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Abstract. Suppose that D is the domain in R
d, d ≥ 3, above the

graph of a bounded C1,1 function Γ : R
d−1 → R and that pD(t, x, y) is the

Dirichlet heat kernel in D. In this paper we show that there exist positive
constants C1, C2, C3 and C4 such that for all t > 0 and x, y ∈ D,

C1(
ρ(x)ρ(y)

t
∧ 1)t−d/2e−

C2|x−y|2
t ≤ pD(t, x, y),

pD(t, x, y) ≤ C3(
ρ(x)ρ(y)

t
∧ 1)t−d/2e−

C4|x−y|2
t ,

where ρ(x) stands for the distance between x and ∂D.

1. Introduction

Suppose that D is a domain (i.e., a connected open set) in Rd and that
pD(t, x, y) is the Dirichlet heat kernel for the Laplacian in D. Understand-
ing the boundary behavior of pD is of fundamental importance and a lot of
progress has been made, see, for instance, [1, 6, 7, 8, 9, 13, 16] and [17]. It is
known that when the Dirichlet heat semigroup on D is intrinsic ultracontrac-
tive, there is a T > 0 such that

1

2
e−E0tφ0(x)φ0(y) ≤ pD(t, x, y) ≤ 3

2
e−E0tφ0(x)φ0(y), t ≥ T, x, y ∈ D,

where E0 is the smallest eigenvalue of the Dirichlet Laplacian −∆|D and
φ0 is the corresponding eigenfunction normalized by

∫
D φ2

0(x)dx = 1. (For
geometric conditions on D guaranteeing the intrinsic ultracontractivity, see
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[1, 6, 7] and [8].) However, the estimates above do not hold when t is small.
In [16], Zhang proved that, when D is a bounded C1,1 domain in Rd, d ≥ 3,
there exist positive constants T , C1, C2, C3 and C4 such that for all t ∈ (0, T ]
and x, y ∈ D,

(1.1)
C1(

ρ(x)ρ(y)

t
∧ 1)t−d/2e−

C2|x−y|2
t ≤ pD(t, x, y),

pD(t, x, y) ≤ C3(
ρ(x)ρ(y)

t
∧ 1)t−d/2e−

C4|x−y|2
t ,

where ρ(x) stands for the distance between x and ∂D. In [13], it was shown
that the result above remains valid in dimensions one and two. When D is
the complement of a compact set in Rd, d ≥ 3, Grigor’yan and Saloff-Coste
proved that pD(t, x, y) has upper and lower Gaussian estimates for x and y
away from the boundary. In [17], Zhang proved that, when D is an exterior
C1,1 domain in Rd, d ≥ 3, there exist positive constants C1, C2, C3 and C4

such that for all t ∈ (0,∞) and x, y ∈ D,

(1.2)
C1(

ρ(x)ρ(y)

t ∧ 1
∧ 1)t−d/2e−

C2|x−y|2
t ≤ pD(t, x, y),

pD(t, x, y) ≤ C3(
ρ(x)ρ(y)

t ∧ 1
∧ 1)t−d/2e−

C4|x−y|2
t .

The estimates (1.1) and (1.2) were used in [13] to establish sharp bounds
on the Green function, jump function and transition density of the subordinate
killed Brownian motion in D, when D is either a bounded C1,1 domain or an
exterior C1,1 domain. The main motivation for this paper is to extend the
sharp estimates of [13] to other domains, such as domains above graphs of
C1,1 functions. To accomplish this, we need to establish explicit upper and
lower estimates for pD(t, x, y) when D is the domain in Rd (d ≥ 3) above the
graph of a bounded C1,1 function. More precisely we will, by adapting the
arguments of [16] to the present case, show that (1.1) is valid for all t ∈ (0,∞)
and x, y ∈ D. The main result of this paper is also valid when d = 2. To show
this, one has to come up with an analogue in dimension two of Theorem 2.1
below and then follow the argument of Section 3. We are only going to deal
with the case d ≥ 3, we leave the case d = 2 to the interested reader.

