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ON THE LINEAR COMBINATION OF THE
REPRESENTATIONS OF STARLIKENESS AND

CONVEXITY

Nikola Tuneski and Roza Aceska

Ss. Cyril and Methodius University Skopje, Macedonia

Abstract. Let A be the class of analytic functions in the unit disk
U = {z : |z| < 1} that are normalized with f(0) = f ′(0) − 1 = 0. Also,
let S∗[A,B], −1 ≤ B < A ≤ 1, be the class of functions f ∈ A, such

that
zf ′(z)
f(z)

≺ 1+Az
1+Bz

, where ”≺” denotes the usual subordination. In this

paper we investigate the linear combination of the analytic representations
of starlikeness and convexity and give sharp sufficient conditions over the
differential operator

a
zf ′(z)

f(z)
+ b

(

1 +
zf ′′(z)

f ′(z)

)

that imply f ∈ S∗[A,B]. In that purpose we use the method of differential
subordinations. Several corollaries and examples for different choices of A,
B, a and b are given and comparison with previous known results is done.

1. Introduction and preliminaries

Let A denote the class of functions f(z) that are analytic in the unit
disk U = {z : |z| < 1} and normalized by f(0) = f ′(0) − 1 = 0. Further,
let f, g ∈ A. Then we say that f(z) is subordinate to g(z), and we write
f(z) ≺ g(z), if there exists a function ω(z), analytic in the unit disk U , such
that ω(0) = 0, |ω(z)| < 1 and f(z) = g(ω(z)) for all z ∈ U . Specially, if g(z) is
univalent in U than f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊆ g(U).
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A function f ∈ A belongs to the class S∗[A,B], where −1 ≤ B < A ≤ 1,
if and only if

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
.

Geometrically, this means that the image of U by zf ′(z)/f(z) is inside the
open disk centered on the real axis with diameter end points (1−A)/(1−B)
and (1 + A)/(1 + B). Special selection of A and B lead us to the following
classes:

- the class of starlike functions of order α, 0 ≤ α < 1 : S∗(α) ≡ S∗[1−
2α,−1];

- the class of starlike functions: S∗ ≡ S∗[1,−1] = S∗(0), with analytic
representation Re zf ′(z)/f(z) > 0, z ∈ U ;

- the class of convex functions: f(z) is convex if and only if zf ′(z) is
starlike, i.e., Re {1 + zf ′′(z)/f ′(z)} > 0, z ∈ U ; and

- S∗[α, 0], 0 < α ≤ 1 : a class defined by |zf ′(z)/f(z)− 1| < α, z ∈ U .
One can note that S∗[A,B] ⊆ S∗((1−A)/(1−B)).

The quotient of the analytic representations of convex and starlike func-

tions, i.e., the expression 1+zf ′′(z)/f ′(z)
zf ′(z)/f(z) , was studied in [7] and [6] as a criteria

for starlikeness and starlikeness of order α. These results were generalized in
[8], where the same quotient was studied as a criteria for a function f(z) ∈ A
to belong to the class S∗[A,B]. In this paper we investigate the linear com-
bination of the analytic representations of starlikeness and convexity, i.e., the
differential operator

G(a, b, f ; z) ≡ azf
′(z)

f(z)
+ b

(
1 +

zf ′′(z)

f ′(z)

)
,

and give sharp sufficient conditions that imply f ∈ S∗[A,B]. The criteria
obtained for different choices of A, B, a and b are compared with previous
known results. Implication

G(1− α, α, f ; z) ∈ S∗[A,B] ⇒ zf ′(z)

f(z)
≺ q(z)

is already studied in [1], page 118, giving necessary conditions over q(z).
Therefore this work closes that subject.

For obtaining the main result we will use the method of differential sub-
ordinations. The general theory of differential subordinations, as well as the
theory of first-order differential subordinations, was introduced by Miller and
Mocanu in [2] and [3]. Namely, if φ : C2 → C (where C is the complex plane)
is analytic in a domain D, if h(z) is univalent in U , and if p(z) is analytic in
U with (p(z), zp′(z)) ∈ D when z ∈ U , then p(z) is said to satisfy a first-order
differential subordination if

(1) φ(p(z), zp′(z)) ≺ h(z).
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The univalent function q(z) is said to be a dominant of the differential sub-
ordination (1) if p(z) ≺ q(z) for all p(z) satisfying (1). If q̃(z) is a dominant
of (1) and q̃(z) ≺ q(z) for all dominants of (1), then we say that q̃(z) is the
best dominant of the differential subordination (1).

