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ABSTRACT. We describe first the structure of finite minimal nonmod-
ular 2-groups G. We show that in case |G| > 2°, each proper subgroup
of G is Qs-free and G/U2(G) is minimal nonabelian of order 24 or 25. If
|G/TB2(G)| = 2%, then the structure of G is determined up to isomorphism
(Propositions 2.4 and 2.5). If |G/U2(G)| = 25, then Q1(G) = Eg and
G/Q1(G) is metacyclic (Theorem 2.8).

Then we classify finite minimal nonmodular p-groups G with p > 2
and |G| > p* (Theorems 3.5 and 3.7). We show that G/U1(G) is nonabelian

~

of order p3 and exponent p and U1(G) is metacyclic. Also, Q1(G) = E,3
and G/Q1(G) is metacyclic.

1. INTRODUCTION AND KNOWN RESULTS

A group is called modular if its subgroup lattice is. It is known (Suzuki [3])
that a finite p-group G is modular if and only if any subgroups X and Y of
G are permutable (i.e., XY = Y X). According to Iwasawa’s classification of
modular groups, a finite 2-group is modular if and only if it is Dg-free (see
Suzuki [3]). First we classify minimal nonmodular finite 2-groups G. Hence
G is not Dg-free but each proper subgroup of G is Dg-free. The structure of
such groups G is described in Propositions 2.1 to 2.7 and this is summarized
in Theorem 2.8. Then we classify also minimal nonmodular finite p-groups
for p > 2 (Theorems 3.5 and 3.7).

We consider here only finite groups and our notation is standard. In par-
ticular, we recall that a metacyclic 2-group H is called “ordinary metacyclic”
(with respect to A) if H possesses a cyclic normal subgroup A such that H/A
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is cyclic and H centralizes A/U3(A). Further, a p-group G is called an As-
group if each subgroup of index p? in G is abelian and at least one maximal
subgroup of G is nonabelian. For convenience, we state here some known
results which are used often in this paper.

PROPOSITION 1.1. (Suzuki [3]) Let G be a modular 2-group. If G is not
Qsg-free, then G is Hamiltonian, i.e., G = Q X E where Q = Qg is quaternion
and exp(F) < 2.

PRrROPOSITION 1.2. (Wilkens [4, Lemmas 1 and 2]) Let G be a Qg-free
modular 2-group. Then G is powerful, i.e., G/U2(G) is abelian. Also, Q1(G)
is elementary abelian, Qa(G) is abelian, and d(G) = d(Q1(G)).

PropPOSITION 1.3. (Wilkens [4, Lemma 1]) Let G = (z,y) be a two-
generated Qg-free modular 2-group. Then G is ordinary metacyclic and

[z,y] € (2%, y") = Ba2(G).

PROPOSITION 1.4. (Janko [2, Proposition 1.7]) Suppose that a nonabelian
p-group G possesses an abelian mazximal subgroup. Then |G| = p|G'||Z(G)].

PRrROPOSITION 1.5. (A. Mann, see Berkovich [1]) Let A and B be two
distinct mazimal subgroups in a p-group G. Then |G’ : (A'B")| < p.

PROPOSITION 1.6. (Janko [2, Proposition 1.10]) Let G be a 2-group of
order > 2% with Q2(G) = (a,b) x (u), where (a,b) = Q = Qg and u is an
involution. Then G is a uniquely determined group of order 2°. Set (z) =
Z(Q), where a®> = b?> = 2. There is an element y of order 8 in G — Qa(G)
such that

y? =ua, u¥ =uz, a¥ =a"t, b = bu.

PROPOSITION 1.7. (N. Blackburn, see Berkovich [1]) A 2-group G is meta-
cyclic if and only if G/U2(G) is metacyclic.

PROPOSITION 1.8. (Suzuki [3]) Let G be a modular p-group, p > 2. Then
G/U1(G) and Q1(G) are elementary abelian and d(G) = d(21(Q)).

PropPoOSITION 1.9. (N. Blackburn, see Berkovich [1]) Let G be a minimal
nonmetacyclic p-group, p > 2. Then G is one of the following groups:
(a) Any group of order p® and exponent p;
(b) The group G of order 3* and class 3 with |Q1(G)| = 32.

ProrosITION 1.10. (B. Huppert, see Berkovich [1]) A p-group G with
p > 2 is metacyclic if and only if |G/U1(G)| < p?.

Please note that our proofs will be completely elementary and the com-
putations are reduced to a minimum.
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2. NEw RESULTS FOR p =2

Let G be a minimal non-modular 2-group. Then G has a normal subgroup
N such that G/N = Dg. It is clear that N < ®(G) and so d(G) = 2. We
shall use this notation throughout this section.