The rest of the paper is organized as follows. In Section 2 we give the
basic definitions and prove a simple geometric result which is essential for
the argument of this paper. Section 3 contains the main result. In the last
section, we apply our main result to get sharp estimates on the density, Green
function and jumping function of subordinate killed Brownian motion in D.

After this paper was finished, the author came across the recent paper
[15], in which Varopoulos proved, among other things, that the Dirichlet heat
kernel in a domain D above the graph of a Lipschitz function satisfies for all



ESTIMATES ON DIRICHLET HEAT KERNELS 277

(t, x, y) ∈ (0,∞)×D ×D the estimates:

(1.3)
C1P (t, x)P (t, y)t−d/2e−

C2|x−y|2
t ≤ pD(t, x, y),

pD(t, x, y) ≤ C3P (t, x)P (t, y)t−d/2e−
C4|x−y|2

t ,

where P (t, x) = P x(t < τD) with τD being the first time that Brownian
motion exits the domain D. If one knew that, when D is the domain above
the graph of a bounded C1,1 function,

(1.4) c
ρ(x)√
t
∧ 1 ≤ P (t, x) ≤ C ρ(x)√

t
∧ 1, (t, x) ∈ (0,∞)×D

for some 0 < c ≤ C <∞, one could immediately get the main results of this
paper from (1.3). However, (1.4) is not known. To get (1.4), one probably has
to go through the main argument of the present paper. So in this sense, the
explicit estimates of this paper are new. Also, the arguments of this paper
are much more elementary.

2. Preliminaries

A bounded domain D in Rd, d ≥ 2, is said to be a bounded C1,1 domain if
there exist positive constants r0 and M with the following property: for every
z ∈ ∂D and r ∈ (0, r0], there exist a function Γz : Rd−1 → R satisfying the
condition |∇Γz(ξ)−∇Γz(η)| ≤M |ξ−η| for all ξ, η ∈ Rd−1 and an orthonormal
coordinate system CSz such that if y = (y1, . . . , yd) in the CSz coordinates,
then

B(z, r) ∩D = B(z, r) ∩ {y : yd > Γz(y1, . . . , yd−1)}.
The constant r0 is called the localization constant of D and M is called the
C1,1 constant of D.

A domain D in Rd, d ≥ 2, is said to be an exterior domain if its com-
plement is a compact set. An exterior domain is said to be an exterior C1,1

domain if there exist positive constants r0 and M with the following prop-
erty: for every z ∈ ∂D and r ∈ (0, r0], there exist a function Γz : Rd−1 → R
satisfying the condition |∇Γz(ξ)−∇Γz(η)| ≤M |ξ− η| for all ξ, η ∈ Rd−1 and
an orthonormal coordinate system CSz such that if y = (y1, . . . , yd) in the
CSz coordinates, then

B(z, r) ∩D = B(z, r) ∩ {y : yd > Γz(y1, . . . , yd−1)}.
The following result played a very important role in [16] and [17].

Theorem 2.1. Suppose that D is a bounded C1,1 domain in Rd (d ≥
3) with localization constant r0 and C1,1 constant M . Let diam(D) be the
diameter of D. Then there exists a constant C = C(r0,M, diam(D)) > 0
such that the Green function GD of D satisfies the following estimates:

1

C

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d−2
≤ GD(x, y) ≤ C

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d−2
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for all x, y ∈ D. Here ρ(x) denotes the Euclidean distance between x and
∂D. The dependence of C = C(r0,M, diam(D)) on r0 and diam(D) is only
through the ratio diam(D)/r0.

The upper bound in the theorem above is due to [10], and the lower bound
is due to [18]. The form of the theorem stated above (in particular, the last
assertion) is taken from [3].

