) $G$ is a finite nonnilpotent solvable group.
(b) $O_{2^{\prime}}(G)=\{1\}$.
(c) $G$ has a proper noncyclic abelian subgroup of order 8 .
(d) If $K$ is any proper subgroup of $G$ of index a power of 2 , then $K$ has no noncyclic abelian subgroup of order 8.
Let $T$ be a Sylow 2-subgroup of $G$. Then $T$ is normal in $G$ and one of the following holds:
(i) $T$ is abelian.
(ii) $T$ is an extraspecial group.
(iii) $T$ has a subgroup $T_{0} \cong Q_{8}$ of index 2 and $T=T_{0} Z(T)$.
(iv) $T$ is special and $Z(T) \cong E_{4}$.

In Theorem 3 we eliminate condition (c) from the hypothesis of Lemma 1 and, as a result, we obtain three additional non 2-closed groups; we also describe the structure of $G$ in some detail. Note also that our proof differs

[^0]essentially from the original proof of Lemma 1. Theorem 4 is a stronger version of Theorem 3 for groups of odd order. In the proof of Theorem 4 we use [3, Theorem 4.1(i)] (= Lemma 2(e), below), a fairly deep result of finite $p$-group theory.

In what follows $G$ is a finite group, $p$ is a prime, $\pi$ is a set of primes and $\pi^{\prime}$ is the set of primes not contained in $\pi, m, n \in \mathbb{N}$ and $\pi(m)$ is the set of all prime divisors of $m$. Next, $\mathrm{C}_{m}$ is the cyclic group of order $m ; \mathrm{E}_{p^{m}}$ is the elementary abelian group of order $p^{m} ; \mathrm{SD}_{2^{n}}(n>3), \mathrm{Q}_{2^{n}}$ and $\mathrm{D}_{2^{n}}$ are the semidihedral, generalized quaternion group and dihedral groups of order $2^{n}$, respectively (these groups exhaust the groups of maximal class and order $2^{n}$ ); $\mathrm{A}_{4}\left(\mathrm{~S}_{4}\right)$ are the alternating (symmetric) group of degree 4; $\mathrm{C}_{G}(M)\left(\mathrm{N}_{G}(M)\right)$ is the centralizer (normalizer) of the subset $M$ in $G ; \mathrm{Z}(G), G^{\prime}$ and $\Phi(G)$ is the center, the derived subgroup and the Frattini subgroup of $G$, respectively; $\mathrm{O}_{\pi}(G)$ is the product of all normal $\pi$-subgroups of $G$. If $G$ is a $p$-group, then $\Omega_{1}(G)=\left\langle x^{p}=1 \mid x \in G\right\rangle$ and $\mho_{1}(G)=\left\langle x^{p} \mid x \in G\right\rangle$. By $A * B$ we denote a central product of $A$ and $B$.

A $p$-group $G$ is said to be special if $G^{\prime}=\mathrm{Z}(G)=\Phi(G)>\{1\}$ (in that case, $\exp \left(G^{\prime}\right) \leq \exp \left(G / G^{\prime}\right)$ so $\exp \left(G^{\prime}\right)=p$ and $G^{\prime}$ is elementary abelian). A $p$-group $G$ is said to be extraspecial if it is special with $\left|G^{\prime}\right|=p$.

Let $G$ be a 2 -group of maximal class. Then, if $G \not \approx \mathrm{Q}_{8}$, it contains a characteristic cyclic subgroup of index 2.

In Lemma 2 we gathered some known facts used in what follows.