From the theory of first-order differential subordinations we will make use
of the following lemma.

Lemma 1.1 ([3]). Let q(z) be univalent in the unit disk U , and let θ(ω)
and φ(ω) be analytic in a domain D containing q(U), with φ(ω) 6= 0 when
ω ∈ q(U). Set Q(z) = zq′(z)φ(q(z)), h(z) = θ(q(z)) +Q(z), and suppose that

i) Q(z) is starlike in the unit disk U ; and

ii) Re zh′(z)
Q(z) = Re

{
θ′(q(z))
φ(q(z)) + zQ′(z)

Q(z)

}
> 0, z ∈ U .

If p(z) is analytic in U , with p(0) = q(0), p(U) ⊆ D and

(2) θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) = h(z)

then p(z) ≺ q(z), and q(z) is the best dominant of (2).

2. Main results and consequences

In the beginning, using Lemma 1.1 we will prove the following useful
result.

Lemma 2.1. Let p(z) be analytic in the unit disk U , p(0) = 1, 0 /∈ p(U)
and let a, b, A and B be real numbers such that −1 ≤ B < A ≤ 1 and
1 + a

b + 1−AB
(1+|A|)2 ≥ 0. If

(3) (a+ b)p(z) + b
zp′(z)

p(z)
≺ (a+ b)

1 +Az

1 +Bz
+

b(A−B)z

(1 +Az)(1 +Bz)
≡ h1(z)

then p(z) ≺ 1+Az
1+Bz ≡ q(z). Function q(z) is the best dominant of (3).

Proof. We choose θ(ω) = (a + b)ω and φ(ω) = b/ω. Then q(z) is
univalent in U ; θ(ω) and φ(ω) are analytic with domain D = C \ {0} which
contains q(U) and φ(ω) 6= 0 when ω ∈ q(U). Further,

Q(z) = zq′(z)φ(q(z)) =
b(A−B)z

(1 +Az)(1 +Bz)

is starlike because for z = eiλ, λ ∈ [−π, π], we have

Re
zQ′(z)

Q(z)
= Re

1−ABz2

(1 +Az)(1 +Bz)
=

(1− AB)[1 +AB + (A+B) cosλ]

|1 +Aeiλ|2|1 +Beiλ|2 ≥ 0.

Next, let h(z) = θ(q(z)) +Q(z) and z = eiλ, λ ∈ [−π, π]. Then

Re
zh′(z)

Q(z)
=

1 +AB + (A+B)cosλ

|1 +Beiλ|2 ·
(

1 +
a

b
+

1−AB
|1 +Aeiλ|2

)
≥ 0.
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Also, h(z) = h1(z), p(0) = q(0) = 1 and p(U) ⊆ D. Therefore, the conditions
of Lemma 1.1 are satisfied and concerning that subordinations (2) and (3) are
equivalent we receive the conclusion of Lemma 2.1.

Remark 2.2. For a = 1−α, b = α, A = 1 and B = −1 in Lemma 2.1 we
have an improvement of a result published in [1], page 251. The improvement
is made over the condition for α. Namely, here we have condition α /∈ (−2, 0)
and in [1] there is α > 0.

Putting p(z) = zf ′(z)
f(z) in Lemma 2.1 we obtain a criteria for a function

f(z) to belong to the class S∗[A,B].

Theorem 2.3. Let f ∈ A and let a, b, A and B be real numbers such
that −1 ≤ B < A ≤ 1 and 1 + a

b + 1−AB
(1+|A|)2 ≥ 0. If

(4) G(a, b, f ; z) ≺ h1(z)

then f ∈ S∗[A,B]. Function 1+Az
1+Bz is the best dominant of (4).

Theorem 2.3 can be rewritten in the following, equivalent form.