Suppose that Γ : Rd−1 → R is a fixed bounded function such that

|∇(ξ)| ≤ λ, ∀ξ ∈ Rd−1

and
|∇Γ(ξ)−∇Γ(η)| ≤ γ|ξ − η|, ∀ξ, η ∈ Rd−1

for some constants λ and γ. For x = (x1, . . . , xd) ∈ Rd we write x̃ =
(x1, . . . , xd−1). In this paper we will concentrate on the domain

D = {x ∈ Rd : xd > Γ(x̃)}.
As in [2], for any x ∈ Rd and constants a, r > 0, we define

∆(x, a, r) = {y ∈ D : Γ(ỹ) < yd < Γ(ỹ) + a, |ỹ − x̃| < r}.
For any x ∈ D, we use ρ(x) to denote the Euclidean distance between x

and ∂D and we use δ(x) to denote the vertical distance between x and ∂D:

δ(x) = xd − Γ(x̃).

It is easy to check that there exists κ = κ(λ) ∈ (0, 1] such that

(2.1) κδ(x) ≤ ρ(x) ≤ δ(x), x ∈ D.
The following geometric result will play a very important role in estab-

lishing our main result.

Lemma 2.2. For any x ∈ Rd (d ≥ 2) and r ≥ 1, there exists a bounded
C1,1 domain D(x,r) containing ∆(x, r, r) such that (1) {y ∈ ∂D : |ỹ− x̃| ≤ r}
and {y ∈ Rd : |ỹ − x̃| ≤ r, yd = Γ(ỹ) + r} are both contained in ∂D(x,r);

(2) the C1,1 constant of Dx,r is bounded from above by a constant depending
only on Γ; (3) the ratio diam(D(x,r))/r0 is bounded from above by a constant
depending only on Γ, where diam(D(x,r)) is the diameter of D(x,r) and r0 is
the localization constant of D(x,r).

Proof. Without loss of generality we may and do assume that (x̃,Γ(x̃))
is at the origin of Rd. Let ϕ be a C∞ function on [0,∞) such that (1) ϕ(s) = 1
for s ∈ [0, 1]; (2) ϕ(s) = 0 for s ∈ [2,∞); (3) 0 < ϕ(s) < 1 for s ∈ (1, 2). For
any r ≥ 1, define ϕr(s) = ϕ(s/r). Then the function Γr(ỹ) = Γ(ỹ) · ϕr(|ỹ|)
coincides with Γ(ỹ) when |ỹ| ≤ r and equals 0 when |ỹ| ≥ 2r. Let’s denote
the following domain

{y ∈ Rd : |ỹ| < 2r,Γr(ỹ) < yd < Γr(ỹ) + r}
by Ω1. We are going to enlarge Ω1 to get the desired domain.
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Consider the following rectangle in the x1xd plane

Q = {(y1, yd) : |y1| < 2.5, 0 < yd < 1}.
By adding appropriate half-disk like regions at the right and left ends of Q, we
can get a bounded C1,1 domain V in the x1xd plane. Put U = V \ {(y1, yd) :
|y1| < 2, 0 < yd < 1}, define Ur = {(ry1, ryd) : (y1, yd) ∈ U} and let Ω2 the
subset of Rd obtained by revolving Ur around the xd-axis. Then it is easy to
check that the domain Ω1 ∪ Ω2 satisfies all the requirements of the lemma.

3. The main results

In this section we are going to establish our main result. The argument of
this section are adapted from that [16]. From now on we assume that d ≥ 3.
In the rest of this paper pD(t, x, y) stands for the Dirichlet heat kernel in D.

Lemma 3.1. Suppose that δ2(x) ≥ a1t and δ2(y) ≥ a1t for some a1 > 1,
then there exist positive constants C1 and C2 depending only on D and a1

such that for all t > 0,

1

C1td/2
exp(−|x− y|

2

C2t
) ≤ pD(t, x, y) ≤ C1

td/2
exp(−C2|x− y|2

t
).

Proof. The proof of this lemma is similar to that of Lemma 2.1 of [16].
The upper bound is trivial, so we only need to prove the lower bound. The
proof is divided into three steps.