Lemma 2. (a) [1, Proposition 19(a)] Let $B$ be a nonabelian subgroup of order $p^{3}$ in a p-group $G$. If $G$ is not of maximal class, then $C_{G}(B) \not \pm$ $B$.
(b) Let $G$ be a p-group generated by two elements. Then $\pi(|\operatorname{Aut}(G)|) \subseteq$ $\pi(p(p-1)(p+1))$. In particular, $p$ is the maximal prime divisor of $|A u t(G)|$, unless $p=2$. If, in addition, $G$ has a characteristic subgroup of index $p$, then $\pi(|A u t(G)|) \subseteq \pi(p(p-1))$. In particular, if $G$ is a 2 -group of maximal class and $\operatorname{Aut}(G)$ is not a 2-group, then $G \cong Q_{8}$.
(b1) $\operatorname{Aut}\left(Q_{8}\right) \cong S_{4}$.
(c) Let $\alpha$ be a $p^{\prime}$-automorphism of a p-group $G$ acting trivially on $\Omega_{1}(G)$. If $p>2$ or $G$ is abelian, then $\alpha=i d_{G}$.
(d) If a p-group $G$ has no noncyclic abelian subgroup of order $p^{3}$, then one and only one of the following holds: (i) $G$ is cyclic, (ii) $G \cong E_{p^{2}}$, (iii) $G$ is a 2-group of maximal class, (iv) $G$ is nonabelian of order $p^{3}$, $p>2$.
(e) $[3$, Theorem 4.1(i)] Let $G$ be a p-group, $p>2$. Suppose that $G$ has no normal elementary abelian subgroup of order $p^{3}$. Then one of the following holds: (i) $G$ is metacyclic, (ii) $G$ is an irregular 3-group of maximal class, (iii) $G=E C$, where $E=\Omega_{1}(G)$ is nonabelian of order $p^{3}$ and exponent $p$ and $C$ is cyclic.
(f) Let $A$ be a $\pi^{\prime}$-group acting on a $\pi$-group $G$. Let $\mathcal{C}: G=G_{0}>G_{1}>$ $\cdots>G_{n}=\{1\}$ be a chain of $A$-invariant normal subgroups of $G$. If A centralizes all factors $G_{i} / G_{i+1}$ of the chain $\mathcal{C}$ (i.e., A stabilizes $\mathcal{C}$ ), then $A$ centralizes $G$.
(g) (Transfer Theorem) Suppose that a Sylow p-subgroup of a group $G$ is abelian. If $p$ divides $|Z(G)|$, then $G$ has a normal subgroup of index $p$.
According to Hall-Burnside, if $\alpha$ is a $p^{\prime}$-automorphism of a $p$-group $G$ inducing identity on $G / \Phi(G)$, then $\alpha=\operatorname{id}_{G}$. Indeed, assuming, without loss of generality, that $o(\alpha)=q$, a prime, we see that $\alpha$ fixes an element of every coset $x \Phi(G)$. Since these fixed elements generate $G$, our claim follows.

If $d$ is a minimal number of generators of a $p$-group $G$, then (Hall) $|\operatorname{Aut}(G)|$ divides the number $\left(p^{d}-1\right)\left(p^{d}-p\right) \ldots\left(p^{d}-p^{d-1}\right)|\Phi(G)|^{d}$ (indeed, that number is the cardinality of the set $\mathfrak{B}$ of minimal bases of $G$, and $G$ has no fixed points on the set $\mathfrak{B}$ ), and this justifies the main assertion of Lemma 2(b). If a two-generator $p$-group $G$ has a characteristic subgroup $H$ of index $p$ and $\alpha \in \operatorname{Aut}(G)$ has prime order $q \notin \pi(p(p-1))$, then $\alpha$ stabilizes the chain $\{1\}<H / \Phi(G)<G / \Phi(G)$ so $\alpha=\operatorname{id}_{G}$, by the previous paragraph and (f), a contradiction. In (c), the partial holomorph $\langle\alpha\rangle \cdot G$ has no minimal nonnilpotent subgroup so it is nilpotent, by Frobenius' Normal $p$-Complement Theorem [5, Theorem 9.18] (here we use the structure of minimal nonnilpotent groups; see [4, Satz 3.5.2]). Lemma 2(d) follows from Roquette's Lemma [4, Satz 3.7.6], in which the $p$-groups without normal abelian subgroups of type ( $p, p$ ) are classified. Lemma 2(g) follows from Wielandt's Theorem [4, Satz 4.8.1] and Fitting's Lemma [2, Corollary 1.18]. As to Lemma 2(f), assume that $A$ does not centralize $G$ and $|A G|$ is as small as possible. Then $A G$ is minimal nonnilpotent. Since all nilpotent images of $A G$ must be $\pi^{\prime}$-groups, we get a contradiction with hypothesis.

