MINIMAL NONMODULAR FINITE p-GROUPS

Zvonimir Janko
University of Heidelberg, Germany

Abstract

We describe first the structure of finite minimal nonmodular 2 -groups G. We show that in case $|G|>2^{5}$, each proper subgroup of G is Q_{8}-free and $G / \mho_{2}(G)$ is minimal nonabelian of order 2^{4} or 2^{5}. If $\left|G / \mho_{2}(G)\right|=2^{4}$, then the structure of G is determined up to isomorphism (Propositions 2.4 and 2.5). If $\left|G / \mho_{2}(G)\right|=2^{5}$, then $\Omega_{1}(G) \cong E_{8}$ and $G / \Omega_{1}(G)$ is metacyclic (Theorem 2.8).

Then we classify finite minimal nonmodular p-groups G with $p>2$ and $|G|>p^{4}$ (Theorems 3.5 and 3.7). We show that $G / \mho_{1}(G)$ is nonabelian of order p^{3} and exponent p and $\mho_{1}(G)$ is metacyclic. Also, $\Omega_{1}(G) \cong E_{p^{3}}$ and $G / \Omega_{1}(G)$ is metacyclic.

1. Introduction and Known Results

A group is called modular if its subgroup lattice is. It is known (Suzuki [3]) that a finite p-group G is modular if and only if any subgroups X and Y of G are permutable (i.e., $X Y=Y X$). According to Iwasawa's classification of modular groups, a finite 2 -group is modular if and only if it is D_{8}-free (see Suzuki [3]). First we classify minimal nonmodular finite 2 -groups G. Hence G is not D_{8}-free but each proper subgroup of G is D_{8}-free. The structure of such groups G is described in Propositions 2.1 to 2.7 and this is summarized in Theorem 2.8. Then we classify also minimal nonmodular finite p-groups for $p>2$ (Theorems 3.5 and 3.7).

We consider here only finite groups and our notation is standard. In particular, we recall that a metacyclic 2-group H is called "ordinary metacyclic" (with respect to A) if H possesses a cyclic normal subgroup A such that H / A

[^0]is cyclic and H centralizes $A / \mho_{2}(A)$. Further, a p-group G is called an $A_{2^{-}}$ group if each subgroup of index p^{2} in G is abelian and at least one maximal subgroup of G is nonabelian. For convenience, we state here some known results which are used often in this paper.

Proposition 1.1. (Suzuki [3]) Let G be a modular 2-group. If G is not Q_{8}-free, then G is Hamiltonian, i.e., $G=Q \times E$ where $Q \cong Q_{8}$ is quaternion and $\exp (E) \leq 2$.

Proposition 1.2. (Wilkens [4, Lemmas 1 and 2]) Let G be a Q_{8}-free modular 2-group. Then G is powerful, i.e., $G / \mho_{2}(G)$ is abelian. Also, $\Omega_{1}(G)$ is elementary abelian, $\Omega_{2}(G)$ is abelian, and $d(G)=d\left(\Omega_{1}(G)\right)$.

Proposition 1.3. (Wilkens [4, Lemma 1]) Let $G=\langle x, y\rangle$ be a twogenerated Q_{8}-free modular 2-group. Then G is ordinary metacyclic and $[x, y] \in\left\langle x^{4}, y^{4}\right\rangle=\mho_{2}(G)$.

Proposition 1.4. (Janko [2, Proposition 1.7]) Suppose that a nonabelian p-group G possesses an abelian maximal subgroup. Then $|G|=p\left|G^{\prime}\right||Z(G)|$.

Proposition 1.5. (A. Mann, see Berkovich [1]) Let A and B be two distinct maximal subgroups in a p-group G. Then $\left|G^{\prime}:\left(A^{\prime} B^{\prime}\right)\right| \leq p$.

Proposition 1.6. (Janko [2, Proposition 1.10]) Let G be a 2-group of order $>2^{4}$ with $\Omega_{2}(G)=\langle a, b\rangle \times\langle u\rangle$, where $\langle a, b\rangle=Q \cong Q_{8}$ and u is an involution. Then G is a uniquely determined group of order 2^{5}. Set $\langle z\rangle=$ $Z(Q)$, where $a^{2}=b^{2}=z$. There is an element y of order 8 in $G-\Omega_{2}(G)$ such that

$$
y^{2}=u a, u^{y}=u z, a^{y}=a^{-1}, b^{y}=b u
$$

Proposition 1.7. (N. Blackburn, see Berkovich [1]) A 2-group G is metacyclic if and only if $G / \mho_{2}(G)$ is metacyclic.

Proposition 1.8. (Suzuki [3]) Let G be a modular p-group, $p>2$. Then $G / \mho_{1}(G)$ and $\Omega_{1}(G)$ are elementary abelian and $d(G)=d\left(\Omega_{1}(G)\right)$.

Proposition 1.9. (N. Blackburn, see Berkovich [1]) Let G be a minimal nonmetacyclic p-group, $p>2$. Then G is one of the following groups:
(a) Any group of order p^{3} and exponent p;
(b) The group G of order 3^{4} and class 3 with $\left|\Omega_{1}(G)\right|=3^{2}$.

Proposition 1.10. (B. Huppert, see Berkovich [1]) A p-group G with $p>2$ is metacyclic if and only if $\left|G / \mho_{1}(G)\right| \leq p^{2}$.

Please note that our proofs will be completely elementary and the computations are reduced to a minimum.

2. New Results for $p=2$

Let G be a minimal non-modular 2-group. Then G has a normal subgroup N such that $G / N \cong D_{8}$. It is clear that $N \leq \Phi(G)$ and so $d(G)=2$. We shall use this notation throughout this section.

Our first proposition is actually contained in Proposition 3.3 which is proved for all p-groups. But the proof below is typical for 2-groups.

Proposition 2.1. We have $d(N) \leq 2$.
Proof. Suppose $d(N) \geq 3$. Then N possesses a G-invariant subgroup R such that $N / R \cong E_{8}$. We want to determine the structure of G / R (which is also minimal non-modular) and so we may assume $R=\{1\}$ which implies that $N \cong E_{8}$. Let S / N be any subgroup of order 2 in G / N. Then $\exp (S) \leq 4$ and S is Q_{8}-free and so S (being modular) is abelian (Proposition 1.2). On the other hand, G / N is generated by its subgroups of order 2 and so $N \leq Z(G)$.