Theorem 2.4. Let f ∈ A and let A and B be such that −1 ≤ B < A ≤ 1.
If

(5) G(1,−1, f ; z) ≺ (B −A)z

(1 +Az)(1 +Bz)
≡ h2(z)

or

(6)
G(1− α, α, f ; z) ≺ 1 +Az

1 +Bz
+ α

(A−B)z

(1 +Az)(1 +Bz)
≡ h3(z),

α /∈
(
− (1 + |A|)2

1−AB , 0

)
,

then f ∈ S∗[A,B]. Function 1+Az
1+Bz is the best dominant of (5) and (6).

Proof. Equivalency of Theorem 2.3 and Theorem 2.4 follows from the
fact that either a + b = 0 or a + b 6= 0. In the first case, after dividing both
sides of subordination (4) with a we receive subordination (5). Similarly, in
the second case, a+ b 6= 0, after dividing both sides of subordination (4) with
a+ b and putting α = b

a+b we obtain subordination (6).

Choosing appropriate values of A and B in Theorem 2.4 we receive the
following examples.

Example 2.5. Let f ∈ A.
i) If G(1,−1, f ; z) ≺ − 2z

1−z2 then f ∈ S∗. (A = 1 and B = −1 in Theorem

2.4);

ii) If 0 ≤ β < 1 and G(1,−1, f ; z) ≺ − 2(1−β)z
(1−z)[1+(1−2β)z] then f ∈ S∗(β).

(A = 1− 2β and B = −1 in Theorem 2.4);
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iii) If 0 < γ ≤ 1 and G(1,−1, f ; z) ≺ − γz
1+γz then |zf ′(z)/f(z)− 1| < γ,

z ∈ U . (A = γ and B = −1 in Theorem 2.4);
iv) If α /∈ (−2, 0) and G(1− α, α, f ; z) ≺ 1+z

1−z + 2αz
1−z2 then f ∈ S∗. (A = 1

and B = −1 in Theorem 2.4);

v) If 0 ≤ β < 1, α /∈
(
− [1+|1−2β|]2

2(1−β) , 0
)

and G(1−α, α, f ; z) ≺ 1+(1−2β)z
1−z +

2α(1−β)z
(1−z)[1+(1−2β)z] then f ∈ S∗(β). (A = 1− 2β and B = −1 in Theorem

2.4); and
vi) If 0 < γ ≤ 1, α /∈

(
−(1 + γ)2, 0

)
, and G(1−α, α, f ; z) ≺ 1+γz+ αγz

1+γz

then |zf ′(z)/f(z)− 1| < γ, z ∈ U . (A = γ and B = 0 in Theorem 2.4).

Remark 2.6. Results (v) and (vi), γ = 1, from Example 2.5 improve the
results from [4] and [5], respectively, since the last ones are stated only for
α > 0.

Next, using Theorem 2.4, we study the modulus of G(a, b, f ; z) as a suf-
ficient condition that implies f ∈ S∗[A,B].

Corollary 2.7. Let f ∈ A and let A and B be such that −1 ≤ B < A ≤
1. If

(7) |G(1,−1, f ; z)| < A−B
(1 + |A|)(1 + |B|) ≡ δ1

then f ∈ S∗[A,B]. This result is sharp.

Proof. From min{|h2(e
iλ)| : λ ∈ [−π, π]} = δ1 we obtain that inequality

(7) implies subordination (5) and further f ∈ S∗[A,B]. The result is sharp as
the function

(8) f(z) =

{
z(1 +Bz)(A−B)/B , B 6= 0

f(z) = zeAz, B = 0
.

shows, since f ∈ S∗[A,B] and
∣∣G(1,−1, f ; eiλ)

∣∣ = δ1, for appropriate choice
of λ ∈ {0, π}.

Corollary 2.8. Let f ∈ A, α ≥ 0 and let A and B be such that −1 ≤
B < A ≤ 1. Also, let us define two sets of conditions:

(a) AB < 0, 4AB < (A+B)(1 +AB) ≤ 4A|B|, α > α∗
1;

(b) AB < 0, (A+B)(1 +AB) > 4A|B|, α∗
1 < α < α∗

2.