Recall that there are two representation groups of the symmetric group $\mathrm{S}_{4}$, their orders are equal to 48, Sylow 2-subgroups of these groups are generalized quaternion and semidihedral, respectively; see [7, Theorem 3.2.21].

Now we are ready to prove our main results.
Theorem 3. Suppose that the following holds:
(a) $G$ is a nonnilpotent solvable group with a Sylow 2-subgroup $T$ and $2^{\prime}$ Hall subgroup $H$.
(b) $O_{2^{\prime}}(G)=\{1\}$.
(c) Whenever $K$ is a proper subgroup of $G$ such that $|G: K|$ is a power of 2, then $K$ has no noncyclic abelian subgroup of order 8 (or, what is the same, every maximal subgroup of $G$ containing $H$, has no noncyclic abelian subgroup of order 8).
Then one and only one of the following assertions is true:
A If $T$ is not normal in $G$, then either $G \cong S_{4}$ or $G$ is one of two representation groups of $S_{4}$.

B If $T$ is normal in $G$, then one of the following holds:
(B1) If $T$ is abelian, then $T \in\left\{E_{2^{m}}, C_{4} \times C_{4}\right\}$.
(B1.1) If $T \cong C_{4} \times C_{4}$, then $G$ is a Frobenius group with $|G: T|=$ 3.
(B1.2) Let $T \cong E_{2^{m}}$ be not a minimal normal subgroup of $G$. Then either $G \in\left\{A_{4} \times C_{2}, A_{4} \times A_{4}\right\}$ or $m=4$ and $G$ is a Frobenius group with $|G: T|=3$.
(B2) $T$ is extraspecial of order $2^{2 m+1}, m \geq 1$. If $m=1$, then $G \cong$ $S L(2,3)$. Next assume that $m>1$.
(B2.1) If $m>2$, then $T / Z(T)$ is a minimal normal subgroup of $G / Z(T)$.
(B2.2) If $T / Z(T)$ is not a minimal normal subgroup of $G / Z(T)$, then $T=U * V$, where $U \cong V \cong Q_{8}, U, V \triangleleft G$; in that case, $G / T \cong H$ is isomorphic to a subgroup of $E_{3^{2}}$. Moreover, if $H \cong E_{3^{2}}$, then $G=A * B$, where $A \cong B \cong S L(2,3)$ and $A \cap B=Z(A)=Z(B)$. If $|H|=3$, then $U H \cong S L(2,3) \cong V H$.
(B3) $T$ has a $G$-invariant subgroup $T_{0} \cong Q_{8}$ of index 2 and $T=$ $T_{0} Z(T)$. In that case, $G / T^{\prime} \cong A_{4} \times C_{2}, G^{\prime}=T_{0}$ and, if $D / T_{0}<$ $G / T_{0}$ is of order 3 , then $D \cong S L(2,3)$.
(B4) $T$ is special with $Z(T)=Z(G) \cong E_{4}$ and $T / Z(T)$ is a minimal normal subgroup of $G / Z(T)$.

Proof. The solvable group $G$ contains a $2^{\prime}$-Hall subgroup $H$. Since $\mathrm{O}_{2^{\prime}}(G)=\{1\}, T \in \operatorname{Syl}_{2}(G)$ is noncyclic (Lemma 2(b)), $\mathrm{C}_{G}\left(\mathrm{O}_{2}(G)\right) \leq \mathrm{O}_{2}(G)$ (Hall-Higman) so, if $T$ is abelian, it is normal in $G$.