Step 1: We prove the following claim: Suppose that δ2(x) ≥ a1t for some
a1 > 1, then there exists a positive constant c depending only on D such that

pD(t, x, x) ≥ c

td/2
.

We pick a point z ∈ D such that δ2(z) ≥ a1t. Let φ ∈ C∞
0 (B(z, κ

√
t

2 ))

be such that φ(x) = 1 when x ∈ B(z, κ
√

t
4 ) and 0 ≤ φ(x) ≤ 1 everywhere.

Consider the function

u(x, s) =

∫

D

pD(s, x, y)φ(y)dy.

As in [12], we extend u by assigning u(x, s) = 1 when s < 0 and x ∈ B(z, κ
√

t
4 ),

then u is a positive solution of ∂u
∂s = ∆u in B(z, κ

√
t

4 ) × (−∞,∞) ⊂ D ×
(−∞,∞). Using the parabolic Harnack inequality twice we get

u(z, 0) ≤ C1u(x,
t

4
)

pD(
t

4
, z, y) ≤ C1p

D(t, z, z)
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for some constant C1 > 0 independent of z. Hence

1 = u(z, 0) ≤ C1u(x,
t

4
) = C1

∫

B(z, κ
√

t
2 )

pD(
t

4
, z, y)φ(y)dy

≤ C2
1p

D(t, z, z)

∫

B(z, κ
√

t
2 )

φ(y)dy ≤ C2p
D(t, z, z)t−d/2,

for some constant C2 > 0 depending only on D. Since z is arbitrary, the claim
is proven.

Step 2: We prove the following claim: Suppose that δ2(x) ≥ a1t for some
a1 > 1 and |x − y|2 ≤ κ2t, there exists a positive constant c depending only
on D and a1 such that

pD(t, x, y) ≥ c

td/2
.

By Step 1, we know that there exists c1 > 0 depending only on D such
that

pD(t, x, x) ≥ c1
td/2

.

Consider the function u(y, s) = pD(s, x, y), which is a solution of ∂u
∂s = ∆u in

B(x, κ(1 + ε)
√
t)× (0,∞) ⊂ D × (0,∞). Here ε > 0 is sufficiently small. By

the Harnack inequality we get

pD(t, x, y) ≥ c2pD(
t

2
, x, x) >

c1c2
td/2

for some constant c2 depending only on D and a1. This completes Step 2.
Step 3: In this step, we treat the remaining case: δ2(x) ≥ a1t, δ

2(y) ≥ a1t
and |x− y|2 ≥ κ2t.

By our assumption on D, we can easily see that there exists a length
parameterized curve l ⊂ D connecting x and y such that |l| = λ1|x − y|
for some λ1 ≥ 1. Here λ1 ≤ λ0 which is a constant depending on D only.
Moreover l can be chosen so that ρ(l(s), ∂D) ≥ λ2

√
t for all s ∈ [0, |l|]. Here

λ2 is another constant depending on D only.
For λ3 > 0 to be determined later, let m be the smallest positive integer

satisfying

λ3|x− y|2
κ2t

≤ m

and xj = l( jλ1|x−y|
m ) for j = 0, 1, . . . ,m. Then

pD(t, x, y) ≥
∫
pD(

t

m
, x, y1)p

D(
t

m
, y1, y2) · · · pD(

t

m
, ym−1, y)dy1 · · · dym−1

where we integrate yj over the set
{
yj : |yj − xj | ≤

κ

4
(
t

m
)1/2

}
∩D.
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Note that √
κ2t

m
≤
√

κ4t2

λ3|x− y|2
≤
√
κ2t

λ3
≤ κρ(xj)

λ2

√
λ3

.