Our first proposition is actually contained in Proposition 3.3 which is
proved for all p-groups. But the proof below is typical for 2-groups.

PROPOSITION 2.1. We have d(N) < 2.

PROOF. Suppose d(N) > 3. Then N possesses a G-invariant subgroup R
such that N/R = Eg. We want to determine the structure of G/R (which is
also minimal non-modular) and so we may assume R = {1} which implies that
N = Eg. Let S/N be any subgroup of order 2 in G/N. Then exp(S) < 4 and
S is Qg-free and so S (being modular) is abelian (Proposition 1.2). On the
other hand, G/N is generated by its subgroups of order 2 and so N < Z(G).

Assume Z(G) > N so that Z(G)/N = Z(G/N) = ®(G/N) = (G/N)’
and therefore we get Z(G) = ®(G). Each maximal subgroup of G is abelian
and so G is minimal nonabelian. In particular, |G'| = 2 and since G’ covers
Z(G)/N, we get Z(G) = N x G’ = Ey¢. This is a contradiction since minimal
nonabelian 2-groups have the property |Q21(G)| < 8. We have proved that
N =Z(G).

Let L/N be the unique cyclic subgroup of index 2 in G/N. Then L is
abelian. If L = N x Ly with L & Cy, then U1(L) = U1(Lq) is of order 2 and
so U1(L) < Z(G). But U1(L) £ N = Z(G), a contradiction. Hence L does
not split over N and so L = NC, where C = Cg and C NN = () is of order
2. We have ®(L) = ®(C) = C; = Cy4, where Cy < C; and ®(G) = C1N. For
eachr € G—L, z? € N and so there is b € G— L with b> € N —Cj (otherwise,
®(G) = U1(G) = C4). Since C1 £ Z(G) and C; is normal in G, it follows
that b inverts C;. We have D = (Cy,b) is of order 24 and D/(b?) = Dg, a
contradiction. O

PROPOSITION 2.2. Suppose d(N) =1 and some proper subgroup of G is
not Qg-free. Then G is isomorphic to Q91 or to the uniquely determined group
X of order 25 with Q2(X) = Qg x Cy (given in Proposition 1.6).

PROOF. Suppose that N is cyclic and G has a maximal subgroup M
which is not Qg-free. Since M is modular, it follows that M is Hamiltonian,
ie, M = Qx E with Q = Qg and exp(FE) < 2 (Proposition 1.1). In particular,
exp(M) =4 and G1(M) = ®(M) = U1(Q) which implies |N| < 4. If |G'| = 2,
then d(G) = 2 implies that G is minimal nonabelian. This is a contradiction
since M is nonabelian. Hence |G’| > 4 which implies that G has at most one
abelian maximal subgroup (Proposition 1.5). Let L/N 2 C4 be the unique
cyclic subgroup of index 2 in G/N.

Suppose |N| = 4 so that [51(L)| > 4 and therefore L is not Hamiltonian.
In that case L is ordinary metacyclic (Proposition 1.3). Suppose that L is
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abelian. We have |U1(L)| = 4 and U1(L) > U1(N) = U1(M). Note that L
cannot be cyclic since G has the Hamiltonian subgroup M of order 2¢. Let K
be the maximal subgroup of G distinct from M and L and note that (since G
is non-cyclic) U1(G) = ®(G) = U1(M)U1(L)U1(K). We know that K must
be nonabelian and K/N = E,. Since N = C, does not lie in Z(M), we
have N £ Z(G) and so Cg(N) = L. This implies that |K : Cx(N)| = 2. Let
k € K—Cg(N)so that k2 € N and therefore (N, k) = Qg. It follows that K is
Hamiltonian and so U1 (K) = U1(N) < U1(L). Hence U1(G) = ®(G) = U1(L)
is of order 4. This is a contradiction since |®(G)| = 8 in view of the fact that
®(G) > N.

We have proved that L is nonabelian. In particular, N = (n) € Z(L) and
if we set L = (N, 1), then n! = n=! and * € (n?). If o(l) = 4, then L/(I?) =
Ds, a contradiction. Hence o(l) = 8 and so L = Mg with (I*) = (n?) = L’
and ®(L) = Z(L) = (I?) = C,. Note that Q3(L) = N®(L) is abelian of type
(4,2). Set K = C(N) so that K is the maximal subgroup of G distinct from
M and L and (noting that (1?) > (n?)) we get

(G) = BANB(L)B(K) = (n?) (1) B(K) = (2)D(K).