Here α∗
1 and α∗

2 are the bigger real roots of the equations η(A,B;α) ≡ a1α
2 +

b1α + c1 = 0 and η(−A,−B;α) = 0, respectively, where a1 = A(1 − B)2 +
B(1−A)2, b1 = (1−A)[A(1−B2)(1 +A) + 2B(1−A)2] and c1 = B(1−A)4.
Further, let

δ2 =





√
A(1+α)

(A+B)(1+AB)+4ABt∗
, if (a) or (b) holds,

min
{

1+α−A
(1−A)(1−B) ,

1+α+A
(1+A)(1+B)

}
, otherwise,
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where

t∗ = − A

2(1 + α)
− 1 + α

2A
−
√
αB(1 + α−A2)(1 + α−AB)(B(1 + α) −A)

2AB(1 + α)

Under this notations, if

(9) |G(1− α, α, f ; z)− 1| ≤ (A−B)δ2

then f ∈ S∗[A,B]. This result is sharp.

Proof. In order to prove f ∈ S∗[A,B] it is enough to show that inequal-
ity (9) implies subordination (6), i.e., to show that min{|h3(e

iλ) − 1| : λ ∈
[−π, π]} = (A−B)δ2. Thus, we will study the minimum of the function Ψ(t)
defined by

|h3(e
iλ)− 1|2 = (A−B)2

(1 + α)2 +A2 + 2At(1 + α)

(1 + 2At+A2)(1 + 2Bt+B2)
= (A−B)2 ·Ψ(t),

t = cosλ ∈ [−1, 1], and show that ∆ = min{Ψ(t) : t ∈ [−1, 1]} = δ2
2 .

First we note that Ψ(t) is continues function at any t ∈ (−1, 1) and the

equation Ψ′(t) = 0 has only two solutions t1,2 = ϕ(A,α) ±
√

D
2AB(1+α) , where

ϕ(A,α) = − A
2(1+α) − 1+α

2A and D = αB(1 + α − A2)(1 + α − AB)(B(1 +

α) − A). Even more, if both solutions are real then at least one of them

lies outside the interval (−1, 1) because of |ϕ(A,α)| = 1 + (1+α−|A|)2
2|A|(1+α) . So,

Ψ(t) is ether monotonous function, or has only one local extremal point on
(−1, 1). Consequently, Ψ(t) attains its minimal value at some interior point
t∗ ∈ (−1, 1) if and only if Ψ(t) has local minimum on (−1, 1), i.e., if and only
if

Ψ′(−1) = − 2 · η(A,B;α)

(1−A)4(1−B)4
< 0 and Ψ′(1) =

2 · η(−A,−B;α)

(1 + A)4(1 +B)4
> 0,

or equivalently

(10) η(A,B;α) > 0 and η(−A,−B;α) > 0.

It remains to show that inequalities (10) hold if and only if one of the disjoint
sets of condition (a) or (b) is satisfied.

If we rewrite η(A,B;α) as

η(A,B;α) = Aα(1−B)2(1 + α−A2) +B(1−A)2(1 + α−A)2

than it is easy to verify that necessary condition for the inequalities (10) is
−1 ≤ B < 0 < A ≤ 1, i.e., AB < 0.

Next, let AB < 0. Then

a1 − b1 = [2− (1−B)2]A3 −B
[
5A2 − 2(1 +B)A + 1

]
> 0

and c1 ≤ 0. Thus, simple analysis of the quadratic function η(A,B;α) shows
that when α ≥ 0,

(11) η(A,B;α) > 0 ⇔ a1 > 0 and α > α∗
1,
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where a1 > 0 ⇔ 4AB < (A + B)(1 + AB) and α∗
1 is the bigger real

root of the equation η(A,B;α) = 0 solved for α, while the smaller root is
negative. Indeed, if b1 < a1 < 0 then η(A,B;α) < 0 for any α ≥ 0, because
η(A,B; 0) = c1 ≤ 0 and because the parabola η(A,B;α) is concave upward
with zeros α1 and α2 such that α1α2 = c1

a1
≥ 0 and α1 + α2 = − b1

a1
< 0, i.e.,

α1, α2 < 0.
Similarly, if AB < 0, for the quadratic equation η(−A,−B;α) = a2α

2 +
b2α + c2 with a2 = −A(1 + B)2 − B(1 + A)2, b2 = (1 + A)[−A(1 − B2)(1 −
A) − 2B(1 + A)2] and c2 = −B(1 + A)4, we have η(A,B; 0) = c2 > 0 and
b2 − a2 = [2− (1 +B)2]A3 − 5BA2 − 2B(1−B)A− B > 0. Therefore, when
α ≥ 0, inequality η(−A,−B;α) = a2α

