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ON A LEMMA OF THOMPSON

YAKOV BERKOVICH
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ABSTRACT. In Theorem 3 we improve [8, Lemma 5.41] (= Lemma
1, below) omitting one of its conditions. In Lemma 1 the structure of T,
a Sylow 2-subgroup of G, is described only. In contrast to that lemma, we
describe in detail the structure of the whole group G and embedding of T’
in G. In Theorem 4 we consider a similar, but more general, situation for
groups of odd order.

In the first part [8] of his seminal N-paper Thompson considered, in par-
ticular, a number of special situations arising in the subsequent parts of that
paper. He proved there the following

LEMMA 1 ([8, Lemma 5.41]). Suppose that the following holds:
(a) G is a finite nonnilpotent solvable group.
(

b) 0y (G) ={1}.
(¢) G has a proper noncyclic abelian subgroup of order 8.
(d) If K is any proper subgroup of G of index a power of 2, then K has
no noncyclic abelian subgroup of order 8.
Let T be a Sylow 2-subgroup of G. Then T is normal in G and one of the
following holds:
(i) T is abelian.
(ii) T s an extraspecial group.
(iil) T has a subgroup Ty = Qg of index 2 and T = Ty Z(T).
(iv) T is special and Z(T) = Ejy.
In Theorem 3 we eliminate condition (c) from the hypothesis of Lemma 1
and, as a result, we obtain three additional non 2-closed groups; we also
describe the structure of G in some detail. Note also that our proof differs
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essentially from the original proof of Lemma 1. Theorem 4 is a stronger
version of Theorem 3 for groups of odd order. In the proof of Theorem 4 we
use [3, Theorem 4.1(i)] (= Lemma 2(e), below), a fairly deep result of finite
p-group theory.

In what follows G is a finite group, p is a prime, 7 is a set of primes and
7' is the set of primes not contained in 7, m,n € N and 7(m) is the set of
all prime divisors of m. Next, C,, is the cyclic group of order m; E,= is the
elementary abelian group of order p™; SDan (n > 3), Qg and Dan are the
semidihedral, generalized quaternion group and dihedral groups of order 2",
respectively (these groups exhaust the groups of maximal class and order 2™);
A4(S4) are the alternating (symmetric) group of degree 4; Co(M) (Ng(M))
is the centralizer (normalizer) of the subset M in G; Z(G), G’ and ®(G) is
the center, the derived subgroup and the Frattini subgroup of G, respectively;
O (G) is the product of all normal m-subgroups of G. If G is a p-group, then
N (G)=(xP =1]2 € G)and U1(G) = (zP | x € G). By A+ B we denote a
central product of A and B.

A p-group G is said to be special if G' = Z(G) = ®(G) > {1} (in that
case, exp(G’) < exp(G/G’) so exp(G’) = p and G’ is elementary abelian). A
p-group G is said to be extraspecial if it is special with |G'| = p.

Let G be a 2-group of maximal class. Then, if G 2 Qg, it contains a
characteristic cyclic subgroup of index 2.

In Lemma 2 we gathered some known facts used in what follows.

LEMMA 2. (a) [1, Proposition 19(a)] Let B be a nonabelian subgroup
of order p® in a p-group G. If G is not of mazimal class, then Cg(B) %
B

(b) Let G be a p-group generated by two elements. Then w(|Aut(G)|) C
m(p(p — 1)(p + 1)). In particular, p is the mazimal prime divisor of
|Aut(G)|, unless p = 2. If, in addition, G has a characteristic subgroup
of index p, then w(|Aut(G)|) C w(p(p — 1)). In particular, if G is a
2-group of mazimal class and Aut(G) is not a 2-group, then G = Q.

(bl) Aut(Qg) = Sy.

(c) Let a be a p'-automorphism of a p-group G acting trivially on Q1(G).
If p > 2 or G is abelian, then o = idg.

(d) If a p-group G has no noncyclic abelian subgroup of order p*, then one
and only one of the following holds: (i) G is cyclic, (ii) G = E,,
(iii) G is a 2-group of maximal class, (iv) G is nonabelian of order p®,
p> 2.