Since K/N = E4, we have ®(K) < N. But ®(G) > N and so we must have
®(K) = N. Tt follows that K has a cyclic subgroup of index 2 and K is Qsg-
free since K cannot be Hamiltonian (because |01 (K)| = 4). Hence K is either
abelian of type (8,2) or K = Mjs. In any case, Q2(K) = ®(L)N = ®(G) is
abelian of type (4, 2). It follows that Q2(G) = M = Qs x C2 and consequently
G is the uniquely determined group of order 2° described in Proposition 1.6.

Now assume that |N| = 2 so that M = Q = Qg, where Z(M) =U1(M) =
N. On the other hand, Z(G/N) = ®(G)/N, where ®(G) < M and ®(G) £
Z(M). Hence Z(G) = N = Cy. But G’ covers ®(G)/N = (G/N)" and so
G' £ Z(@). Tt follows that G is of class 3 and G is of maximal class. The
only possibility is G = Qo4 and we are done. O

PROPOSITION 2.3. Suppose d(N) =1, N > {1}, and each proper subgroup
of G is Qg-free. Then U2(G) = ®(N) and G/P(N) is minimal nonabelian of
order 2* and exponent 4. Thus G/®(N) is isomorphic to one of the following
groups:

(8) (z,y]2% =92 =1, [0,9] = 2, 22= [2,2] = [y,2] = 1) (non-metacyclic),

(b) (z,y|zt =y =1,2¥ =271 (metacyclic).

PROOF. By assumption, N # {1} is cyclic and each maximal subgroup of
G is Qg-free. If G/®(N) is of exponent 8, then G/®(N) has a cyclic subgroup
of index 2 which implies that G/®(NN) is of maximal class (since G/N = Dg).
But then G/®(N) has a proper subgroup which is isomorphic to Dg or Qg, a
contradiction. Hence G/®(N) is of exponent 4 and each maximal subgroup
of G/®(N) is Dg-free and Qs-free and so is abelian (Proposition 1.2). Hence
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G/®(N) is minimal nonabelian of order 2% and exponent 4 and so G/®(N)
is isomorphic to the group (a) or (b) of our proposition.

Assume U3(G) < ®(N) so that Ua(G) = Ua(N). Then exp(G/U2(N)) =
4 and so each maximal subgroup of G/U3(N) is abelian (being Ds-free and
Qs-free). Thus G /U3 (N) is minimal nonabelian of order 2° and exponent 4. In
that case G/U2(N) is non-metacyclic and we know that ®(G/U2(N)) = Eqs.
This is a contradiction since ®(G)/U2(N) contains a cyclic subgroup N/Uz(N)
of order 4. Our proposition is proved. O

In the next two propositions we shall determine completely the groups G
of Proposition 2.3.

PROPOSITION 2.4. Suppose d(N) =1, N > {1}, and each proper subgroup
of G is Qs-free. If G/P(N) is not metacyclic, then G has a normal elementary
abelian subgroup E = (n,z,t) of order 8 such that G/E is cyclic. We set
G = (E, z), where o(z) = 2571 s > 1, EN(z) = (n), [t,2] = 2, [2,7] = n°,
e = 0,1, and G = (z,t). We have G/(z?) = Ds, ®(G) = (z?) x (2),
01 (G) = E, and G is Qg-free. If € =0, then G is minimal nonabelian non-
metacyclic. If e =1, then s > 2, G' = (2, n) = E4 and Z(G) = (z%).

R 1

PROOF. Suppose that we are in case (a) of Proposition 2.3 so that N
is a non-trivial cyclic group and G/®(N) is isomorphic to the group (a) of
Proposition 2.3. Let M/®(N) be a maximal subgroup of G/®(N) which is
isomorphic to Fg. Set |[N| = 2% s > 1, and note that N is a maximal cyclic
subgroup of M. Let S/N be any subgroup of order 2 in M/N. Since M
is Dg-free and Qg-free, S cannot be of maximal class. It follows that S is
either abelian of type (2°,2) or S 2 Mys+1 (s > 2). In any case, there exists
an involution in S — N. Hence Q4(M) covers M/N = E, and (since M
is modular) Qq(M) is elementary abelian (Proposition 1.2). It follows that
E =Q;(M) 2 Eg is normal in G and Q3 (M)NN = Q1(N) = (n) < Z(G).
In particular, ®(G) is abelian of type (2%,2), s > 1. Indeed, ®(G) cannot be
isomorphic to Mys+1 (s > 2) since in that case Z(®(G)) is cyclic and so ®(G)
would be cyclic (Burnside). Take an involution ¢t € E — ®(G).

