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BOUNDED 2-LINEAR OPERATORS ON 2-NORMED SETS

ZOFIA LEWANDOWSKA
Pedagogical University, Poland

ABSTRACT. In this paper properties of bounded 2-linear operators
from a 2-normed set into a normed space are considered. The space of
these operators is a Banach space and a symmetric 2-normed space. In the
third part we will formulate Banach-Steinhaus Theorems for a family of
bounded 2-linear operators from a 2-normed set into a Banach space.

1. INTRODUCTION
In [1] S. Géhler introduced the following definition of a 2-normed space:

DEFINITION 1.1. [1] Let X be a real linear space of dimension greater
than 1 and let || -, - || be a real valued function on X x X satisfying the
following four properties:

(G1) ||z, y|l =0 if and only if the vectors x and y are linearly dependent;
(G2) [z, yll = lly, [l

(G3) ||z, ay| =] o | -||x, y|| for every real number a;
(G4) llz,y + 2|l < llz, yll + ||z, z|| for every x,y,z € X.
The function || -, - || will be called a 2-norm on X and the pair (X,|| -, - )

a linear 2-normed space.

In [4] and [5] we gave a generalization of the Géhler’s 2-normed space.
Namely a generalized 2-norm need not be symmetric and satisfy the first
condition of the above definition.

DEFINITION 1.2. [4] Let X and Y be real linear spaces. Denote by D
a non-empty subset of X XY such that for every x € X, y € Y the sets
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D, ={yeY; (z,y) € D} and DY = {zx € X; (v,y) € D} are linear
subspaces of the space Y and X, respectively.

A function || -, - ||: D — [0,00) will be called a generalized 2-norm on D
if it satisfies the following conditions:

(N1) ||z, ey|| =| | ||z, yll = ||z, y|| for any real number o and all (x,y) €

(N2) ||z, y+2[ < ||z, yll+]lz, 2|| forz € X, y,z € Y such that (z,y), (z,2) €

D;
(N3) [l2-+y, 2| < 2, 2+l 2]l for 2,y € X, = € Y such that (z,2), (y,2) €
D.
The set D is called a 2-normed set.
In particular, if D = X xY |, the function || -, - || will be called a
generalized 2-norm on X x'Y and the pair (X x Y| -, - ||) a generalized

2-normed space.
Moreover, if X =Y, then the generalized 2-normed space will be denoted

by (X, [+, - 1)

Assume that the generalized 2-norm satisfies, in addition, the symmetry
condition. Then we will define the 2-norm as follows:

DEFINITION 1.3. [4] Let X be a real linear space. Denote by X a non-
empty subset of X x X with the property X = X~' and such that the set
XY ={z € X;(x,y) € X} is a linear subspace of X, for ally € X.

A function || -, - ||: X — [0,00) satisfying the following conditions:

(S1) ||z, yll = lly, || for all (x,y) € X;
(S2) ||z, ayll =] | - ||z, yl| for any real number a and all (x,y) € X;
(S3) |z, y+z|| < ||l=,yl| + ||z, || for z,y,z € X such that (x,y), (x,z) € X;

will be called a generalized symmetric 2-norm on X. The set X s called a
symmetric 2-normed set. In particular, if X = X x X, the function || -, - ||
will be called a generalized symmetric 2-norm on X and the pair (X, || -, - |)
a generalized symmetric 2-normed space.

In [4], [5], [6], [7] we considered properties of generalized 2-normed spaces
and 2-normed sets.
In what follows we shall use the following results:

THEOREM 1.4. [4] Let (X xY,|| -, - ||) be a generalized 2-normed space.
Then the family B of all sets defined by

({z € X; ||l uill <&},

=1

where Y1,Y2, ..., Yn € Y,n € N and € > 0, forms a complete system of neigh-
borhoods of zero for a locally convex topology in X .
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We will denote it by the symbol 7 (X,Y"). Similarly, we have the preceding
theorem for a topology 7 (Y, X) in the space Y. In the case when X =Y we
will write: 73(X) = 7(X,Y) and T2(X) = T (Y, X).