(e) [3, Theorem 4.1(i)] Let G be a p-group, p > 2. Suppose that G has
no normal elementary abelian subgroup of order p3. Then one of the
following holds: (i) G is metacyclic, (i) G is an irregular 3-group of
mazimal class, (i) G = EC, where E = Q1(G) is nonabelian of order
p? and exponent p and C is cyclic.
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(f) Let A be a 7'-group acting on a w-group G. Let C : G = Go > G >
<o > Gy = {1} be a chain of A-invariant normal subgroups of G. If
A centralizes all factors G;/Git1 of the chain C (i.e., A stabilizes C),
then A centralizes G.

(g) (Transfer Theorem) Suppose that a Sylow p-subgroup of a group G is
abelian. If p divides |Z(G)|, then G has a normal subgroup of index p.

According to Hall-Burnside, if « is a p’-automorphism of a p-group G
inducing identity on G/®(G), then « = idg. Indeed, assuming, without loss
of generality, that o(a) = ¢, a prime, we see that « fixes an element of every
coset x®(G). Since these fixed elements generate G, our claim follows.

If d is a minimal number of generators of a p-group G, then (Hall) |Aut(G)|
divides the number (p?—1)(p?—p) ... (p?—p?~1)|®(G)|¢ (indeed, that number
is the cardinality of the set B of minimal bases of G, and G has no fixed
points on the set 9B), and this justifies the main assertion of Lemma 2(b).
If a two-generator p-group G has a characteristic subgroup H of index p
and o € Aut(G) has prime order ¢ € w(p(p — 1)), then « stabilizes the
chain {1} < H/®(G) < G/®(G) so a = idg, by the previous paragraph
and (f), a contradiction. In (c), the partial holomorph (a) - G has no minimal
nonnilpotent subgroup so it is nilpotent, by Frobenius’ Normal p-Complement
Theorem [5, Theorem 9.18] (here we use the structure of minimal nonnilpotent
groups; see [4, Satz 3.5.2]). Lemma 2(d) follows from Roquette’s Lemma [4,
Satz 3.7.6], in which the p-groups without normal abelian subgroups of type
(p,p) are classified. Lemma 2(g) follows from Wielandt’s Theorem [4, Satz
4.8.1] and Fitting’s Lemma [2, Corollary 1.18]. As to Lemma 2(f), assume
that A does not centralize G and |AG]| is as small as possible. Then AG is
minimal nonnilpotent. Since all nilpotent images of AG must be 7’-groups,
we get a contradiction with hypothesis.

Recall that there are two representation groups of the symmetric group Sy,
their orders are equal to 48, Sylow 2-subgroups of these groups are generalized
quaternion and semidihedral, respectively; see [7, Theorem 3.2.21].

Now we are ready to prove our main results.

THEOREM 3. Suppose that the following holds:

(a) G is a nonnilpotent solvable group with a Sylow 2-subgroup T and 2’-
Hall subgroup H .

(b) Ox(G) ={1}.

(¢) Whenever K is a proper subgroup of G such that |G : K| is a power of
2, then K has no noncyclic abelian subgroup of order 8 (or, what is the
same, every maximal subgroup of G containing H, has no noncyclic
abelian subgroup of order 8).

Then one and only one of the following assertions is true:

A If T is not normal in G, then either G = Sy or G is one of two
representation groups of Sy.
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B If T is normal in G, then one of the following holds:
(B1) If T is abelian, then T € {Egm, Cy x C4}.
(B1.1) If T = Cy x Cy, then G is a Frobenius group with |G : T| =
3.
(B1.2) Let T = FEom be not a minimal normal subgroup of G.
Then either G € {A4 X Co, Ay X Ay} orm =4 and G is a
Frobenius group with |G : T| = 3.
(B2) T is extraspecial of order 2*™+1 m > 1. If m = 1, then G &
SL(2,3). Next assume that m > 1.

(B2.1) If m > 2, then T/Z(T) is a minimal normal subgroup of
G/Z(T).

(B2.2) If T/Z(T) is not a minimal normal subgroup of G/Z(T), then
T =UxV, whereU 2V = Qg, U, V< G; in that case, G/T = H
is isomorphic to a subgroup of Es2. Moreover, if H = Es2, then
G = Ax B, where A~ B> S[(2,3) and ANB = Z(A) = Z(B).
If|H| =3, then UH = SL(2,3) = VH.

(B3) T has a G-invariant subgroup Ty = Qg of index 2 and T =
ToZ(T). In that case, G/T' = Ay x Cay, G' =Ty and, if D/Ty <
G/Ty is of order 3, then D = SL(2,3).