Suppose that $T$ is abelian and $\exp (T)>2$. Then $\Omega_{1}(T)$ is normal in $G$ since $T \triangleleft G$. Next, $\left|G: \Omega_{1}(T) H\right|>1$ is a power of 2 so $\Omega_{1}(T) \cong \mathrm{E}_{4}$ since $T$ is noncyclic. The number $\left|G: H \Omega_{2}(T)\right|$ is a power of 2 and $H \Omega_{2}(T)$ contains a noncyclic abelian subgroup of order 8 , so we get $\Omega_{2}(T) H=G$ and $\exp (T)=4$. Since $G$ has no normal 2-complement, $T$ is abelian of type (4,4) (Lemma 2(b)). Then $\Omega_{1}(T) H$ is a Frobenius group (otherwise, by Lemma $2(\mathrm{c}),\{1\}<H \triangleleft G)$ so $|H|=3$; in that case, $G$ is also a Frobenius group.

Now suppose that $T \cong \mathrm{E}_{2^{m}}$; then $m>1$. If $m=2$, then $G \cong \mathrm{~A}_{4}$. Now we let $m>2$ and suppose that $T$ is not a minimal normal subgroup of $G$. Then $T=R \times R_{1}$, where $R, R_{1}>\{1\}$ are normal in $G$ (Maschke) and, since $|G: R H|>1$ and $\left|G: R_{1} H\right|>1$ are powers of 2 , we conclude that $|R| \leq 4$, $\left|R_{1}\right| \leq 4$ so $m \in\{3,4\}$. If $m=3$, then $G \cong \mathrm{~A}_{4} \times \mathrm{C}_{2}$. If $m=4$, then $G$ is either a Frobenius group with kernel $T \cong \mathrm{E}_{2^{4}}$ of index 3 in $G$ or $G \cong \mathrm{~A}_{4} \times \mathrm{A}_{4}$. Indeed, assume that $G$ is not a Frobenius group; then $|H|>3$. Setting $Z=\mathrm{C}_{H}(R)$, $Z_{1}=\mathrm{C}_{H}\left(R_{1}\right)$, we have $|H: Z|=3=\left|H: Z_{1}\right|$ and $Z \cap Z_{1} \leq \mathrm{O}_{2^{\prime}}(G)=\{1\}$ so $H=Z_{1} \times Z_{2}, R Z_{1} \cong \mathrm{~A}_{4} \cong R_{1} Z$ and $G=\left(R Z_{1}\right) \times\left(R_{1} Z\right)$.

In what follows we assume that $T$ is nonabelian.
A. Suppose that $T$ is normal in $G$.
(i) Suppose that $T$ has no noncyclic abelian subgroup of order 8. Then, by Lemma $2(\mathrm{~d}), T$ is of maximal class, and, by Lemma $2(\mathrm{~b}), T \cong \mathrm{Q}_{8}$, which is extraspecial (in that case, $G \cong \mathrm{SL}(2,3)$ ).

In what follows we assume that $T$ has a noncyclic abelian subgroup of order 8 so $T$ is not of maximal class; then $|T|>8$.
(ii) Suppose that $K<G$ and $|G: K|=2$; then $K$ has no noncyclic abelian subgroup of order 8 , by hypothesis. We get $\mathrm{O}_{2^{\prime}}(K) \leq \mathrm{O}_{2^{\prime}}(G)=\{1\}$ so $T \cap K$ is noncyclic and is not of maximal class and order $>8$, by Lemma 2(b). It follows from Lemma $2(\mathrm{~d})$, that $T \cap K \cong \mathrm{Q}_{8}$ and, since $T$ is not of maximal class, $T=(T \cap K) \mathrm{C}_{T}(K \cap T)=(T \cap K) \mathrm{Z}(T)$ since $|T|=16$ (Lemma 2(a)). The subgroup $T \cap K \triangleleft G$. Then, in view of Lemma 2(b1) and (a) (see the theorem), we conclude that

$$
|H|=|G: T|=3,(T \cap K) H \cong \mathrm{SL}(2,3), G^{\prime}=T \cap K, G / G^{\prime} \cong \mathrm{C}_{6}
$$