Let K be another maximal subgroup of G such that K/N 2 Fj4 so that
KNM = ®(G). Suppose that N is a maximal cyclic subgroup of K. Then,
by the argument of the previous paragraph, Q;(K) covers K/N and so there
is an involution r € K — M. But then (r,t) = G and (r,t) is dihedral, a
contradiction. We have proved that there is an element © € K — M such that
(%) = N and so o(z) = 2571 s > 1. Since (z,t) = G and t € E — &(G),
we get G = E(x) with EN (x) = Q1 (N) = (n) 2 Cy and so G/FE is cyclic of
order 2° and |G| = 2°3. In particular, G’ < E and so |G'| = 2 or 4.

We have [z,t] # 1 (since (x,t) = G),[z,t] € F and so z = [z,t] is an
involution in (F N ®(G)) — (n) since () is not normal in G. Indeed, if (z)
were normal in G, then the cyclic group (z)/®(N) = (x)/(z*) of order 4 is



226 Z. JANKO

normal in G/®(N) which contradicts the structure of G/®(N). It follows that
E = (n, z,t) and (z) is not normal in G. Thus Ng((z)) is a maximal subgroup
of G and so z € ®(G) < Ng({x)) and therefore z normalizes (z). Since (x, z)
cannot be of maximal class, we have either [z,z] =1 (and then G’ = (z) and
G is minimal nonabelian) or [z, 2] = n (in which case (x, z) & Mast+1, s> 1).
In the second case (z) induces an automorphism of order 4 on E. In any case,
G/(z*) = Dg and it is easy to see that G is Qs-free.

Let u be an involution in G — E. Then F = E(u) = FEj¢ since F' is
modular. But G/E is cyclic and so F/E = (E(z* "))/E and so 22" is an
element of order 4 contained in F' — FE, a contradiction. We have proved that
0 (G) =E. O

PROPOSITION 2.5. Suppose d(N) =1, N > {1}, and each proper subgroup
of G is Qs-free. If G/®(N) is metacyclic, then G is also metacyclic and we
have one of the following possibilities:
() G = (z,y|z* = y23+1 =1,8 > 1,2Y = a7 1), where G is minimal
nonabelian and N = (y?).

(il) G = (a:,a\:vQS+1 =a® =1
an Ag-group with N = (x?
class 3.

1Y, where G is
Cy and G is of

=
Q
I -
&
R =

In both cases (i) and (ii), G is a minimal non-Qs-free 2-group.

PROOF. Suppose that we are in case (b) of Proposition 2.3 so that N is a
non-trivial cyclic group and G/®(N) is isomorphic to the metacyclic group (b)
of Proposition 2.3. We know that ®(N) = U2(G) and so G is also metacyclic
(Proposition 1.7). Set |[N| =2% s> 1. If ®(N) = {1}, then G is isomorphic
to the group (b) of Proposition 2.3 and we are done. Hence we may assume
s> 2.

Let S/N be any subgroup of order 2 in G/N. Since S is Dg-free and
Qs-free, S is not of maximal class. Hence S is either cyclic of order 25! or
S is abelian of type (2%,2) or S & Mys+1, s > 2. If ®(G) is cyclic, then G has
a cyclic subgroup of index 2, a contradiction. Also, ®(G) = Mys+1, s > 2, is
not possible (Burnside). Hence ®(G) is abelian of type (2%,2), s > 2.

Let 1 (N) = (n) so that (n) < ®(N) and (n) < Z(G). For any subgroup
S/N of order 2 in G/N, we have seen (in the previous paragraph) that S/(n) is
abelian. Since G/N is generated by its subgroups of order 2, we get N/(n) <
2(G/(n)).

Suppose for a moment that G is minimal abelian. Since ®(G) is abelian
of type (2%,2), we get at once:

G=(rylat =y =1,5>1,2v=271),

where N = (y?). In what follows we assume that G is not minimal nonabelian.
In particular, |G'| > 4.
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We shall determine the structure of our three maximal subgroups of G.
Let M be a maximal subgroup of G such that M/N = E4. If N is a maximal
cyclic subgroup of M, then for each subgroup S/N of order 2 of M /N, there
is an involution in S — N. Hence Q; (M) covers M/N and (since M is Dg-free
and Qs-free), Q1(M) is elementary abelian and Q;(M) N N = (n) so that
0y (M) = Eg. This is a contradiction since G is metacyclic. It follows that N
is not a maximal cyclic subgroup of M. Let My be a maximal cyclic subgroup
of M containing N so that My = Cys+1 is a cyclic subgroup of index 2 in
M. Since M is Dg-free and Qg-free, M is not of maximal class and so M is
either abelian of type (2571,2) or M =2 My.i2, s > 2. In any case, N < Z(M)
and M/(n) is abelian since M’ < (n). Let K (# M) be another maximal
subgroup of G with K/N = E;. Then K is either abelian of type (2°T1,2)
or K & Mjyst2, s > 2, and again N < Z(K) and K/(n) is abelian. We get
N < Z(G). If ®(G) < Z(G), then each maximal subgroup of G would be
abelian, contrary to our assumption that GG is not minimal nonabelian. We
have proved that N = Z(G).