Let (X xY,| -, - |l) be a generalized 2-normed space and let ¥ be a
directed set. A net {x,;0 € ¥} is convergent to z, € X in (X, 7 (X,Y)) if and
only if for all y € Y and € > 0 there exists 0, € X such that ||z, — zo,y|| < €
for all ¢ > 0,. Similarly we have the notion of convergence in (Y, 7 (Y, X)).

A sequence {z,;n € N} C X is a Cauchy sequence in (X,7(X,Y)) if
and only if for every y € Y and € > 0 there exists a number n, € N such that
inequality n,m > n, implies |2, — m, y|| < €. A space (X,7 (X,Y)) is called
sequentially complete if every Cauchy sequence in (X, 7 (X,Y")) is convergent
in this space. Analogously we have the notion of sequential completeness for
the space (Y, 7 (Y, X)).

EXAMPLE 1.5. [4] Let X be a real linear space which have two norms
(seminorms) || « |l1,] - ll2- Then (X, || -, - ||) is a generalized 2-normed space
with the 2-norm defined by the formula

2, yll = llzll1 - [y]l2 for each z,y € X.

Let us remark that topologies generated by these norms || - ||; and || - |2
coincide with the topologies 7;(X) and 72(X) given in Theorem 1.4.

EXAMPLE 1.6. In Example 1.5 we can get | - |1 = | - [2- Then
(X, -, - ||) is a generalized symmetric 2-normed space with the symmetric
2-norm defined by the formula

(1.1) |z, y|| = =] - ||y|| for each z,y € X.

Let us remark that a symmetric 2-normed space need not be a 2-normed
space in the sense of Géhler. For instance given in Example 1.6 x # 0,y =
kzx,k # 0 we obtain

o yll = ll=, k2l = & | -2, zll =| k | =] > 0,

but in spite of this x and y are linearly dependent. The 2-normed space from
Example 1.6 is not a 2-normed space in the sense of Definition 1.1.

It is easy to see that if (X,|| - ||) is a normed space, 73 —the topology
generated by this norm and 73 —the topology generated by the 2-norm defined
by the formula (1.1), then 7; = 75. Moreover a sequence {x,;n € N} is a
Cauchy sequence in (X,| - ||) if and only if it is a Cauchy sequence in
(X, - - |I) with the 2-norm defined in Example 1.6.

Thus the following theorem follows.

THEOREM 1.7. A normed space (X, || - ||) is a Banach space if and only if
the symmetric 2-normed space with the 2-norm defined by (1.1) is sequentially
complete.
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2. THE SPACE OF ALL BOUNDED 2-LINEAR OPERATORS

In [8] A. G. White defined and considered the properties of bounded 2-
linear functionals from B x B, where B denotes a 2-normed space in the sense
of Géhler. He proved that the set of all bounded 2-linear functionals is a
Banach space.

S. S. Kim, Y. J. Cho and A. G. White in [3] and A. Khan in [2] gave the
properties of bounded operators from X x X with values in a normed space
Y, where X denotes a 2-normed space in the sense of Géhler. They showed
that the set B(X x X,Y) of all bounded operators from X x X into Y is a
seminormed space. Moreover, if Y is a Banach space, then B(X x X,Y) is a
complete space.

In this section we will consider bounded 2-linear operators defined on a
2-normed set into a normed space. We will show, like in the above mentioned
papers, that the space of these operators is a Banach space. We will prove
that under some additional conditions it is a symmetric 2-normed space.

Let us consider a real linear space X. Let D C X x X be a 2-normed set,
Y a normed space.

DEFINITION 2.1. An operator F': D — Y is said to be 2-linear if it satisfies
the following conditions:
1. Fla+¢,b+d) = F(a,b) + F(a,d) + F(c,b) + F(c,d) for a,b,c,d € X
such that a,c € D*ND .
2. F(aa,Bb) =« -3 F(a,b) for a,8 € R, (a,b) € D.

DEFINITION 2.2. A 2-normed operator F is said to be bounded if there is
a positive number K such that
|F(a,b)|| < K - [|a,b]| for all (a,b) € D.
DEFINITION 2.3. If F' is a bounded operator, then the following number
[F|l = inf{ K > 0;[|F(a,b)| < K - [|a,b]| for (a,b) € D}

will be called the norm of the 2-linear operator F.