Taking λ3 sufficiently large, we have
√

t

m
≤ ρ(xj)

4
≤ |xj − yj |

4
+
ρ(yj)

4
,

for j = 0, 1, . . . ,m. This shows that ρ(yj) > 2
√

t
m and hence

{
yj : |yj − xj | ≤

κ

4
(
t

m
)1/2

}
∩D =

{
yj : |yj − xj | ≤

κ

4
(
t

m
)1/2

}
.

Observe that

|yj − yj+1| ≤ |xj − xj+1|+ |yj − xj |+ |xj+1 − yj+1|

≤ |xj − xj+1|+
1

2

√
κ2t

m
≤ λ1|x− y|

m
+

1

2

√
κ2t

m

=
λ1√
m

|x− y|√
m

+
1

2

√
κ2t

m
≤ λ1√

m

|x− y|
√
κ2t√

λ3|x− y|
+

1

2

√
κ2t

m

≤ 2

3

√
κ2t

m
,

when λ3 is sufficiently large. By step 2 there exists c > 0 depending only on
D such that

pD(
t

m
, yk, yk+1) ≥

c

( t
m )d/2

for y1, . . . , ym in the region where the above integral takes place. Hence

pD(t, x, y) ≥
m−1∏

j=0

c

( t
m )d/2

m−1∏

j=1

(
κ2t

16m
)d/2 ≥ c1

cm2
td/2

,

for some positive constants c1 and c2 depending only on D and a1. Since m

is comparable to |x−y|2
t , the above implies that, for some positive constants

c3 and c4 depending only on D and a1,

pD(t, x, y) ≥ 1

c3td/2
exp(−|x− y|

2

c4t
).

The following two lemmas are the analogs of Lemma 2.2 and Lemma 2.3
of [16] respectively. The difference is that the two lemmas below are valid for
all t while Lemma 2.2 and Lemma 2.3 of [16] hold only for small t.
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Lemma 3.2. If δ2(x) ≤ a1t and δ2(y) ≥ 16a1t
κ2 for some a1 > 1, then there

exist positive constants C1 and C2 depending only on D and a1 such that for
all t > 0,

ρ(x)

C1t(d+1)/2
exp(−|x− y|

2

C2t
) ≤ pD(t, x, y) ≤ C1ρ(x)

t(d+1)/2
exp(−C2|x− y|2

t
).

Proof. This proof is similar to the proof of Lemma 2.2 of [16]. The
unspecified constants appearing in this proof are independent of t, x and y.
We prove the upper bound first. Given x ∈ D such that δ2(x) ≤ a1t, let
x = (x̃,Γ(x̃)) and xt = (x̃,Γ(x̃) +

√
2a1t). Then |x − xt| =

√
2a1t. Put

x′t = (x̃,Γ(x̃) + 4
√

a1t
κ ). Clearly

|xt − x′t| = (
4

κ
−
√

2)
√
a1t(3.1)

|x− x′t| ≥
4
√
a1t

κ
−
√
a1t ≥ 3

√
a1t.(3.2)

For any y ∈ D, write u(z, s) = pD(s, z, y) and v(z) = GΩ(z, x′t), where Ω =
Dx,8

√
a1t/κ2 is the bounded C1,1 domain constructed in Lemma 2.2 with r =

8
√
a1t/κ

2. Both u and v are positive solutions of the equation ∂su = 1
2∆u in

the region ∆(x, 3.5
√
a1t/κ, 3.5

√
a1t/κ)× (0,∞) and u(z, s) = v(z) = 0 when

z ∈ ∂D. By the local comparison theorem in [11], there exists c1 > 0 such
that

u(x, t)

v(x)
≤ c1

u(xt, 2t)

v(xt)
,

that is,

(3.3) pD(t, x, y) ≤ c1
GΩ(x, x′t)

GΩ(xt, x′t)
pD(2t, xt, y).

By Lemma 2.2 we have that ρΩ(x) = ρ(x), ρΩ(xt) = ρ(xt) and ρΩ(x′t) = ρ(x′t),
thus by Theorem 2.1 we have

GΩ(x, x′t) ≤ C
ρ(x)

|x− x′t|d−1
≤ C ρ(x)

t(d−1)/2

GΩ(xt, x
′
t) ≥ C

|xt − x′t|d−2
≥ C

t(d−2)/2
.