Assume $Z(G)>N$ so that $Z(G) / N=Z(G / N)=\Phi(G / N)=(G / N)^{\prime}$ and therefore we get $Z(G)=\Phi(G)$. Each maximal subgroup of G is abelian and so G is minimal nonabelian. In particular, $\left|G^{\prime}\right|=2$ and since G^{\prime} covers $Z(G) / N$, we get $Z(G)=N \times G^{\prime} \cong E_{16}$. This is a contradiction since minimal nonabelian 2-groups have the property $\left|\Omega_{1}(G)\right| \leq 8$. We have proved that $N=Z(G)$.

Let L / N be the unique cyclic subgroup of index 2 in G / N. Then L is abelian. If $L=N \times L_{1}$ with $L_{1} \cong C_{4}$, then $\mho_{1}(L)=\mho_{1}\left(L_{1}\right)$ is of order 2 and so $\mho_{1}(L) \leq Z(G)$. But $\mho_{1}(L) \not \leq N=Z(G)$, a contradiction. Hence L does not split over N and so $L=N C$, where $C \cong C_{8}$ and $C \cap N=C_{0}$ is of order 2. We have $\Phi(L)=\Phi(C)=C_{1} \cong C_{4}$, where $C_{0}<C_{1}$ and $\Phi(G)=C_{1} N$. For each $x \in G-L, x^{2} \in N$ and so there is $b \in G-L$ with $b^{2} \in N-C_{0}$ (otherwise, $\Phi(G)=\mho_{1}(G)=C_{1}$). Since $C_{1} \not \leq Z(G)$ and C_{1} is normal in G, it follows that b inverts C_{1}. We have $D=\left\langle C_{1}, b\right\rangle$ is of order 2^{4} and $D /\left\langle b^{2}\right\rangle \cong D_{8}$, a contradiction.

Proposition 2.2. Suppose $d(N)=1$ and some proper subgroup of G is not Q_{8}-free. Then G is isomorphic to $Q_{2^{4}}$ or to the uniquely determined group X of order 2^{5} with $\Omega_{2}(X) \cong Q_{8} \times C_{2}$ (given in Proposition 1.6).

Proof. Suppose that N is cyclic and G has a maximal subgroup M which is not Q_{8}-free. Since M is modular, it follows that M is Hamiltonian, i.e., $M=Q \times E$ with $Q \cong Q_{8}$ and $\exp (E) \leq 2$ (Proposition 1.1). In particular, $\exp (M)=4$ and $\mho_{1}(M)=\Phi(M)=\mho_{1}(Q)$ which implies $|N| \leq 4$. If $\left|G^{\prime}\right|=2$, then $d(G)=2$ implies that G is minimal nonabelian. This is a contradiction since M is nonabelian. Hence $\left|G^{\prime}\right| \geq 4$ which implies that G has at most one abelian maximal subgroup (Proposition 1.5). Let $L / N \cong C_{4}$ be the unique cyclic subgroup of index 2 in G / N.

Suppose $|N|=4$ so that $\left|\mho_{1}(L)\right| \geq 4$ and therefore L is not Hamiltonian. In that case L is ordinary metacyclic (Proposition 1.3). Suppose that L is
abelian. We have $\left|\mho_{1}(L)\right|=4$ and $\mho_{1}(L)>\mho_{1}(N)=\mho_{1}(M)$. Note that L cannot be cyclic since G has the Hamiltonian subgroup M of order 2^{4}. Let K be the maximal subgroup of G distinct from M and L and note that (since G is non-cyclic) $\mho_{1}(G)=\Phi(G)=\mho_{1}(M) \mho_{1}(L) \mho_{1}(K)$. We know that K must be nonabelian and $K / N \cong E_{4}$. Since $N \cong C_{4}$ does not lie in $Z(M)$, we have $N \not \leq Z(G)$ and so $C_{G}(N)=L$. This implies that $\left|K: C_{K}(N)\right|=2$. Let $k \in K-C_{K}(N)$ so that $k^{2} \in N$ and therefore $\langle N, k\rangle \cong Q_{8}$. It follows that K is Hamiltonian and so $\mho_{1}(K)=\mho_{1}(N)<\mho_{1}(L)$. Hence $\mho_{1}(G)=\Phi(G)=\mho_{1}(L)$ is of order 4. This is a contradiction since $|\Phi(G)|=8$ in view of the fact that $\Phi(G)>N$.

We have proved that L is nonabelian. In particular, $N=\langle n\rangle \not \leq Z(L)$ and if we set $L=\langle N, l\rangle$, then $n^{l}=n^{-1}$ and $l^{4} \in\left\langle n^{2}\right\rangle$. If $o(l)=4$, then $L /\left\langle l^{2}\right\rangle \cong$ D_{8}, a contradiction. Hence $o(l)=8$ and so $L \cong M_{16}$ with $\left\langle l^{4}\right\rangle=\left\langle n^{2}\right\rangle=L^{\prime}$ and $\Phi(L)=Z(L)=\left\langle l^{2}\right\rangle \cong C_{4}$. Note that $\Omega_{2}(L)=N \Phi(L)$ is abelian of type $(4,2)$. Set $K=C_{G}(N)$ so that K is the maximal subgroup of G distinct from M and L and (noting that $\left\langle l^{2}\right\rangle>\left\langle n^{2}\right\rangle$) we get

$$
\Phi(G)=\Phi(M) \Phi(L) \Phi(K)=\left\langle n^{2}\right\rangle\left\langle l^{2}\right\rangle \Phi(K)=\left\langle l^{2}\right\rangle \Phi(K)
$$

Since $K / N \cong E_{4}$, we have $\Phi(K) \leq N$. But $\Phi(G) \geq N$ and so we must have $\Phi(K)=N$. It follows that K has a cyclic subgroup of index 2 and K is $Q_{8^{-}}$ free since K cannot be Hamiltonian (because $\left|\mho_{1}(K)\right|=4$). Hence K is either abelian of type $(8,2)$ or $K \cong M_{16}$. In any case, $\Omega_{2}(K)=\Phi(L) N=\Phi(G)$ is abelian of type $(4,2)$. It follows that $\Omega_{2}(G)=M \cong Q_{8} \times C_{2}$ and consequently G is the uniquely determined group of order 2^{5} described in Proposition 1.6.