and so $G$ is as in part (B3).
Next we assume that $G$ has no subgroup of index 2 ; then $T \leq G^{\prime}$.
(iii) Let $R$ be a $G$-invariant subgroup of $T$ such that $T / R$ is a minimal normal subgroup of $G / R$; then $R>\{1\}$ since $T$ is nonabelian. Since $\mid G$ : $R H \mid>1$ is a power of $2, R$ has no noncyclic abelian subgroup of order 8 , by hypothesis (see (c)), so we have for $R$ the following possibilities listed in Lemma 2(d): either $R \leq 4$ or $R \cong \mathrm{Q}_{8}$ (here we also use Lemma 2(b)).
(iv) Suppose that $H$ centralizes $R$. Then $G / \mathrm{C}_{G}(R)$ is a 2-group, so $\mathrm{C}_{G}(R)=G$, by (ii). Thus, $R \leq \mathrm{Z}(G)$. By hypothesis (see (a)), $\mathrm{Z}(G)$ is a 2 subgroup and, in view of the maximal choice of $R$, we get $\mathrm{Z}(T)=R=\mathrm{Z}(G)$. Assume that $T^{\prime}<R$; then $\left|R / T^{\prime}\right|=2$. In that case, by Lemma $2(\mathrm{~g})$, applied to the pair $T / T^{\prime}<G / T^{\prime}$, the group $G / T^{\prime}$ has a normal subgroup of index 2 , contrary to (ii). Thus, $T^{\prime}=R=\Phi(T)$ so $T$ is special since $\exp \left(T^{\prime}\right) \leq \exp \left(T / T^{\prime}\right)=2$, and $R \in\left\{\mathrm{C}_{2}, \mathrm{E}_{4}\right\}$. Therefore, we are done if $|R|=2$.
(v) Suppose that $T$ is extraspecial of order $2^{2 m+1}, m>1$, and $|R|>2$; then, by (iv), $H$ does not centralize $R$. If $|R|=4$, then $\left|T: \mathrm{C}_{T}(R)\right|=2$ and $\mathrm{C}_{T}(R) H$ has index 2 in $G$, contrary to (ii) (note that $\mathrm{C}_{T}(R)$ is normal in $G$ since $R$ and $T$ are). Thus, $|R|>4$ so $R \cong \mathrm{Q}_{8}$ (Lemma 2(d,b)). Let $R_{1}=\mathrm{C}_{T}(R)$; then $R_{1} \cong R \cong \mathrm{Q}_{8}$, by what has just been said. In that case, $T=R * R_{1}$ is extraspecial of order $2^{5}$. Suppose that $|H|$ is not a prime. Setting $\mathrm{C}_{H}(R)=Z$ and $\mathrm{C}_{H}\left(R_{1}\right)=Z_{1}$, we get, by Lemma $2(\mathrm{~b} 1),|H / Z|=3=\left|H / Z_{1}\right|$, $Z \cap Z_{1}=\{1\}$ and so $H=Z \times Z_{1}, R Z_{1} \cong \mathrm{SL}(2,3) \cong R_{1} Z$, and we conclude that $G=\left(R Z_{1}\right) *\left(R_{1} Z\right)$ with $\left(R Z_{1}\right) \cap R_{1} Z=\mathrm{Z}\left(R Z_{1}\right)$. If $|H|$ is a prime, then $|G: T|=3$ and, as above, $R H \cong \mathrm{SL}(2,3) \cong R_{1} H$. Thus, $G$ as in part (B2).

In what follows we assume that $T$ is not extraspecial.
(vi) Suppose that $T$ has a maximal $G$-invariant cyclic subgroup $Z$ of order $\geq 4$. One may choose $R$ so that it contains $Z$. Then $H$ centralizes $Z$ (Lemma
$2(\mathrm{~b}))$ so, by (iv), $Z \leq \mathrm{Z}(G)$. By Lemma $2(\mathrm{~d}), R$ must be cyclic, contrary to (iv).