Hence

(3.4) pD(t, x, y) ≤ C ρ(x)√
t
pD(2t, xt, y).

When y ∈ D satisfies δ(y)2 ≥ 16a1t/κ
2,

|y − x| ≥ ρ(y)− ρ(x) ≥ κδ(y)−
√
a1t

≥
√

16a1t−
√
a1t ≥

3√
2
|x− xt|.
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Hence

|y − xt| ≥ |y − x| − |x− xt| ≥
1

2
|y − x|(3.5)

|y − xt| ≤ |x− y|+ |x− xt| ≤ 4|x− y|.(3.6)

Thus by (3.4) and (3.5) we get

pD(t, x, y) ≤ C ρ(x)

t(d+1)/2
exp(−c2|xt − y|2

t
) ≤ C ρ(x)

t(d+1)/2
exp(−c3|x− y|

2

t
)

Now let us prove the lower bound. Keeping the same notation as above,
by the local comparison theorem again, we have

u(x, t)

v(x)
≥ c1

u(xt, t/2)

v(xt)
,

that is,

(3.7) pD(t, x, y) ≥ c1
GΩ(x, x′t)

GΩ(xt, x′t)
pD(

t

2
, xt, y).

By Theorem 2.1 we have

GΩ(x, x′t) ≥ C

(
ρ(x)ρ(x′t)

|x− x′t|2
∧ 1

)
1

|x− x′t|d−2

≥ C

(
ρ(x)

|x− x′t|
∧ 1

)
1

|x− x′t|d−2

= C
ρ(x)

|x− x′t|d−1

and

GΩ(xt, x
′
t) ≤

1

|xt − x′t|d−2
.

Hence

(3.8) pD(t, x, y) ≥ Cρ(x)|xt − x′t|d−2

|x− x′t|d−1
pD(

t

2
, xt, y) ≥

Cρ(x)

t1/2
pD(

t

2
, xt, y),

where we used (3.1) and (3.2). Since δ2(xt) = 2a1t and δ2(y) ≥ 16a1t/κ
2,

Lemma 3.1 implies

pD(
t

2
, xt, y) ≥

c1
td/2

exp(−c2|xt − y|2
t

) ≥ c1
td/2

exp(−c3|x− y|
2

t
)

where the last inequality is due to (3.6). Therefore

pD(t, x, y) ≥ Cρ(x)

t(d+1)/2
exp(−c3|x− y|

2

t
).
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Lemma 3.3. If ρ2(x) ≤ a2t and ρ2(y) ≤ a2t for some a2 > 1, then there
exist positive constants C1 and C2 depending only on D and a2 such that for
all t > 0,

ρ(x)ρ(y)

C1t(d+2)/2
exp(−|x− y|

2

C2t
) ≤ pD(t, x, y) ≤ C1ρ(x)ρ(y)

t(d+2)/2
exp(−C2|x− y|2

t
).

Proof. The proof of this lemma is similar to that Lemma 2.3 of [16] and
the unspecified constants appearing in this proof are independent of t, x and
y. Let us keep the notations in the proof of Lemma 3.2 except replacing a1 by
a2. Then following the proof of the upper bound in Lemma 3.2 we see that
for all y ∈ D,

(3.9) pD(t, x, y) ≤ C ρ(x)√
t
pD(2t, xt, y).

Now let ũ(z, s) = pD(s, z, xt) and ṽ(z) = GΩ(z, y′t), where yt and y′t are the
counterparts of xt and x′t for y.

Both ũ and ṽ are positive solutions of ∂su = 1
2∆u in the region

∆(x, 3.5
√
a2t/κ, 3.5

√
a2t/κ) × (0,∞) and u(z, s) = v(z) = 0 when z ∈ ∂D.