Let L be the unique maximal subgroup of G such that L/N = C4. Then
L is abelian and using Proposition 1.4 we get |G'| = 4. By a result of A.
Mann (Proposition 1.5), L is the unique abelian maximal subgroup of G and
so M =2 K 2 Mys+e with M’ = K’ = (n). In particular, G is an As-group.

We have G' > (n) and G’ covers ®(G)/N and so G’ = C4 (since G is
metacyclic), ®(G) = NG', NNG' = (n) = Q1(N). Since G' £ Z(G) = N, G
is of class 3.

Since G is metacyclic, there exists a cyclic normal subgroup Z of order
8 such that Z > G'. But NNZ = NNG' = (n) and so NZ = L which
determines the structure of the maximal subgroup L and shows that L does
not split over N.

Set Z = (a). We know that there exists an element € G — L such that
(%) = N. Hence G = Z(z) with Z N (z) = (n). Since |G’| =4 and G’ < Z,
we get either a® = a~! or a® = a~'n, where n = a*. However, if a® = a"'n,
then we replace Z = (a) with Z* = (as), where s € N is such that s = n.
Then we compute

(as)* =a 'ns=a"'s"! = (as)" L.

Since ((as)?) = (a?) = G’, we may assume from the start that a* = a~! and
so the structure of G is completely determined. O

In the rest of this section we consider the case d(N) = 2.

PROPOSITION 2.6. Suppose d(N) = 2. Then G/®(N) is the minimal
nonabelian non-metacyclic group of order 2° and exponent 4. In particular,
G/®(N) has the unique epimorphic image isomorphic to Qgs. Fach maximal
subgroup of G is Qg-free and N is ordinary metacyclic.
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PROOF. We want to determine the structure of G/®(N). Since G/P(N)
is also minimal non-modular, we may assume for a moment ®(N) = {1} so
that N = E,. Let S/N be any subgroup of order 2 in G/N. If S is nonabelian,
then S 2 Dg, a contradiction. Hence S is abelian and so N < Z(G).

Suppose that Z(G) = N. Let L/N be the unique cyclic subgroup of
index 2 in G/N. Then N is abelian. If L = N x R with R = (4, then
U1(L) = U1(R) £ N and U1(L) < Z(G), contrary to our assumption. Hence
L =NL; with L; 2 Cg and Lo = L1NN = Cy. We have ®(L) = ®(L1) = Cy,
where ®(L) > Lg. For each z € G— L, 22 € N and ®(G) = U;1(G) = ®(L)N.
This implies that there exists b € G — L such that b> € N — Ly. Since
®(L) £ Z(G), b inverts ®(L). But then D = (®(L),b) is of order 2% and
D/(b?) = Dg, a contradiction.

We have proved that Z(G) > N and so Z(G) = ®(G). It follows that
each maximal subgroup of G is abelian and so G is minimal nonabelian.
In particular, |G’| = 2 and since G’ covers Z(G)/N = (G/N)’, we have
Z(G) = N x G’ is elementary abelian of order 8. It follows that G is the
uniquely determined minimal nonabelian non-metacyclic group of order 2°
and exponent 4:

G = <a7b | a4:b4:17 [aub] =, 02: [G,C] = [b7C] :1>7

where Z(G) = (a?,b%,¢), G’ = (c), and G/(a’c, b>c) is the unique factor-group
of G which is isomorphic to Qg. In particular, G is not Qg-free.

We return now to the general case d(N) = 2, where ®(N) is not nec-
essarily trivial. Assume that N is not Qg-free. Then N (being modular) is
Hamiltonian. But d(N) = 2 and so N 2 Qs. On the other hand, N is a
G-invariant subgroup contained in ®(G) and Z(N) is cyclic. By a result of
Burnside, N is cyclic, a contradiction. We have proved that N is Qg-free and
so N/U3(N) is abelian. Since d(N/U2(N)) = 2, N/Ua(N) is metacyclic. By
a result of N. Blackburn (Proposition 1.7), N is metacyclic.