2 + b2α + c2 > 0 has two solutions.
First one

(12) α ≥ 0 when a2 ≥ 0,

since b2 > a2 ≥ 0 implies that the parabola η(−A,−B;α) is concave down-
ward with vertex on the left side of the y-axis, and the second one

(13) α < α∗
2 when a2 < 0,

where α∗
2 is the bigger real root of the equation η(−A,−B;α) = 0, true

because a2 < 0 implies that the parabola η(−A,−B;α) is concave upward
with one positive and one negative zero, due to η(−A,−B; 0) > 0. Here
a2 ≥ 0 if and only if (A+B)(1 +AB) ≤ 4A|B|.

Finally, conditions (11), (12) and (11), (13) can be sublimated into
the conditions (a) and (b), respectively. The second is possible because
η(−A,−B;α∗

1) = −8AB[A2 + (1 + α∗
1)

2] > 0 implies α∗
1 < α∗

2.
From the above analysis we can say that inequalities (10) hold if and only

if (a) or (b) is satisfied.
The sharpness of the result can be verified using function f(z) defined by

(8) such that f ∈ S∗[A,B] and
∣∣G(1− α, α, f ; eiλ)− 1

∣∣ = δ2 for appropriate
choice of λ, cosλ ∈ {−1, t∗, 1}.

If AB ≥ 0 the corollary is much simpler.

Corollary 2.9. Let f ∈ A, α ≥ 0 and let A and B be such that −1 ≤
B < A ≤ 1 and AB ≥ 0. If

|G(1− α, α, f ; z)− 1| ≤ (A−B)
1 + α+ |A|

(1 + |A|)(1 + |B|)
then f ∈ S∗[A,B]. This result is sharp.

The following example exhibits some concrete conclusions that can be
obtained from the previous corollaries by specifying the values A and B.

Example 2.10. Let f ∈ A and α ≥ 0. The following results are sharp.

i) If |G(1,−1, f ; z)| < 1/2, z ∈ U , then f ∈ S∗. (A = 1 and B = −1 in
Corollary 2.7);
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ii) If 0 ≤ β ≤ 1/2 then |G(1,−1, f ; z)| < 1/2, z ∈ U , implies f ∈ S∗(β).
(A = 1− 2β and B = −1 in Corollary 2.7);

iii) If 1/2 ≤ β < 1 then |G(1,−1, f ; z)| < 1−β
2β , z ∈ U , implies f ∈ S∗(β).

(A = 1− 2β and B = −1 in Corollary 2.7);
iv) If 0 < γ ≤ 1 then |G(1,−1, f ; z)| < 1 − 1

1+γ , z ∈ U , implies∣∣∣zf ′(z)
f(z) − 1

∣∣∣ < γ, z ∈ U . (A = γ and B = 0 in Corollary 2.7);

v) |G(1 − α, α, f ; z) − 1| ≤ 1 + α, z ∈ U , implies f ∈ S∗. (A = 1 and
B = −1 in Corollary 2.8);

vi) If 1/2 ≤ β < 1 then |G(1− α, α, f ; z)− 1| ≤ (1− β)
(
1 + α

2β

)
, z ∈ U ,

implies f ∈ S∗(β). (A = 1− 2β and B = −1 in Corollary 2.9);

vii) If 0 < γ ≤ 1 then |G(1−α, α, f ; z)− 1| ≤ γ
(
1 + α

1+γ

)
, z ∈ U , implies

∣∣∣zf ′(z)
f(z) − 1

∣∣∣ < γ, z ∈ U . (A = γ and B = 0 in Corollary 2.9);

Remark 2.11. The results (v) and (vii), γ = 1, of Example 2.10 can be
found on pages 252 and 257 in [1], respectively.
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