By the local comparison theorem in [11], there exists c1 > 0 such that

ũ(y, 2t)

ṽ(y)
≤ c1

ũ(yt, 4t)

ṽ(yt)
,

that is,

pD(2t, y, xt) ≤ c1
GΩ(y, y′t)

GΩ(yt, y′t)
pD(4t, yt, xt).

Since |y− y′t| and |yt− y′t| are comparable with
√
a2t, we have as in the proof

of the last lemma

pD(2t, y, xt) ≤
Cρ(y)

t(d+1)/2
exp(−c2|xt − yt|2

t
).

Since |xt − yt| ≥ |x − y| − |y − yt| − |x − xt| ≥ |x − y| − C
√
a2t, the above

implies

pD(2t, y, xt) ≤
Cρ(y)

t(d+1)/2
exp(−c3|x− y|

2

t
).

This and (3.9) yield the upper bound

pD(t, x, y) ≤ Cρ(x)ρ(y)

t(d+2)/2
exp(−c3|x− y|

2

t
).

Now we are going to prove the lower bound. Following the proof of the
lower bound in Lemma 3.2, we get that for all y ∈ D,

pD(t, x, y) ≥ Cρ(x)

t1/2
pD(

t

2
, xt, y),
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Switching the roles of x and y we get

pD(
t

2
, xt, y) = pD(

t

2
, y, xt) ≥

Cρ(y)

t1/2
pD(

t

4
, xt, yt).

Since δ(xt)
2 = δ(yt)

2 = 2a2t, Lemma 3.1 implies

pD(
t

4
, xt, yt) ≥

C

td/2
exp(−c4|xt − yt|2

t
) ≥ C

td/2
exp(−c5|x− y|

2

t
),

where we used the inequality |xt−yt| ≤ |x−y|+|x−xt|+|y−yt| ≤ |x−y|+c
√
t.

The last three inequalities imply the desired lower bound.

Now here is our main result.

Theorem 3.4. There exist positive constants C1 and C2 depending only
on D such that for any t > 0 and any x, y ∈ D,

1

C1
(
ρ(x)ρ(y)

t
∧ 1)t−d/2 exp(−|x− y|

2

C2t
) ≤ pD(t, x, y),

pD(t, x, y) ≤ C1(
ρ(x)ρ(y)

t
∧ 1)t−d/2 exp(−C2|x− y|2

t
).

Proof. For any t > 0 and a1 > 1, put

D1 = {(x, y) ∈ D ×D : ρ2(x) ≥ a1t, ρ
2(y) ≥ a1t}

D2 = {(x, y) ∈ D ×D : ρ2(x) ≤ a1t, ρ
2(y) ≥ 16a1t

κ2
}

D3 = {(x, y) ∈ D ×D : ρ2(x) ≥ 16a1t

κ2
, ρ2(y) ≤ a1t}

D4 = {(x, y) ∈ D ×D : ρ2(x) ≤ 16a1t

κ2
, ρ2(y) ≤ 16a1t

κ2
},

then D ×D = D1 ∪D2 ∪D3 ∪D4. The theorem follows by taking a2 = 16a1

κ2

in Lemma 3.3 and combining it with Lemmas 3.1 and 3.2.

As a consequence of this result, we get the following sharp estimates on
the Green function GD .

Theorem 3.5. There exists a constant C > 0 such that for all x, y ∈ D,

1

C

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d−2
≤ GD(x, y) ≤ C

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d−2
.

Proof. The upper bound follows by integrating the upper bound in the
theorem above with respect to t. The lower bounds can be obtained using an
argument similar to the proof of Theorem 4.3 in [13].

As a consequence of Theorem 3.5, we immediately get the following sharp
estimates on the Poisson kernel PD.
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Theorem 3.6. There exists a constants C > 0 such that for all x ∈ D
and z ∈ ∂D,

1

C

ρ(x)

|x− z|d ≤ PD(x, z) ≤ C ρ(x)

|x− z|d .