We want to show that N is ordinary metacyclic (although this is clear
by Proposition 1.3). Let A be a cyclic normal subgroup of N such that N/A
is cyclic. If N centralizes A/U3(A), we are done. Suppose that N does not
centralize A/U2(A). Set N = (A, g) so that g inverts A/Uz(A). If [N : A| = 2,
then N/U2(A) = Dsg or Qs, a contradiction. Hence |N : A| > 4. Assume that
(g) N A < Us(A). Since g? centralizes A/Us(A), Y = U2(A)(g?) is normal in
N and N/Y = Dg, a contradiction. It follows that (g) N A £ Ua(A). Since
g inverts A/Us(A), (g) 2 A and so (g) N A = U1(A4). Thus (g) is a cyclic
subgroup of index 2 in N and ¢ induces an involutory automorphism on A
which centralizes a maximal subgroup of A. If |A| > 8, then g centralizes
A/U2(A), a contradiction. Thus A = Cy and (g) N A = U;1(A) is of order 2
so that N’ < (g) N A and therefore N = U1(A4) and o(g) > 8. It follows that
N 2 My, n > 4, and so N is ordinary metacyclic with respect to (g) since
N centralizes (g)/(g) N A which is of order > 4.
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Suppose that a maximal subgroup M of G is not Qg-free. Then M (being
modular) is Hamiltonian and so

M=QxE, Q==Qs, exp(E) <2.

In particular, ®(M) is of order 2 and exp(M)=4. If N = Ey, then (by the
above) G is minimal nonabelian. This is a contradiction since M is nonabelian.
Since N is of exponent 4, U1(N) is of order 2 and N is abelian (being Qs-
free), we have N 2 Cy x Cy. We get ®(M) = U1 (M) = U1(N) = ®(N) and
so M/®(N) is an elementary abelian subgroup of order 16 in the minimal
nonabelian group G/®(N) of order 2° which was determined above. But that
group G/®(N) has no such subgroup. We have proved that each maximal
subgroup of G is Qg-free. O

PROPOSITION 2.7. Suppose d(N) = 2. Then for each mazimal subgroup
M of G we have d(M) = 3. Also, ®(N) = U2(G), E = % (G) = Q1(P(G)) =
Es, E < Z(®(Q)), and either G/E = Qg (with Q2(G) = ®(G) being abelian
of type (4,2,2) ) or G/E is ordinary metacyclic (but not cyclic).

PROOF. If G has two non-commuting involutions ¢, u, then (¢,u) = G =
Dan, n > 5, since |G| > 2°. But each proper subgroup of G must be Dg-free,
a contradiction. We have proved that £ (G) is elementary abelian.

Set F' = ®(G) so that we have

F/®(N) = ®(G/®(N)) = 0 (G/R(N)) = Es.

Since ®(N) < ®(F), we get ®(N) = ®(F). Thus d(F) = 3 and so (since
F is Dg-free and Qg-free ) E = Q(F) = Eg is a normal elementary abelian
subgroup of order 8 in G. Let M be any maximal subgroup of G so that
M/®(N) is abelian of type (4,2,2), ®(N) < &(M) and so d(M) = 3. But M
is also Dg-free and Qg-free and therefore Q1 (M) = Eg which implies Q4 (M) =
Qi (F) = N (G).

We have ®(N) > U3(G). On the other hand, exp(G/U2(G)) = 4 and so
each maximal subgroup of G/U2(G) (being Ds-free and Qg-free) is abelian.
Thus G/U2(G) is minimal nonabelian of exponent 4 and so |G /U2(G)| < 2°.
It follows U2 (G) = ®(N).

If G/F is not Dg-free, then there is a normal subgroup N* of G such
that £ < N* and G/N* = Dg. By Propositions 2.1 and 2.6, N* must be
metacyclic, a contradiction. Hence G/F is Dg-free.

Suppose that G/FE is not Qg-free. Then G/FE is Hamiltonian. Since
d(G/E) =2, we get G/E = Qg. On the other hand, G/E cannot act faithfully
on E, and so Cg(F) > ®(G). In particular, ®(G) is abelian of type (4,2,2)
and so E < Z(®(G)). Foreach z € G—®(G), 2% € ®(G)—F and so o(x?) = 4.
It follows that Q2(G) = @(G).

We assume that G/E is Qg-free. In that case G/FE is ordinary metacyclic
(but not cyclic since ®(G) > E). There is a cyclic normal subgroup S/E # {1}
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of G/E with the cyclic factor-group G/S # {1}. Let s € S be such that
S =(E, s) and let r € G — S be such that G = (S, r). Since E < ®(G), we
have G = (r, s).