(B4) T is special with Z(T) = Z(G) =2 Ey and T/Z(T) is a minimal
normal subgroup of G/ Z(T).

PROOF. The solvable group G contains a 2’-Hall subgroup H. Since
02 (G) = {1}, T € Syl,(G) is noncyclic (Lemma 2(b)), Cq(02(G)) < 02(G)
(Hall-Higman) so, if T is abelian, it is normal in G.

Suppose that T' is abelian and exp(T) > 2. Then ©4(7T) is normal in
G since T <« G. Next, |G : Q1 (T)H| > 1 is a power of 2 so N (T) = Ey4
since T is noncyclic. The number |G : HQ5(T')| is a power of 2 and HQ5(T)
contains a noncyclic abelian subgroup of order 8, so we get Qo(T)H = G and
exp(T) = 4. Since G has no normal 2-complement, T is abelian of type (4,4)
(Lemma 2(b)). Then Q(T)H is a Frobenius group (otherwise, by Lemma
2(c), {1} < H <« G) so |H| = 3; in that case, G is also a Frobenius group.

Now suppose that T' = Egm; then m > 1. If m = 2, then G = A4. Now
we let m > 2 and suppose that T is not a minimal normal subgroup of G.
Then T'= R x Ry, where R, Ry > {1} are normal in G (Maschke) and, since
|G : RH| > 1 and |G : R{H| > 1 are powers of 2, we conclude that |R| < 4,
|R1| <4som € {3,4}. If m = 3, then G =2 Ay x Cy. If m = 4, then G is either
a Frobenius group with kernel T' 22 Eq4 of index 3in G or G =2 A4 xA4. Indeed,
assume that G is not a Frobenius group; then |H| > 3. Setting Z = Cy(R),
Z1 =Cpu(Ry),wehave |H:Z|=3=|H:Z|and ZNZ; < 02(G) = {1} so
H = Z1 X ZQ, RZl = A4 = R1Z and G = (RZl) X (R1Z)

In what follows we assume that 7" is nonabelian.

A. Suppose that T is normal in G.
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(i) Suppose that T has no noncyclic abelian subgroup of order 8. Then,
by Lemma 2(d), T is of maximal class, and, by Lemma 2(b), T' = Qg, which
is extraspecial (in that case, G = SL(2, 3)).

In what follows we assume that T has a noncyclic abelian subgroup of
order 8 so T' is not of maximal class; then |T'| > 8.

(ii) Suppose that K < G and |G : K| = 2; then K has no noncyclic
abelian subgroup of order 8, by hypothesis. We get O« (K) < O (G) = {1}
so T'N K is noncyclic and is not of maximal class and order > 8, by Lemma
2(b). It follows from Lemma 2(d), that TN K = Qg and, since T is not of
maximal class, T = (TNK)Cp(KNT) = (TNK)Z(T) since |T| = 16 (Lemma
2(a)). The subgroup T'N K < G. Then, in view of Lemma 2(b1) and (a) (see
the theorem), we conclude that

|H|=|G:T| =3, (TNK)H ~SL(2,3), ¢’ =TNK, G/G' = Cq

and so G is as in part (B3).
Next we assume that G has no subgroup of index 2; then T' < G’.

(iii) Let R be a G-invariant subgroup of T such that T'/R is a minimal
normal subgroup of G/R; then R > {1} since T is nonabelian. Since |G :
RH| > 1 is a power of 2, R has no noncyclic abelian subgroup of order 8,
by hypothesis (see (c)), so we have for R the following possibilities listed in
Lemma 2(d): either R <4 or R 2 Qg (here we also use Lemma 2(b)).

(iv) Suppose that H centralizes R. Then G/Cg(R) is a 2-group, so
Ce(R) = G, by (ii). Thus, R < Z(G). By hypothesis (see (a)), Z(G) is a 2-
subgroup and, in view of the maximal choice of R, we get Z(T) = R = Z(G).
Assume that 77 < R; then |R/T'| = 2. In that case, by Lemma 2(g), ap-
plied to the pair T/T’ < G/T’, the group G/T' has a normal subgroup
of index 2, contrary to (ii). Thus, T/ = R = ®(T) so T is special since
exp(T’) < exp(T/T’) = 2, and R € {Cy,E4}. Therefore, we are done if
|R| = 2.