Now assume that $|N|=2$ so that $M=Q \cong Q_{8}$, where $Z(M)=\mho_{1}(M)=$ N. On the other hand, $Z(G / N)=\Phi(G) / N$, where $\Phi(G)<M$ and $\Phi(G) \not \leq$ $Z(M)$. Hence $Z(G)=N \cong C_{2}$. But G^{\prime} covers $\Phi(G) / N=(G / N)^{\prime}$ and so $G^{\prime} \not 又 Z(G)$. It follows that G is of class 3 and G is of maximal class. The only possibility is $G \cong Q_{2^{4}}$ and we are done.

Proposition 2.3. Suppose $d(N)=1, N>\{1\}$, and each proper subgroup of G is Q_{8}-free. Then $\mho_{2}(G)=\Phi(N)$ and $G / \Phi(N)$ is minimal nonabelian of order 2^{4} and exponent 4 . Thus $G / \Phi(N)$ is isomorphic to one of the following groups:
(a) $\left\langle x, y \mid x^{4}=y^{2}=1,[x, y]=z, z^{2}=[x, z]=[y, z]=1\right\rangle$ (non-metacyclic),
(b) $\left\langle x, y \mid x^{4}=y^{4}=1, x^{y}=x^{-1}\right\rangle$ (metacyclic).

Proof. By assumption, $N \neq\{1\}$ is cyclic and each maximal subgroup of G is Q_{8}-free. If $G / \Phi(N)$ is of exponent 8 , then $G / \Phi(N)$ has a cyclic subgroup of index 2 which implies that $G / \Phi(N)$ is of maximal class (since $G / N \cong D_{8}$). But then $G / \Phi(N)$ has a proper subgroup which is isomorphic to D_{8} or Q_{8}, a contradiction. Hence $G / \Phi(N)$ is of exponent 4 and each maximal subgroup of $G / \Phi(N)$ is D_{8}-free and Q_{8}-free and so is abelian (Proposition 1.2). Hence
$G / \Phi(N)$ is minimal nonabelian of order 2^{4} and exponent 4 and so $G / \Phi(N)$ is isomorphic to the group (a) or (b) of our proposition.

Assume $\mho_{2}(G)<\Phi(N)$ so that $\mho_{2}(G)=\mho_{2}(N)$. Then $\exp \left(G / \mho_{2}(N)\right)=$ 4 and so each maximal subgroup of $G / \mho_{2}(N)$ is abelian (being D_{8}-free and Q_{8}-free). Thus $G / \mho_{2}(N)$ is minimal nonabelian of order 2^{5} and exponent 4. In that case $G / \mho_{2}(N)$ is non-metacyclic and we know that $\Phi\left(G / \mho_{2}(N)\right) \cong E_{2^{3}}$. This is a contradiction since $\Phi(G) / \mho_{2}(N)$ contains a cyclic subgroup $N / \mho_{2}(N)$ of order 4. Our proposition is proved.

In the next two propositions we shall determine completely the groups G of Proposition 2.3.

Proposition 2.4. Suppose $d(N)=1, N>\{1\}$, and each proper subgroup of G is Q_{8}-free. If $G / \Phi(N)$ is not metacyclic, then G has a normal elementary abelian subgroup $E=\langle n, z, t\rangle$ of order 8 such that G / E is cyclic. We set $G=\langle E, x\rangle$, where $o(x)=2^{s+1}, s \geq 1, E \cap\langle x\rangle=\langle n\rangle,[t, x]=z,[z, x]=n^{\epsilon}$, $\epsilon=0,1$, and $G=\langle x, t\rangle$. We have $G /\left\langle x^{2}\right\rangle \cong D_{8}, \Phi(G)=\left\langle x^{2}\right\rangle \times\langle z\rangle$, $\Omega_{1}(G)=E$, and G is Q_{8}-free. If $\epsilon=0$, then G is minimal nonabelian nonmetacyclic. If $\epsilon=1$, then $s \geq 2, G^{\prime}=\langle z, n\rangle \cong E_{4}$ and $Z(G)=\left\langle x^{4}\right\rangle$.

Proof. Suppose that we are in case (a) of Proposition 2.3 so that N is a non-trivial cyclic group and $G / \Phi(N)$ is isomorphic to the group (a) of Proposition 2.3. Let $M / \Phi(N)$ be a maximal subgroup of $G / \Phi(N)$ which is isomorphic to E_{8}. Set $|N|=2^{s}, s \geq 1$, and note that N is a maximal cyclic subgroup of M. Let S / N be any subgroup of order 2 in M / N. Since M is D_{8}-free and Q_{8}-free, S cannot be of maximal class. It follows that S is either abelian of type $\left(2^{s}, 2\right)$ or $S \cong M_{2^{s+1}}(s>2)$. In any case, there exists an involution in $S-N$. Hence $\Omega_{1}(M)$ covers $M / N \cong E_{4}$ and (since M is modular) $\Omega_{1}(M)$ is elementary abelian (Proposition 1.2). It follows that $E=\Omega_{1}(M) \cong E_{8}$ is normal in G and $\Omega_{1}(M) \cap N=\Omega_{1}(N)=\langle n\rangle \leq Z(G)$. In particular, $\Phi(G)$ is abelian of type $\left(2^{s}, 2\right), s \geq 1$. Indeed, $\Phi(G)$ cannot be isomorphic to $M_{2^{s+1}}(s>2)$ since in that case $Z(\Phi(G))$ is cyclic and so $\Phi(G)$ would be cyclic (Burnside). Take an involution $t \in E-\Phi(G)$.

Let K be another maximal subgroup of G such that $K / N \cong E_{4}$ so that $K \cap M=\Phi(G)$. Suppose that N is a maximal cyclic subgroup of K. Then, by the argument of the previous paragraph, $\Omega_{1}(K)$ covers K / N and so there is an involution $r \in K-M$. But then $\langle r, t\rangle=G$ and $\langle r, t\rangle$ is dihedral, a contradiction. We have proved that there is an element $x \in K-M$ such that $\left\langle x^{2}\right\rangle=N$ and so $o(x)=2^{s+1}, s \geq 1$. Since $\langle x, t\rangle=G$ and $t \in E-\Phi(G)$, we get $G=E\langle x\rangle$ with $E \cap\langle x\rangle=\Omega_{1}(N)=\langle n\rangle \cong C_{2}$ and so G / E is cyclic of order 2^{s} and $|G|=2^{s+3}$. In particular, $G^{\prime}<E$ and so $\left|G^{\prime}\right|=2$ or 4 .