Since S = (E, s) is a proper subgroup of G, it follows that S is Dg-free
and Qs-free. This implies that (s) is normal in S. Indeed, if (s) were not
normal in S, then S/(s?) = Dg since |E N (s)| = 2 and s does not centralize
the four-group E/(E N (s)). This is a contradiction and so (s) is normal in S.
In particular, S” < E N (s) and so s induces an automorphism of order < 2
on E which implies that s2 centralizes E.

Since (E, r) < G, we get (as in the previous paragraph) that r2 centralizes
E. On the other hand, ®(G) = (E, r?, s?) and so we get again E < Z(®(G)).

O

We summarize our results in a somewhat different form.

THEOREM 2.8. Let G be a minimal non-modular 2-group of order ; 25.
Then each proper subgroup of G is Qs-free and G/U2(G) is minimal non-
abelian of order 2* or 2°.

(a) Suppose that |G /Uo(G)| = 2*. If N is any normal subgroup of G such
that G/N = Dg, then N is cyclic. If G/U2(G) is non-metacyclic, then
G is Qs-free and Q1(G) = Eg with G/Q1(G) cyclic . If G/U2(G) is
metacyclic, then G is also metacyclic and G is not Qg-free and G is
either minimal nonabelian or an As-group.

(b) Suppose that |G /U2(G)| = 2°. Then G/U2(G) is non-metacyclic, G
is not Qg-free and Q1 (G) = Eg with G/Q1(G) = Qs or G/Q(G) is
ordinary metacyclic (but not cyclic). Moreover, if N is any normal
subgroup of G such that G/N = Ds, then N is ordinary metacyclic but
non-cyclic.

3. NEwW RESULTS FOR p > 2

We recall that a p-group G is modular if and only if any subgroups X
and Y of G are permutable, i.e., XY =Y X. We turn now to the case p > 2.

PROPOSITION 3.1. Let G be a modular p-group with p > 2 and d(G) = 2.
Then G is metacyclic.

PROOF. Since G is modular, G/U1(G) is elementary abelian (Proposition
1.8). But d(G/U1(G)) < 2 and so so |G/U1(G)| < p?. Then Proposition 1.10
implies that G is metacyclic. O

PROPOSITION 3.2. Let G be a minimal nonmodular p-group, p > 2, which
is generated by two subgroups A and B of order p. Then G = S(p®) (the
nonabelian group of order p> and exponent p).
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PROOF. Since G is a p-group, G; = (A%) and Gy = (B%) are proper
normal subgroups of G and so G; and G5 are modular. It follows that G,
and G4 are elementary abelian (Proposition 1.8). But

(G1,B) = (A, B) = (G2, 4) = G

and so G; and G are two distinct maximal subgroups of G. By Proposition
1.5, we have |G’| = p and G’ < G1 N G2. Thus G/G is abelian and G/G’ is
generated by elementary abelian subgroups G1/G’ and G2/G’. Hence G/G’ is
elementary abelian and d(G) = 2 implies that G/G’ = E,». Hence G = S(p?)
since the metacyclic nonabelian group of order p3 is modular. O

ProproSITION 3.3. Let G be a minimal nonmodular p-group. Then G
possesses a normal subgroup N such that d(N) < 2, N < U1(G), and G/N is
a nonmodular group of order p3. If p =2, then G/N = Dg and if p > 2, then
G/N = S(p?), N = U1(G), and N is metacyclic.

PROOF. Let A and B be subgroups of G such that AB # BA. Then
(A, B) = G and there are cyclic subgroups (a) < A and (b) < B such that
(a)(b) # (b)(a). It follows G = (a,b) and so d(G) = 2. Since (a?,b?) < ®(G),
the subgroups E = (a?,b) and F = (a,bP) are proper subgroups of G. Hence
E and F are modular and so E = (a?)(b), F = (a)(b*), and G = (E, F). Set
N = (a?)(b?) so that |F : N| = |F : N| = p. It follows that N is normal
in G, N < U1(G), and d(N) < 2. Tt remains to determine the structure of
G = G/N = (a,b), where G is a minimal nonmodular p-group generated by
elements @ and b of order p. If p = 2, then G is dihedral and (because of
minimality) G = Dg. If p > 2, then Proposition 3.2 implies that G = S(p3).
In that case we have N = U;1(G) and Proposition 3.1 implies that N is
metacyclic. O

PROPOSITION 3.4. Let G be a minimal nonmodular p-group, p > 2, with
|G| > p*. Then Q1(G) is elementary abelian of order > p°.