Thus, $T$ has no $G$-invariant cyclic subgroup of order 4 and so $R$ is noncyclic. Therefore, by (iii), $R \in\left\{\mathrm{E}_{4}, \mathrm{Q}_{8}\right\}$.
(vii) Let $R \cong \mathrm{E}_{4}$. In that case, $\mathrm{C}_{T}(R)$ is normal in $G$ and $\left|T: \mathrm{C}_{T}(R)\right| \leq 2$. Since $\left|T: \mathrm{C}_{T}(R) H\right| \leq 2$, we get $\mathrm{C}_{T}(R)=T$, by (ii). Since $T$ is nonabelian, we get $R=\mathrm{Z}(T)$, by the maximal choice of $R$. As in (iv), we get $T^{\prime}=R$ so $\Phi(T)=R$ and $T$ is special since, by the above, $R=\mathrm{Z}(G)$.
(viii) Now let $R \cong \mathrm{Q}_{8}$. By (iv), $[R, H]>\{1\}$. By Lemma 2(b1), $G / \mathrm{C}_{T}(R)$ is a subgroup of $\mathrm{S}_{4}$ containing a subgroup isomorphic to $R / \mathrm{Z}(R) \cong \mathrm{E}_{4}$ (Lemma 2(b1)). Since $T$ is normal in $G$, we get $G / \mathrm{C}_{T}(R) \not \approx \mathrm{S}_{4}$. Thus, $\left|T: \mathrm{C}_{T}(R)\right|=4=|R: \mathrm{Z}(R)|$ so $|H|=3$ and $T=R * \mathrm{C}_{T}(R)$, by the product formula. Thus, $T / \mathrm{C}_{T}(R) \cong \mathrm{E}_{4}$. By (ii), $|T: R|>2$ so $\mathrm{C}_{T}(R)$ is noncyclic of order $>4$. Then, by Lemma $2(\mathrm{~d}), \mathrm{C}_{T}(R) \cong \mathrm{Q}_{8}$ so $T \cong \mathrm{Q}_{8} * \mathrm{Q}_{8}$ is extraspecial of order $2^{5}$.

The case where $T$ is normal in $G$, is complete.
B. Now suppose that $T$ is not normal in $G$. Then $T_{0}=\mathrm{O}_{2}(G)>\{1\}$ since $\mathrm{O}_{2^{\prime}}(G)=\{1\}$ and $G$ is solvable. Since $\left|G: T_{0} H\right|>1$ is a power of $2, T_{0}$ is a group of Lemma $2(\mathrm{~d})$. It follows from $\mathrm{C}_{G}\left(T_{0}\right) \leq T_{0}$ that $T_{0}$ is noncyclic and, if $T_{0}$ is of maximal class, then $T_{0} \cong \mathrm{Q}_{8}$ (Lemma 2(b)). If $T_{0} \cong \mathrm{E}_{4}$, then $G \cong \mathrm{~S}_{4}$ since $\operatorname{Aut}\left(\mathrm{E}_{4}\right) \cong \mathrm{S}_{3}$. Now let $T_{0} \cong \mathrm{Q}_{8}$. Since Aut $\left(T_{0}\right) \cong \mathrm{S}_{4}$ (Lemma $2(\mathrm{~b} 1)$ ), we conclude that $G / \mathrm{Z}\left(T_{0}\right)$ is isomorphic to a nonnilpotent subgroup of $\mathrm{S}_{4}$ containing the subgroup $T_{0} / \mathrm{Z}\left(T_{0}\right) \cong \mathrm{E}_{4}$ of even index (by assumption, $\left.T_{0}<T\right)$. We conclude that $\mathrm{C}_{T}\left(T_{0}\right)<T_{0}$ so $T$ is of maximal class, namely, $T$ is generalized quaternion of semidihedral of order 16 (Lemma 2(a)). It follows that $G / \mathrm{Z}\left(T_{0}\right) \cong \mathrm{S}_{4}$ so $G$ is a representation group of $\mathrm{S}_{4}$.

Since all groups listed in the conclusion of the theorem, satisfy the hypothesis, the proof is complete.

Next we expand Theorem 3 to groups of odd order.
Theorem 4. Let $G$ be a nonnilpotent group and let $p>2$ be the least prime divisor of $|G|$. Suppose that the following holds:
(a) $O_{p^{\prime}}(G)=\{1\}$.
(b) Whenever $K$ is a proper subgroup of $G$ such that $|G: K|$ is a power of $p$, then $K$ has no elementary abelian subgroup of order $p^{3}$.