We have $[x, t] \neq 1($ since $\langle x, t\rangle=G),[x, t] \in E$ and so $z=[x, t]$ is an involution in $(E \cap \Phi(G))-\langle n\rangle$ since $\langle x\rangle$ is not normal in G. Indeed, if $\langle x\rangle$ were normal in G, then the cyclic group $\langle x\rangle / \Phi(N)=\langle x\rangle /\left\langle x^{4}\right\rangle$ of order 4 is
normal in $G / \Phi(N)$ which contradicts the structure of $G / \Phi(N)$. It follows that $E=\langle n, z, t\rangle$ and $\langle x\rangle$ is not normal in G. Thus $N_{G}(\langle x\rangle)$ is a maximal subgroup of G and so $z \in \Phi(G) \leq N_{G}(\langle x\rangle)$ and therefore z normalizes $\langle x\rangle$. Since $\langle x, z\rangle$ cannot be of maximal class, we have either $[x, z]=1$ (and then $G^{\prime}=\langle z\rangle$ and G is minimal nonabelian) or $[x, z]=n$ (in which case $\langle x, z\rangle \cong M_{2^{s+1}}, s>1$). In the second case $\langle x\rangle$ induces an automorphism of order 4 on E. In any case, $G /\left\langle x^{2}\right\rangle \cong D_{8}$ and it is easy to see that G is Q_{8}-free.

Let u be an involution in $G-E$. Then $F=E\langle u\rangle \cong E_{16}$ since F is modular. But G / E is cyclic and so $F / E=\left(E\left\langle x^{2^{s-1}}\right\rangle\right) / E$ and so $x^{2^{s-1}}$ is an element of order 4 contained in $F-E$, a contradiction. We have proved that $\Omega_{1}(G)=E$.

Proposition 2.5. Suppose $d(N)=1, N>\{1\}$, and each proper subgroup of G is Q_{8}-free. If $G / \Phi(N)$ is metacyclic, then G is also metacyclic and we have one of the following possibilities:
(i) $G=\left\langle x, y \mid x^{4}=y^{2^{s+1}}=1, s \geq 1, x^{y}=x^{-1}\right\rangle$, where G is minimal nonabelian and $N=\left\langle y^{2}\right\rangle$.
(ii) $G=\left\langle x, a \mid x^{2^{s+1}}=a^{8}=1, s \geq 2, x^{2^{s}}=a^{4}, a^{x}=a^{-1}\right\rangle$, where G is an A_{2}-group with $N=\left\langle x^{2}\right\rangle, Z(G)=N, G^{\prime}=\left\langle a^{2}\right\rangle \cong C_{4}$ and G is of class 3.
In both cases (i) and (ii), G is a minimal non-Q8-free 2-group.
Proof. Suppose that we are in case (b) of Proposition 2.3 so that N is a non-trivial cyclic group and $G / \Phi(N)$ is isomorphic to the metacyclic group (b) of Proposition 2.3. We know that $\Phi(N)=\mho_{2}(G)$ and so G is also metacyclic (Proposition 1.7). Set $|N|=2^{s}, s \geq 1$. If $\Phi(N)=\{1\}$, then G is isomorphic to the group (b) of Proposition 2.3 and we are done. Hence we may assume $s \geq 2$.

Let S / N be any subgroup of order 2 in G / N. Since S is D_{8}-free and Q_{8}-free, S is not of maximal class. Hence S is either cyclic of order 2^{s+1} or S is abelian of type $\left(2^{s}, 2\right)$ or $S \cong M_{2^{s+1}}, s>2$. If $\Phi(G)$ is cyclic, then G has a cyclic subgroup of index 2 , a contradiction. Also, $\Phi(G) \cong M_{2^{s+1}}, s>2$, is not possible (Burnside). Hence $\Phi(G)$ is abelian of type $\left(2^{s}, 2\right), s \geq 2$.

Let $\Omega_{1}(N)=\langle n\rangle$ so that $\langle n\rangle \leq \Phi(N)$ and $\langle n\rangle \leq Z(G)$. For any subgroup S / N of order 2 in G / N, we have seen (in the previous paragraph) that $S /\langle n\rangle$ is abelian. Since G / N is generated by its subgroups of order 2 , we get $N /\langle n\rangle \leq$ $Z(G /\langle n\rangle)$.

Suppose for a moment that G is minimal abelian. Since $\Phi(G)$ is abelian of type $\left(2^{s}, 2\right)$, we get at once:

$$
G=\left\langle x, y \mid x^{4}=y^{2^{s+1}}=1, s \geq 1, x^{y}=x^{-1}\right\rangle
$$

where $N=\left\langle y^{2}\right\rangle$. In what follows we assume that G is not minimal nonabelian. In particular, $\left|G^{\prime}\right| \geq 4$.

We shall determine the structure of our three maximal subgroups of G. Let M be a maximal subgroup of G such that $M / N \cong E_{4}$. If N is a maximal cyclic subgroup of M, then for each subgroup S / N of order 2 of M / N, there is an involution in $S-N$. Hence $\Omega_{1}(M)$ covers M / N and (since M is D_{8}-free and Q_{8}-free), $\Omega_{1}(M)$ is elementary abelian and $\Omega_{1}(M) \cap N=\langle n\rangle$ so that $\Omega_{1}(M) \cong E_{8}$. This is a contradiction since G is metacyclic. It follows that N is not a maximal cyclic subgroup of M. Let M_{0} be a maximal cyclic subgroup of M containing N so that $M_{0} \cong C_{2^{s+1}}$ is a cyclic subgroup of index 2 in M. Since M is D_{8}-free and Q_{8}-free, M is not of maximal class and so M is either abelian of type $\left(2^{s+1}, 2\right)$ or $M \cong M_{2^{s+2}}, s \geq 2$. In any case, $N \leq Z(M)$ and $M /\langle n\rangle$ is abelian since $M^{\prime} \leq\langle n\rangle$. Let $K(\neq M)$ be another maximal subgroup of G with $K / N \cong E_{4}$. Then K is either abelian of type $\left(2^{s+1}, 2\right)$ or $K \cong M_{2^{s+2}}, s \geq 2$, and again $N \leq Z(K)$ and $K /\langle n\rangle$ is abelian. We get $N \leq Z(G)$. If $\Phi(G) \leq Z(G)$, then each maximal subgroup of G would be abelian, contrary to our assumption that G is not minimal nonabelian. We have proved that $N=Z(G)$.