PRrROOF. Let A and B be subgroups of order p in G such that AB #
BA. Then G = (A, B) and so Proposition 3.2 implies that G = S(p?), a
contradiction. We have proved that AB = BA and so (A, B) is abelian.
Hence €21 (G) is elementary abelian.

Assume that each proper subgroup of G is metacyclic. By Proposition 3.3,
G is nonmetacyclic and so |G| < p* (Proposition 1.9), a contradiction.

Let M be a nonmetacyclic maximal subgroup of G. Since M is modular,
Proposition 3.1 implies that d(M) > 3. On the other hand, d(M) = d(Q1(M))
(see Suzuki [3]) and so (M) is elementary abelian of order > p? and we are
done. O

THEOREM 3.5. Let G be a minimal nonmodular p-group, p > 2, with
|G| > p*. If U1(G) is cyclic, then Q1(G) = Eps and G/Q1(G) is cyclic of
order > p? (i.e. G is an Lz-group).
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PROOF. By assumption, N = U;(G) is cyclic. By Proposition 3.4, we
have E = Q1(G) is elementary abelian of order > p3. But [ENN|=p and E
does not cover G/N, and so E = E,3. On the other hand, thereis a € G- N
with (a?) = N. Since |G : (a)| = p? and |{a) N E| = p, we get G = (F, a) and
we are done. O

PROPOSITION 3.6. Let G be a minimal nonmodular p-group, p > 2, with
|G| > p*. Suppose d(U1(G)) = 2 and let M be any mazimal subgroup of G.
Then d(M) < 3.

PROOF. Suppose false. Let M be a maximal subgroup of G with d(M) >
4. Set N = U1(G) so that M/N = E,» and N/®(N) = E,»>. Since ®(N) <
®(M), we must have ®(M) = ®(N) so that M/®(N) = E,+. We shall study
the structure of G/®(N) (which is also minimal nonmodular of order p*) and
so we may assume ®(N) = {1} which implies M = E,. Since ;(G) is
elementary abelian, we have M = Q1 (G). Let x € G— M so that 1 #a2P € N
and 2P € Z(G). There is y € G — M such that y? € N — (aP) and y? € Z(G).
It follows that N < Z(G). If Z(G) > N, then Z(G)/N = Z(G/N) = ®(G/N)
and so Z(G) = ®(G). But then G is minimal nonabelian. By the structure
of such groups, |Q1(G)| < p3, a contradiction.

We have proved that Z(G) = N. By Proposition 1.4, |G| = p° =
p|Z(G)||G’'| and so |G’| = p*. Since G/N = S(p?), G' £ N and so G' = E»
and G' N Z(G) = C, so that Cg(G') = M. Since U1(G) = N, there is
v € G — M such that v» € N — G’. The subgroup H = (G’, v) is of order p*
and H/(vP) = S(p?) so that H is nonmodular, a contradiction. O

THEOREM 3.7. Let G be a minimal nonmodular p-group, p > 2, with
|G| > p*. Then U1(G) is metacyclic and G/U1(G) = S(p*) (nonabelian group
of order p* and exponent p). If U1(G) is noncyclic, then ®(G) = U1(G) x Cy,
N (P(G) = (G) =2 Eus, G/ (G) is metacyclic and for each mazimal
subgroup M of G we have d(M) = 3.

PROOF. Set N = U;(G) and suppose d(N) = 2. By Proposition 3.4,
Q1 (G) is elementary abelian of order > p* and ©;(G) NN = E,.. Since
Q1(G) does not cover G/N = S(p3), NQi(G) is contained in a maximal
subgroup M of G. By Proposition 3.6, d(M) < 3 and the modularity of M
implies d(M) = d(€,(M)). This implies ,(G) = E,s and so (NQ,(G))/N =
®(G/N). Thus ®(G) = NQ;(G) and so for each maximal subgroup X of G,
we have d(X) = 3 since X > ®(G) and d(X) = d(Q1(X)) = d(u(Q)).

We know that Aut(2;(G)) does not possess an automorphism of order p?2.
There are elements a,b € G such that N = (a?)(b?) and a? and bP centralize
01 (G). Hence ®(G) = N x Z with |Z| = p.

If G/ (G) is nonmodular, then (Proposition 3.3) there is a normal sub-
group K of G with K > Q;(G), G/K = S(p?®), and d(K) < 2. This is a
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contradiction since d(K) = d(Q1(K)) = 3. Hence G/1(G) is modular and
since d(G/Q1(@)) < 2, G/Q1(G) is metacyclic and our theorem is proved. O
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