Let $T$ be a Sylow p-subgroup of $G$. Then $T$ is normal in $G$ and one and only one of the following assertions takes place:

A $T$ is a minimal normal subgroup of $G, d(T)>2$.
B $T$ is special of exponent $p$ with $Z(T)=Z(G)$ is of order at most $p^{2}$, $T / Z(T)$ is a minimal normal subgroup of $G / Z(T)$.

Proof. Since $G$ has odd order, it is solvable hence, in view of (a), $\mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right) \leq \mathrm{O}_{p}(G)$ and so, if $T$ is abelian, it is normal in $G$. By Lemma $2(\mathrm{~b}), \mathrm{O}_{p}(G)$ is not two-generator. Let $H$ be a $p^{\prime}$-Hall subgroup of $G$.
$(*)$ Let $M<T$ be $G$-invariant. We contend that $H$ centralizes $M$. Indeed, since $|G: M H|>1$ is a power of $p, M$ is a group of Lemma 2(e), by hypothesis (see (b)). Then, by Lemma $2(\mathrm{~b}), H$ centralizes $M$ if $\mathrm{d}(M) \leq 2$. Now let $\mathrm{d}(M)>2$. Then, by Lemma $2(\mathrm{e}), M=\Omega_{1}(M) C$, where $\Omega_{1}(M)$ is nonabelian of order $p^{3}$ and exponent $p$ and $C$ is cyclic. Note, that $\Omega_{1}(M)$ is normal in $G$. By Lemma 2(b), $H$ centralizes $\Omega_{1}(M)$ so $H$ centralizes $M$, by Lemma 2(c).

1. Let $T$ be normal in $G$.
(i) Assume that $T$ is a group of Lemma 2(e). Then, as in $(*), H$ centralizes $T$ so $H$ is normal in $G$, which is a contradiction. Thus, $T$ possesses a subgroup $\cong \mathrm{E}_{p^{3}}$; then, by Lemma $2(\mathrm{e}), T$ has a normal subgroup $\cong \mathrm{E}_{p^{3}}$.
(ii) Suppose that $T$ is abelian. Since $\left|G: H \Omega_{1}(T)\right|$ is a power of $p$ and, by (i), $\Omega_{1}(T)$ has a subgroup $\cong \mathrm{E}_{p^{3}}$, we get $T=\Omega_{1}(T)$ so $T$ is elementary abelian. Assume that $T=V_{1} \times V_{2}$, where $V_{1}>\{1\}$ and $V_{2}>\{1\}$ are normal in $G$. Then, by $(*), H$ centralizes $V_{i}, i=1,2($ Lemma $2(\mathrm{~b}))$ so $H$ centralizes $T$, which is not the case. Thus, $T$ is a minimal normal subgroup of $G$ (Maschke).

Next we assume that $T$ is nonabelian; then $|T| \geq p^{4}$, by (i).
(iii) Assume that $p$ divides $\left|G: G^{\prime}\right|$. Then, by $(*), H$ stabilizes the chain $\{1\}<T \cap G^{\prime}<T$ so $H$ is normal in $G$ (Lemma 2(f)), a contradiction. Thus, $p$ does not divide $\left|G: G^{\prime}\right|$.
(iv) Let $A<T$ be a $G$-invariant subgroup. We claim that $A \leq \mathrm{Z}(T)$. Assume that this is false. Since $H$ centralizes $A$, by $(*), \mathrm{C}_{G}(A)$ is normal in $G$ and $G / \mathrm{C}_{G}(A)$ is a $p$-group $>\{1\}$, contrary to (iii). Thus, $A \leq \mathrm{Z}(T)$; moreover, $A \leq \mathrm{Z}(G)$.
(v) Let $R<T$ be $G$-invariant and such that $T / R$ is minimal normal in $G / R$. Then, by (iv), $R \leq \mathrm{Z}(T)$; moreover, $R=\mathrm{Z}(T)$, by the maximal choice of $R$. It follows that the class of $T$ equals 2 so, since $p>2$, we get $\exp \left(\Omega_{1}(T)\right)=p$. By (i), $T$ possesses a subgroup $E \cong \mathrm{E}_{p^{3}}$. Since $E \leq \Omega_{1}(T)$ and $\left|G: H \Omega_{1}(T)\right|$ is a power of $p$, we get $G=H \Omega_{1}(T)$ so $T=\Omega_{1}(T)$ is of exponent $p$. It remains to show that $T$ is special. Since $|G: R H|>1$ is a power of $p, R$ is elementary abelian of order at most $p^{2}$. If $T^{\prime}<R$, then, by Lemma 2(g), applied to the pair $T / M<G / M$, the group $G / M$ has a normal subgroup of index $p$, contrary to (iii). Thus, $T^{\prime}=R$. Since $T$ is of exponent $p$, we have $T^{\prime}=\Phi(T)$. Thus, $\mathrm{Z}(G)=R=T^{\prime}=\Phi(T)$ so $T$ is special.