Let L be the unique maximal subgroup of G such that $L / N \cong C_{4}$. Then L is abelian and using Proposition 1.4 we get $\left|G^{\prime}\right|=4$. By a result of A. Mann (Proposition 1.5), L is the unique abelian maximal subgroup of G and so $M \cong K \cong M_{2^{s+2}}$ with $M^{\prime}=K^{\prime}=\langle n\rangle$. In particular, G is an A_{2}-group.

We have $G^{\prime}>\langle n\rangle$ and G^{\prime} covers $\Phi(G) / N$ and so $G^{\prime} \cong C_{4}$ (since G is metacyclic), $\Phi(G)=N G^{\prime}, N \cap G^{\prime}=\langle n\rangle=\Omega_{1}(N)$. Since $G^{\prime} \not \leq Z(G)=N, G$ is of class 3 .

Since G is metacyclic, there exists a cyclic normal subgroup Z of order 8 such that $Z>G^{\prime}$. But $N \cap Z=N \cap G^{\prime}=\langle n\rangle$ and so $N Z=L$ which determines the structure of the maximal subgroup L and shows that L does not split over N.

Set $Z=\langle a\rangle$. We know that there exists an element $x \in G-L$ such that $\left\langle x^{2}\right\rangle=N$. Hence $G=Z\langle x\rangle$ with $Z \cap\langle x\rangle=\langle n\rangle$. Since $\left|G^{\prime}\right|=4$ and $G^{\prime}<Z$, we get either $a^{x}=a^{-1}$ or $a^{x}=a^{-1} n$, where $n=a^{4}$. However, if $a^{x}=a^{-1} n$, then we replace $Z=\langle a\rangle$ with $Z^{*}=\langle a s\rangle$, where $s \in N$ is such that $s^{2}=n$. Then we compute

$$
(a s)^{x}=a^{-1} n s=a^{-1} s^{-1}=(a s)^{-1}
$$

Since $\left\langle(a s)^{2}\right\rangle=\left\langle a^{2}\right\rangle=G^{\prime}$, we may assume from the start that $a^{x}=a^{-1}$ and so the structure of G is completely determined.

In the rest of this section we consider the case $d(N)=2$.
Proposition 2.6. Suppose $d(N)=2$. Then $G / \Phi(N)$ is the minimal nonabelian non-metacyclic group of order 2^{5} and exponent 4. In particular, $G / \Phi(N)$ has the unique epimorphic image isomorphic to Q_{8}. Each maximal subgroup of G is Q_{8}-free and N is ordinary metacyclic.

Proof. We want to determine the structure of $G / \Phi(N)$. Since $G / \Phi(N)$ is also minimal non-modular, we may assume for a moment $\Phi(N)=\{1\}$ so that $N \cong E_{4}$. Let S / N be any subgroup of order 2 in G / N. If S is nonabelian, then $S \cong D_{8}$, a contradiction. Hence S is abelian and so $N \leq Z(G)$.

Suppose that $Z(G)=N$. Let L / N be the unique cyclic subgroup of index 2 in G / N. Then N is abelian. If $L=N \times R$ with $R \cong C_{4}$, then $\mho_{1}(L)=\mho_{1}(R) \not \leq N$ and $\mho_{1}(L) \leq Z(G)$, contrary to our assumption. Hence $L=N L_{1}$ with $L_{1} \cong C_{8}$ and $L_{0}=L_{1} \cap N \cong C_{2}$. We have $\Phi(L)=\Phi\left(L_{1}\right) \cong C_{4}$, where $\Phi(L)>L_{0}$. For each $x \in G-L, x^{2} \in N$ and $\Phi(G)=\mho_{1}(G)=\Phi(L) N$. This implies that there exists $b \in G-L$ such that $b^{2} \in N-L_{0}$. Since $\Phi(L) \nsubseteq Z(G), b$ inverts $\Phi(L)$. But then $D=\langle\Phi(L), b\rangle$ is of order 2^{4} and $D /\left\langle b^{2}\right\rangle \cong D_{8}$, a contradiction.

We have proved that $Z(G)>N$ and so $Z(G)=\Phi(G)$. It follows that each maximal subgroup of G is abelian and so G is minimal nonabelian. In particular, $\left|G^{\prime}\right|=2$ and since G^{\prime} covers $Z(G) / N=(G / N)^{\prime}$, we have $Z(G)=N \times G^{\prime}$ is elementary abelian of order 8 . It follows that G is the uniquely determined minimal nonabelian non-metacyclic group of order 2^{5} and exponent 4:

$$
G=\left\langle a, b \mid a^{4}=b^{4}=1,[a, b]=c, c^{2}=[a, c]=[b, c]=1\right\rangle
$$

where $Z(G)=\left\langle a^{2}, b^{2}, c\right\rangle, G^{\prime}=\langle c\rangle$, and $G /\left\langle a^{2} c, b^{2} c\right\rangle$ is the unique factor-group of G which is isomorphic to Q_{8}. In particular, G is not Q_{8}-free.

We return now to the general case $d(N)=2$, where $\Phi(N)$ is not necessarily trivial. Assume that N is not Q_{8}-free. Then N (being modular) is Hamiltonian. But $d(N)=2$ and so $N \cong Q_{8}$. On the other hand, N is a G-invariant subgroup contained in $\Phi(G)$ and $Z(N)$ is cyclic. By a result of Burnside, N is cyclic, a contradiction. We have proved that N is Q_{8}-free and so $N / \mho_{2}(N)$ is abelian. Since $d\left(N / \mho_{2}(N)\right)=2, N / \mho_{2}(N)$ is metacyclic. By a result of N . Blackburn (Proposition 1.7), N is metacyclic.

We want to show that N is ordinary metacyclic (although this is clear by Proposition 1.3). Let A be a cyclic normal subgroup of N such that N / A is cyclic. If N centralizes $A / \mho_{2}(A)$, we are done. Suppose that N does not centralize $A / \mho_{2}(A)$. Set $N=\langle A, g\rangle$ so that g inverts $A / \mho_{2}(A)$. If $|N: A|=2$, then $N / \mho_{2}(A) \cong D_{8}$ or Q_{8}, a contradiction. Hence $|N: A| \geq 4$. Assume that $\langle g\rangle \cap A \leq \mho_{2}(A)$. Since g^{2} centralizes $A / \mho_{2}(A), Y=\mho_{2}(A)\left\langle g^{2}\right\rangle$ is normal in N and $\bar{N} / Y \cong D_{8}$, a contradiction. It follows that $\langle g\rangle \cap A \nsucceq \mho_{2}(A)$. Since g inverts $A / \mho_{2}(A),\langle g\rangle \nsupseteq A$ and so $\langle g\rangle \cap A=\mho_{1}(A)$. Thus $\langle g\rangle$ is a cyclic subgroup of index 2 in N and g induces an involutory automorphism on A which centralizes a maximal subgroup of A. If $|A| \geq 8$, then g centralizes $A / \mho_{2}(A)$, a contradiction. Thus $A \cong C_{4}$ and $\langle g\rangle \cap A=\mho_{1}(A)$ is of order 2 so that $N^{\prime} \leq\langle g\rangle \cap A$ and therefore $N^{\prime}=\mho_{1}(A)$ and $o(g) \geq 8$. It follows that $N \cong M_{2^{n}}, n \geq 4$, and so N is ordinary metacyclic with respect to $\langle g\rangle$ since N centralizes $\langle g\rangle /\langle g\rangle \cap A$ which is of order ≥ 4.