(v) Suppose that T is extraspecial of order 2°™*! m > 1, and |R| > 2;
then, by (iv), H does not centralize R. If |R| = 4, then |T : Cr(R)| = 2
and Cr(R)H has index 2 in G, contrary to (i) (note that Cr(R) is normal
in G since R and T are). Thus, |R| > 4 so R & Qg (Lemma 2(d,b)). Let
Ry = Cr(R); then Ry 2 R = Qg, by what has just been said. In that case,
T = RxR; is extraspecial of order 2°. Suppose that | H| is not a prime. Setting
Cp(R) = Zand Cy(Ry) = Z1, we get, by Lemma 2(bl), |H/Z| = 3 = |H/Z1|,
ZNZy ={1}and so H =27 x Z1, RZ; 2 SL(2,3) 2 R, Z, and we conclude
that G = (RZ,) * (R1Z) with (RZ1) N R\ Z = Z(RZy). If |H| is a prime, then
|G : T| =3 and, as above, RH = SL(2,3) = R;H. Thus, G as in part (B2).

In what follows we assume that 7' is not extraspecial.

(vi) Suppose that T has a maximal G-invariant cyclic subgroup Z of order
> 4. One may choose R so that it contains Z. Then H centralizes Z (Lemma
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2(b)) so, by (iv), Z < Z(G). By Lemma 2(d), R must be cyclic, contrary to
(iv).

Thus, T has no G-invariant cyclic subgroup of order 4 and so R is non-
cyclic. Therefore, by (iii), R € {E4, Qg}-

(vii) Let R & E4. In that case, Cr(R) is normal in G and |T : Cr(R)| < 2.
Since T : Cp(R)H| < 2, we get Cp(R) = T, by (ii). Since T is nonabelian,
we get R = Z(T'), by the maximal choice of R. As in (iv), we get 7/ = R so
®(T) = R and T is special since, by the above, R = Z(G).

(viii) Now let R = Qg. By (iv), [R, H] > {1}. By Lemma 2(b1), G/Cr(R)
is a subgroup of S; containing a subgroup isomorphic to R/Z(R) = E,4
(Lemma 2(b1)). Since T is normal in G, we get G/Cr(R) % S4. Thus,
|T:Cr(R)|=4=|R:Z(R)| so |H| =3 and T = R * Cp(R), by the product
formula. Thus, T/Cr(R) = E4. By (i), |T : R| > 2 so Cp(R) is noncyclic of
order > 4. Then, by Lemma 2(d), Cr(R) = Qg so T = Qg * Qg is extraspecial
of order 25.

The case where T is normal in G, is complete.

B. Now suppose that T is not normal in G. Then Ty = O2(G) > {1}
since O2/(G) = {1} and G is solvable. Since |G : ToH| > 1 is a power of 2, Tj
is a group of Lemma 2(d). It follows from Cg(Ty) < Ty that Tp is noncyclic
and, if Tp is of maximal class, then Ty = Qg (Lemma 2(b)). If Ty = Ey4, then
G = S, since Aut(Ey) & S3. Now let Ty = Qg. Since Aut(7p) & Sy (Lemma
2(b1)), we conclude that G/Z(T}) is isomorphic to a nonnilpotent subgroup
of S4 containing the subgroup Ty/Z(Ty) = E4 of even index (by assumption,
To < T). We conclude that Cr(Tp) < Ty so T is of maximal class, namely, T
is generalized quaternion of semidihedral of order 16 (Lemma 2(a)). It follows
that G/Z(Tp) = S4 so G is a representation group of Sy.

Since all groups listed in the conclusion of the theorem, satisfy the hy-
pothesis, the proof is complete. O

Next we expand Theorem 3 to groups of odd order.

THEOREM 4. Let G be a nonnilpotent group and let p > 2 be the least
prime divisor of |G|. Suppose that the following holds:

(a) Op(G) ={1}.
(b) Whenever K is a proper subgroup of G such that |G : K| is a power of
p, then K has no elementary abelian subgroup of order p3.

Let T be a Sylow p-subgroup of G. Then T is normal in G and one and only
one of the following assertions takes place:

A T is a minimal normal subgroup of G, d(T) > 2.
B T is special of exponent p with Z(T) = Z(G) is of order at most p?,
T/Z(T) is a minimal normal subgroup of G/ Z(T).
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PROOF. Since G has odd order, it is solvable hence, in view of (a),
Ca(0p(G)) < Op(G) and so, if T is abelian, it is normal in G. By Lemma
2(b), O,(G) is not two-generator. Let H be a p’-Hall subgroup of G.