Another consequence of Theorem 3.5 is the following 3G theorem which
is very useful in analysis and probability (see [4] for one of the applications).

Corollary 3.7. There exists a constant C > 0 such that

GD(x, y)GD(y, z)

GD(x, z)
≤ C

(
ρ(y)

ρ(x)
GD(x, y) +

ρ(y)

ρ(z)
GD(y, z)

)
, x, y, z ∈ D.

4. Applications to subordinate killed Brownian motion

In this section we assume α ∈ (0, 2). Let ∆|D be the Dirichlet Laplacian
in D. The fractional power −(−∆|D)α/2 of the negative Dirichlet Laplacian
is a very useful object in analysis and partial differential equations. There is
a Markov process Z corresponding to −(−∆|D)α/2 which can be obtained as
follows: We first kill the Brownian motion X at τD, the first exit time of X
from D, and then we subordinate the killed Brownian motion using the α/2-
stable subordinator Tt. Note that in comparison with the killed symmetric
α-stable process onD the order of killing and subordination has been reversed.
For the differences between Z and the killed symmetric α-stable process on
D, please see [14].

It is well known that the Dirichlet form E of Z is given by

E(u, u) =

∫

D

∫

D

(u(x)− u(y))2JD(x, y)dxdy +

∫

D

u2(x)KD(x)dx

where JD and KD are the jumping and killing functions of Z respectively
given by

JD(x, y) =

∫ ∞

0

pD(t, x, y) ν(dt)(4.1)

KD(x) =

∫ ∞

0

(1− PD
t 1(x)) ν(dt),(4.2)

where

ν(dt) =
α/2

Γ(1− α/2)
t−α/2−1 dt

is the Lévy measure of the α/2-stable subordinator.

Let rD(t, x, y) be the density of Z and G̃D the Green function of Z. It
follows from [14] and [13] that

rD(t, x, y) =

∫ ∞

0

pD(s, x, y)µ(t, s)ds

G̃D(x, y) =

∫ ∞

0

rD(t, x, y) dt =
1

Γ(α/2)

∫ ∞

0

pD(t, x, y)tα/2−1dt
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where µ(t, s) is the density of the one-sided α/2-stable convolution semigroup.

Sharp estimates on JD, G̃D and rD have been established when D is
either a bounded C1,1 domain or an exterior C1,1 domain. In this section we
deal with the case when D is the domain above the graph of a C1,1 function,
as specified in the previous section.

By using Theorem 3.4 and following the arguments in Section 4 of [13],
we can get the following results.

Theorem 4.1. Suppose that D is the domain specified in the previous
section.

(1) There exist positive constants C1 and C2 such that for all x, y ∈ D,

C1

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d+α
≤ JD(x, y) ≤ C2

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d+α

(2) There exist positive constants C3 and C4 such that for all x, y ∈ D,

C3

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d−α
≤ G̃D(x, y) ≤ C4

(
ρ(x)ρ(y)

|x− y|2 ∧ 1

)
1

|x− y|d−α

Theorem 4.2. Suppose that D is the domain specified in the previous
section. There exist positive constants C1 and C2 such that

C1

(
ρ(x)ρ(y)

t2/α + |x− y|2 ∧ 1

)
t−

d
α

(
1 +
|x− y|2
t2/α

)− d+α
2

≤ rD(t, x, y)

≤ C2

(
ρ(x)ρ(y)

t2/α + |x− y|2 ∧ 1

)
t−

d
α

(
1 +
|x− y|2
t2/α

)− d+α
2

.
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[1] R. Bañuelos, Intrinsic ultracontractivity and eigenfunction estimates for Schrödinger

operators, J. Funct. Anal. 100 (1991), 181–206.
[2] R. F. Bass and K. Burdzy, A probabilistic proof of the boundary Harnack principle,

In: Seminar on Stochastic Processes, 1989, Birhäuser, Boston, 1990, 1–16.
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