Suppose that a maximal subgroup M of G is not Q_{8}-free. Then M (being modular) is Hamiltonian and so

$$
M=Q \times E, Q \cong Q_{8}, \quad \exp (E) \leq 2
$$

In particular, $\Phi(M)$ is of order 2 and $\exp (M)=4$. If $N \cong E_{4}$, then (by the above) G is minimal nonabelian. This is a contradiction since M is nonabelian. Since N is of exponent $4, \mho_{1}(N)$ is of order 2 and N is abelian (being Q_{8} free), we have $N \cong C_{4} \times C_{2}$. We get $\Phi(M)=\mho_{1}(M)=\mho_{1}(N)=\Phi(N)$ and so $M / \Phi(N)$ is an elementary abelian subgroup of order 16 in the minimal nonabelian group $G / \Phi(N)$ of order 2^{5} which was determined above. But that group $G / \Phi(N)$ has no such subgroup. We have proved that each maximal subgroup of G is Q_{8}-free.

Proposition 2.7. Suppose $d(N)=2$. Then for each maximal subgroup M of G we have $d(M)=3$. Also, $\Phi(N)=\mho_{2}(G), E=\Omega_{1}(G)=\Omega_{1}(\Phi(G)) \cong$ $E_{8}, E \leq Z(\Phi(G))$, and either $G / E \cong Q_{8}$ (with $\Omega_{2}(G)=\Phi(G)$ being abelian of type $(4,2,2))$ or G / E is ordinary metacyclic (but not cyclic).

Proof. If G has two non-commuting involutions t, u, then $\langle t, u\rangle=G \cong$ $D_{2^{n}}, n \geq 5$, since $|G| \geq 2^{5}$. But each proper subgroup of G must be D_{8}-free, a contradiction. We have proved that $\Omega_{1}(G)$ is elementary abelian.

Set $F=\Phi(G)$ so that we have

$$
F / \Phi(N)=\Phi(G / \Phi(N))=\Omega_{1}(G / \Phi(N)) \cong E_{8}
$$

Since $\Phi(N) \leq \Phi(F)$, we get $\Phi(N)=\Phi(F)$. Thus $d(F)=3$ and so (since F is D_{8}-free and Q_{8}-free) $E=\Omega_{1}(F) \cong E_{8}$ is a normal elementary abelian subgroup of order 8 in G. Let M be any maximal subgroup of G so that $M / \Phi(N)$ is abelian of type $(4,2,2), \Phi(N) \leq \Phi(M)$ and so $d(M)=3$. But M is also D_{8}-free and Q_{8}-free and therefore $\Omega_{1}(M) \cong E_{8}$ which implies $\Omega_{1}(M)=$ $\Omega_{1}(F)=\Omega_{1}(G)$.

We have $\Phi(N) \geq \mho_{2}(G)$. On the other hand, $\exp \left(G / \mho_{2}(G)\right)=4$ and so each maximal subgroup of $G / \mho_{2}(G)$ (being D_{8}-free and Q_{8}-free) is abelian. Thus $G / \mho_{2}(G)$ is minimal nonabelian of exponent 4 and so $\left|G / \mho_{2}(G)\right| \leq 2^{5}$. It follows $\mho_{2}(G)=\Phi(N)$.

If G / E is not D_{8}-free, then there is a normal subgroup N^{*} of G such that $E \leq N^{*}$ and $G / N^{*} \cong D_{8}$. By Propositions 2.1 and $2.6, N^{*}$ must be metacyclic, a contradiction. Hence G / E is D_{8}-free.

Suppose that G / E is not Q_{8}-free. Then G / E is Hamiltonian. Since $d(G / E)=2$, we get $G / E \cong Q_{8}$. On the other hand, G / E cannot act faithfully on E, and so $C_{G}(E) \geq \Phi(G)$. In particular, $\Phi(G)$ is abelian of type $(4,2,2)$ and so $E \leq Z(\Phi(G))$. For each $x \in G-\Phi(G), x^{2} \in \Phi(G)-E$ and so $o\left(x^{2}\right)=4$. It follows that $\Omega_{2}(G)=\Phi(G)$.

We assume that G / E is Q_{8}-free. In that case G / E is ordinary metacyclic (but not cyclic since $\Phi(G) \geq E$). There is a cyclic normal subgroup $S / E \neq\{1\}$
of G / E with the cyclic factor-group $G / S \neq\{1\}$. Let $s \in S$ be such that $S=\langle E, s\rangle$ and let $r \in G-S$ be such that $G=\langle S, r\rangle$. Since $E \leq \Phi(G)$, we have $G=\langle r, s\rangle$.

Since $S=\langle E, s\rangle$ is a proper subgroup of G, it follows that S is D_{8}-free and Q_{8}-free. This implies that $\langle s\rangle$ is normal in S. Indeed, if $\langle s\rangle$ were not normal in S, then $S /\left\langle s^{2}\right\rangle \cong D_{8}$ since $|E \cap\langle s\rangle|=2$ and s does not centralize the four-group $E /(E \cap\langle s\rangle)$. This is a contradiction and so $\langle s\rangle$ is normal in S. In particular, $S^{\prime} \leq E \cap\langle s\rangle$ and so s induces an automorphism of order ≤ 2 on E which implies that s^{2} centralizes E.

Since $\langle E, r\rangle<G$, we get (as in the previous paragraph) that r^{2} centralizes E. On the other hand, $\Phi(G)=\left\langle E, r^{2}, s^{2}\right\rangle$ and so we get again $E \leq Z(\Phi(G))$.