We see that if $T$ is nonabelian, it is special of exponent $p$ with $R=T^{\prime}=$ $\mathrm{Z}(T)=\Phi(T)$ of order $\leq p^{2}$. By the maximal choice of $R, T / R$ is a minimal normal subgroup of $G / R$ so the case where $T$ is normal in $G$, is complete.

It remains to show that $T$ is normal in $G$ always.
2. Now assume that $T$ is not normal in $G$. Since $\mathrm{O}_{p^{\prime}}(G)=\{1\}$ and $G$ is solvable, we get $T>T_{0}=\mathrm{O}_{p}(G)>\{1\}$. Therefore, we have $\mathrm{C}_{G}\left(T_{0}\right) \leq T_{0}$ so $H$ acts faithfully on $T_{0}$. Since $\left|G: T_{0} H\right|>1$ is a power of $p, T_{0}$ has no
elementary abelian subgroup of order $p^{3}$. It follows that $T_{0}$ is a group of Lemma 2(e). However, as shows the argument in (i), $H$ centralizes $T_{0}$, a final contradiction.

Since groups from parts A and B satisfy the hypothesis, the proof is complete.

Note that if $G$ is a 2-group without normal elementary abelian subgroup of order 8 , then it possesses a normal metacyclic subgroup $M$ such that $G / M$ is isomorphic to a subgroup of $\mathrm{D}_{8}$ [6]. Therefore, it is natural to classify the nonnilpotent solvable groups $G$, satisfying (i) $\mathrm{O}_{2^{\prime}}(G)=\{1\}$ and (ii) if $K<G$ is such that $|G: K|$ is a power of 2 , then $K$ has no elementary abelian subgroup of order 8 . However, the proof of such result would be very long since the groups appearing in [6] are not so small as groups of Lemma 2(e).

Theorem 4 also holds for each odd prime divisor $p$ of $|G|$ such that $|G|$ and $p^{2}-1$ are coprime (in that case, $|G|$ is odd so solvable). To prove this, we have to repeat, word for word, the proof of Theorem 4.

## References

[1] Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
[2] Y.G. Berkovich and E.M. Zhmud, Characters of Finite Groups. Part 1, Translations of Mathematical Monographs 172, American Mathematical Society, Providence, RI, 1997.
[3] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
[4] B. Huppert, Endliche Gruppen, Band I, Springer, Berlin, 1967.
[5] I.M. Isaacs, Algebra, a graduate course, Brooks/Cole, Pacific Grove, 1993.
[6] Z. Janko, Finite 2-groups with no normal elementary abelian subgroups of order 8, J. Algebra 246 (2001), 951-961.
[7] M. Suzuki, Group Theory I, Springer, Berlin, 1982.
[8] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable I, Bull. Amer. Math. Soc. 74 (1968), 383-437.
Y. Berkovich

Department of Mathematics
University of Haifa
Haifa 31905
Israel
E-mail: berkov@mathcs2.haifa.ac.il
Received: 24.12.2003.
Revised: 20.09.2004.


[^0]:    2000 Mathematics Subject Classification. 20C15.
    Key words and phrases. Solvable, extraspecial, special and metacyclic p-groups, Blackburn's theorem, the stabilizer of a chain.