() Let M < T be G-invariant. We contend that H centralizes M. Indeed,
since |G : M H| > 11is a power of p, M is a group of Lemma 2(e), by hypothesis
(see (b)). Then, by Lemma 2(b), H centralizes M if d(M) < 2. Now let
d(M) > 2. Then, by Lemma 2(e), M = 1 (M)C, where 4 (M) is nonabelian
of order p? and exponent p and C' is cyclic. Note, that Q1(M) is normal in G.
By Lemma 2(b), H centralizes Q1 (M) so H centralizes M, by Lemma 2(c).

1. Let T be normal in G.

(i) Assume that T is a group of Lemma 2(e). Then, as in (%), H centralizes
T so H is normal in G, which is a contradiction. Thus, T possesses a subgroup
= E,3; then, by Lemma 2(e), 7" has a normal subgroup = E,.

(ii) Suppose that T is abelian. Since |G : HQ4(T)| is a power of p and,
by (i), Q1 (7T') has a subgroup = E,s, we get T = Q1(T') so T is elementary
abelian. Assume that T = Vj x Va2, where V4 > {1} and Vo > {1} are normal in
G. Then, by (*), H centralizes V;, i = 1,2 (Lemma 2(b)) so H centralizes T,
which is not the case. Thus, T is a minimal normal subgroup of G (Maschke).

Next we assume that T' is nonabelian; then |T'| > p*, by (i).

(ili) Assume that p divides |G : G’|. Then, by (x), H stabilizes the chain
{1} <TNG < T so H is normal in G (Lemma 2(f)), a contradiction. Thus,
p does not divide |G : G'|.

(iv) Let A < T be a G-invariant subgroup. We claim that A < Z(T).
Assume that this is false. Since H centralizes A, by (x), Cg(A) is normal
in G and G/Cg(A) is a p-group > {1}, contrary to (iii). Thus, A < Z(T);
moreover, A < Z(G).

(v) Let R < T be G-invariant and such that 7/R is minimal normal
in G/R. Then, by (iv), R < Z(T); moreover, R = Z(T), by the maximal
choice of R. It follows that the class of T equals 2 so, since p > 2, we get
exp(21(T)) = p. By (i), T possesses a subgroup £ = E,s. Since E < (7))
and |G : HQ(T)| is a power of p, we get G = HQ1(T) so T = Q(T) is of
exponent p. It remains to show that T is special. Since |G : RH| > 1 is a
power of p, R is elementary abelian of order at most p?. If T/ < R, then, by
Lemma 2(g), applied to the pair T/M < G/M, the group G/M has a normal
subgroup of index p, contrary to (iii). Thus, 7/ = R. Since T is of exponent
p, we have T' = ®(T'). Thus, Z(G) = R=T' = ®(T) so T is special.

We see that if T' is nonabelian, it is special of exponent p with R =T" =
Z(T) = ®(T) of order < p?. By the maximal choice of R, T//R is a minimal
normal subgroup of G/R so the case where T is normal in G, is complete.

It remains to show that T is normal in G always.

2. Now assume that T is not normal in G. Since O, (G) = {1} and G
is solvable, we get T > Ty = O,(G) > {1}. Therefore, we have Ce(Tp) < Tp
so H acts faithfully on Ty. Since |G : ToH| > 1 is a power of p, Ty has no
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elementary abelian subgroup of order p®. It follows that Tp is a group of
Lemma 2(e). However, as shows the argument in (i), H centralizes Tj, a final
contradiction.

Since groups from parts A and B satisfy the hypothesis, the proof is
complete. O

Note that if G is a 2-group without normal elementary abelian subgroup
of order 8, then it possesses a normal metacyclic subgroup M such that G/M
is isomorphic to a subgroup of Dg [6]. Therefore, it is natural to classify
the nonnilpotent solvable groups G, satisfying (i) O« (G) = {1} and (ii) if
K < G issuch that |G : K| is a power of 2, then K has no elementary abelian
subgroup of order 8. However, the proof of such result would be very long
since the groups appearing in [6] are not so small as groups of Lemma 2(e).

Theorem 4 also holds for each odd prime divisor p of |G| such that |G|
and p? — 1 are coprime (in that case, |G| is odd so solvable). To prove this,
we have to repeat, word for word, the proof of Theorem 4.
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