We summarize our results in a somewhat different form.
Theorem 2.8. Let G be a minimal non-modular 2-group of order i 2^{5}. Then each proper subgroup of G is Q_{8}-free and $G / \mho_{2}(G)$ is minimal nonabelian of order 2^{4} or 2^{5}.
(a) Suppose that $\left|G / \mho_{2}(G)\right|=2^{4}$. If N is any normal subgroup of G such that $G / N \cong D_{8}$, then N is cyclic. If $G / \mho_{2}(G)$ is non-metacyclic, then G is Q_{8}-free and $\Omega_{1}(G) \cong E_{8}$ with $G / \Omega_{1}(G)$ cyclic. If $G / \mho_{2}(G)$ is metacyclic, then G is also metacyclic and G is not Q_{8}-free and G is either minimal nonabelian or an A_{2}-group.
(b) Suppose that $\left|G / \mho_{2}(G)\right|=2^{5}$. Then $G / \mho_{2}(G)$ is non-metacyclic, G is not Q_{8}-free and $\Omega_{1}(G) \cong E_{8}$ with $G / \Omega_{1}(G) \cong Q_{8}$ or $G / \Omega_{1}(G)$ is ordinary metacyclic (but not cyclic). Moreover, if N is any normal subgroup of G such that $G / N \cong D_{8}$, then N is ordinary metacyclic but non-cyclic.

3. New Results for $p>2$

We recall that a p-group G is modular if and only if any subgroups X and Y of G are permutable, i.e., $X Y=Y X$. We turn now to the case $p>2$.

Proposition 3.1. Let G be a modular p-group with $p>2$ and $d(G)=2$. Then G is metacyclic.

Proof. Since G is modular, $G / \mho_{1}(G)$ is elementary abelian (Proposition 1.8). But $d\left(G / \mho_{1}(G)\right) \leq 2$ and so so $\left|G / \mho_{1}(G)\right| \leq p^{2}$. Then Proposition 1.10 implies that G is metacyclic.

Proposition 3.2. Let G be a minimal nonmodular p-group, $p>2$, which is generated by two subgroups A and B of order p. Then $G \cong S\left(p^{3}\right)$ (the nonabelian group of order p^{3} and exponent p).

Proof. Since G is a p-group, $G_{1}=\left\langle A^{G}\right\rangle$ and $G_{2}=\left\langle B^{G}\right\rangle$ are proper normal subgroups of G and so G_{1} and G_{2} are modular. It follows that G_{1} and G_{2} are elementary abelian (Proposition 1.8). But

$$
\left\langle G_{1}, B\right\rangle=\langle A, B\rangle=\left\langle G_{2}, A\right\rangle=G
$$

and so G_{1} and G_{2} are two distinct maximal subgroups of G. By Proposition 1.5 , we have $\left|G^{\prime}\right|=p$ and $G^{\prime} \leq G_{1} \cap G_{2}$. Thus G / G^{\prime} is abelian and G / G^{\prime} is generated by elementary abelian subgroups G_{1} / G^{\prime} and G_{2} / G^{\prime}. Hence G / G^{\prime} is elementary abelian and $d(G)=2$ implies that $G / G^{\prime} \cong E_{p^{2}}$. Hence $G \cong S\left(p^{3}\right)$ since the metacyclic nonabelian group of order p^{3} is modular.

Proposition 3.3. Let G be a minimal nonmodular p-group. Then G possesses a normal subgroup N such that $d(N) \leq 2, N \leq \mho_{1}(G)$, and G / N is a nonmodular group of order p^{3}. If $p=2$, then $G / N \cong D_{8}$ and if $p>2$, then $G / N \cong S\left(p^{3}\right), N=\mho_{1}(G)$, and N is metacyclic.

Proof. Let A and B be subgroups of G such that $A B \neq B A$. Then $\langle A, B\rangle=G$ and there are cyclic subgroups $\langle a\rangle \leq A$ and $\langle b\rangle \leq B$ such that $\langle a\rangle\langle b\rangle \neq\langle b\rangle\langle a\rangle$. It follows $G=\langle a, b\rangle$ and so $d(G)=2$. Since $\left\langle a^{p}, b^{p}\right\rangle \leq \Phi(G)$, the subgroups $E=\left\langle a^{p}, b\right\rangle$ and $F=\left\langle a, b^{p}\right\rangle$ are proper subgroups of G. Hence E and F are modular and so $E=\left\langle a^{p}\right\rangle\langle b\rangle, F=\langle a\rangle\left\langle b^{p}\right\rangle$, and $G=\langle E, F\rangle$. Set $N=\left\langle a^{p}\right\rangle\left\langle b^{p}\right\rangle$ so that $|E: N|=|F: N|=p$. It follows that N is normal in $G, N \leq \mho_{1}(G)$, and $d(N) \leq 2$. It remains to determine the structure of $\bar{G}=G / N=\langle\bar{a}, \bar{b}\rangle$, where \bar{G} is a minimal nonmodular p-group generated by elements \bar{a} and \bar{b} of order p. If $p=2$, then \bar{G} is dihedral and (because of minimality) $\bar{G} \cong D_{8}$. If $p>2$, then Proposition 3.2 implies that $\bar{G} \cong S\left(p^{3}\right)$. In that case we have $N=\mho_{1}(G)$ and Proposition 3.1 implies that N is metacyclic.

Proposition 3.4. Let G be a minimal nonmodular p-group, $p>2$, with $|G|>p^{4}$. Then $\Omega_{1}(G)$ is elementary abelian of order $\geq p^{3}$.

Proof. Let A and B be subgroups of order p in G such that $A B \neq$ $B A$. Then $G=\langle A, B\rangle$ and so Proposition 3.2 implies that $G \cong S\left(p^{3}\right)$, a contradiction. We have proved that $A B=B A$ and so $\langle A, B\rangle$ is abelian. Hence $\Omega_{1}(G)$ is elementary abelian.

Assume that each proper subgroup of G is metacyclic. By Proposition 3.3, G is nonmetacyclic and so $|G| \leq p^{4}$ (Proposition 1.9), a contradiction.

Let M be a nonmetacyclic maximal subgroup of G. Since M is modular, Proposition 3.1 implies that $d(M) \geq 3$. On the other hand, $d(M)=d\left(\Omega_{1}(M)\right)$ (see Suzuki [3]) and so $\Omega_{1}(M)$ is elementary abelian of order $\geq p^{3}$ and we are done.

THEOREM 3.5. Let G be a minimal nonmodular p-group, $p>2$, with $|G|>p^{4}$. If $\mho_{1}(G)$ is cyclic, then $\Omega_{1}(G) \cong E_{p^{3}}$ and $G / \Omega_{1}(G)$ is cyclic of order $\geq p^{2}$ (i.e. G is an L_{3}-group).

Proof. By assumption, $N=\mho_{1}(G)$ is cyclic. By Proposition 3.4, we have $E=\Omega_{1}(G)$ is elementary abelian of order $\geq p^{3}$. But $|E \cap N|=p$ and E does not cover G / N, and so $E \cong E_{p^{3}}$. On the other hand, there is $a \in G-N$ with $\left\langle a^{p}\right\rangle=N$. Since $|G:\langle a\rangle|=p^{2}$ and $|\langle a\rangle \cap E|=p$, we get $G=\langle E, a\rangle$ and we are done.

Proposition 3.6. Let G be a minimal nonmodular p-group, $p>2$, with $|G|>p^{4}$. Suppose $d\left(\mho_{1}(G)\right)=2$ and let M be any maximal subgroup of G. Then $d(M) \leq 3$.

Proof. Suppose false. Let M be a maximal subgroup of G with $d(M) \geq$ 4. Set $N=\mho_{1}(G)$ so that $M / N \cong E_{p^{2}}$ and $N / \Phi(N) \cong E_{p^{2}}$. Since $\Phi(N) \leq$ $\Phi(M)$, we must have $\Phi(M)=\Phi(N)$ so that $M / \Phi(N) \cong E_{p^{4}}$. We shall study the structure of $G / \Phi(N)$ (which is also minimal nonmodular of order p^{4}) and so we may assume $\Phi(N)=\{1\}$ which implies $M \cong E_{p^{4}}$. Since $\Omega_{1}(G)$ is elementary abelian, we have $M=\Omega_{1}(G)$. Let $x \in G-M$ so that $1 \neq x^{p} \in N$ and $x^{p} \in Z(G)$. There is $y \in G-M$ such that $y^{p} \in N-\left\langle x^{p}\right\rangle$ and $y^{p} \in Z(G)$. It follows that $N \leq Z(G)$. If $Z(G)>N$, then $Z(G) / N=Z(G / N)=\Phi(G / N)$ and so $Z(G)=\Phi(G)$. But then G is minimal nonabelian. By the structure of such groups, $\left|\Omega_{1}(G)\right| \leq p^{3}$, a contradiction.

We have proved that $Z(G)=N$. By Proposition 1.4, $|G|=p^{5}=$ $p|Z(G)|\left|G^{\prime}\right|$ and so $\left|G^{\prime}\right|=p^{2}$. Since $G / N \cong S\left(p^{3}\right), G^{\prime} \nsubseteq N$ and so $G^{\prime} \cong E_{p^{2}}$ and $G^{\prime} \cap Z(G) \cong C_{p}$ so that $C_{G}\left(G^{\prime}\right)=M$. Since $\mho_{1}(G)=N$, there is $v \in G-M$ such that $v^{p} \in N-G^{\prime}$. The subgroup $H=\left\langle G^{\prime}, v\right\rangle$ is of order p^{4} and $H /\left\langle v^{p}\right\rangle \cong S\left(p^{3}\right)$ so that H is nonmodular, a contradiction.

Theorem 3.7. Let G be a minimal nonmodular p-group, $p>2$, with $|G|>p^{4}$. Then $\mho_{1}(G)$ is metacyclic and $G / \mho_{1}(G) \cong S\left(p^{3}\right)$ (nonabelian group of order p^{3} and exponent p). If $\mho_{1}(G)$ is noncyclic, then $\Phi(G)=\mho_{1}(G) \times C_{p}$, $\Omega_{1}(\Phi(G))=\Omega_{1}(G) \cong E_{p^{3}}, G / \Omega_{1}(G)$ is metacyclic and for each maximal subgroup M of G we have $d(M)=3$.

Proof. Set $N=\mho_{1}(G)$ and suppose $d(N)=2$. By Proposition 3.4, $\Omega_{1}(G)$ is elementary abelian of order $\geq p^{3}$ and $\Omega_{1}(G) \cap N \cong E_{p^{2}}$. Since $\Omega_{1}(G)$ does not cover $G / N \cong S\left(p^{3}\right), N \Omega_{1}(G)$ is contained in a maximal subgroup M of G. By Proposition 3.6, $d(M) \leq 3$ and the modularity of M implies $d(M)=d\left(\Omega_{1}(M)\right)$. This implies $\Omega_{1}(G) \cong E_{p^{3}}$ and so $\left(N \Omega_{1}(G)\right) / N=$ $\Phi(G / N)$. Thus $\Phi(G)=N \Omega_{1}(G)$ and so for each maximal subgroup X of G, we have $d(X)=3$ since $X \geq \Phi(G)$ and $d(X)=d\left(\Omega_{1}(X)\right)=d\left(\Omega_{1}(G)\right)$.

We know that $\operatorname{Aut}\left(\Omega_{1}(G)\right)$ does not possess an automorphism of order p^{2}. There are elements $a, b \in G$ such that $N=\left\langle a^{p}\right\rangle\left\langle b^{p}\right\rangle$ and a^{p} and b^{p} centralize $\Omega_{1}(G)$. Hence $\Phi(G)=N \times Z$ with $|Z|=p$.

If $G / \Omega_{1}(G)$ is nonmodular, then (Proposition 3.3) there is a normal subgroup K of G with $K \geq \Omega_{1}(G), G / K \cong S\left(p^{3}\right)$, and $d(K) \leq 2$. This is a
contradiction since $d(K)=d\left(\Omega_{1}(K)\right)=3$. Hence $G / \Omega_{1}(G)$ is modular and since $d\left(G / \Omega_{1}(G)\right) \leq 2, G / \Omega_{1}(G)$ is metacyclic and our theorem is proved.

References

[1] Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J.Algebra 248 (2002), 472-553.
[2] Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2^{n}, J.f.d.reine und angew. Mathematik 566 (2004), 135-181.
[3] M. Suzuki, Structure of a group and the structure of its lattice of subgroups, Berlin, 1956.
[4] B. Wilkens, On quaternion-free 2-groups, J.Algebra 258 (2002), 477-492.
Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 17.12.2003.

[^0]: 2000 Mathematics Subject Classification. 20D15.
 Key words and phrases. p-group, modular group, nonmodular group, quaternion group, minimal nonabelian group.