EXAMPLE 2.4. Let (X, (- |- )) be a real inner product space. Then X

is a generalized symmetric 2-normed space with the 2-norm defined as follows:
[z, yll =[ (= |y) | forallz,y € X.

This 2-norm generates a weak topology in the Hilbert space (see Example 1.5
in [4]). An operator F': X x X — R defined by the formula

F(a,b) = (a|b) fora,be X
is 2-linear and bounded. Moreover || F|| = 1.

In the next theorem we will give properties of the above mentioned no-
tions.
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THEOREM 2.5. Let F' be a bounded 2-linear operator. Then:

(a) |F|| € K for K € P = {K/ > 0;||F(a,b)]| < K. la, b|| for
(a,b) € D};

(b) 1F(a,b)[| < [|1F[| - la,b]| for each (a,b) € D;

c)

[l = sup{[| F'(a,b)[|; (a,b) €D, [la,bl| = 1}
= sup{[|F'(a,0)[; (a,0) € D, |a,bl| <1}

_ [1£(a, b)]|
= Sup{ .0l ; (a,b) € D,|la,b| # O}.

PRrROOF. The condition (a) follows from the Definition 2.3.
(b) Because the operator F is bounded, then there exists K > 0 such that
1P(a,b)l| < K - [la,b]| for (a,b) € D.
Thus ||F(a,b)|| < infycp K- |a, b, i.e.
1@, O)|| < [|F[] - [l b].

(c) By (b), sup{'ﬁa;j)”; (a.b) € D, [la,b] # o} < |IF|.

Let A = sup{||F(a,b)||; (a,b) € D, |la,b|| = 1}. Then

F(a,b)
Pa LGl s wepmmm=1}
b||
|F(a,d)]|
sup ; (a,0) €D, la, bl <1
(2.1) { lla, b||
||F(a,b)]
; (a,b) €D, la,b]| #0
{ lla, b||
< |17
Moreover
(2.2) A < sup{|[F(a,b); (a,b) € D, [[a,b]| < 1}.
Let (a,b) € D be such that |la,b]] # 0. Because HH ik b‘ = 1, then
H (W, )H < A. And further by virtue of the equalities
a7
a 1 1
P )| = o @0 = gy - 1P
H |a, 0 la, 0 [la, o]

we obtain ||F(a,b)|| < A-lla,b||. On the other hand, if (a,b) € D and ||a,b|| =
0, then 0 < ||F(a,b)|| < ||F] - |la,b]| = 0, i.e. [|[F(a,b)|| =0 = A-|a,b].
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Consequently ||F(a,b)] < A -|a,b| for all (a,b) € D, which means that
A € PU). By virtue of (a) we obtain
(2.3) |1F| < A.
The conditions (2.1) and (2.3) imply
1] = sup{[| F'(a,b)[|; (a,b) €D, [la,bl| = 1}
F(a,b
= sup{%; (a,b) € D,||a,b| # O}.

From (b) we have sup{||F(a,b)|; (a,b) € D,|la,b|| < 1} < ||F||, which with
(2.2) gives the equality | F|| = sup{||F(a,b)|; (a,b) € D,||a,b|| < 1}, and the
proof is completed. O

DEFINITION 2.6. Let D C X x X be a 2-normed set and Y a normed
space. Denote by Lo(D,Y) the set of all bounded 2-linear operators from D
into Y.

In particular, we will write Ly(X,Y), if X is a generalized 2-normed
space and D = X x X.

Let F,G € Ly(D,Y) and define

1. (F+ G)(a,b) = F(a,b) + G(a,b) for all (a,b) € D;

2. (- F)(a,b) = a- F(a,b) for « € R,(a,b) € D.

THEOREM 2.7. If D is a 2-normed set and Y a normed space, then the
set La2(D,Y) is a normed space with the norm || - || defined in Definition 2.3.

PROOF. Let us take F,G € L3(D,Y),o,8 € R and a,b,c,d € X such
that a,c € D*ND?. For F + G we obtain:

(2.4) (F+G)a+c,b+d) =
’ = (F+G)(a,b) + (F+G)(a,d) + (F+ G)(c,b) + (F + G)(c,d);
(2.5) (F + G)(aa, Bb) = af - (F + G)(a,b).
Moreover by virtue of the condition (b) of Theorem 2.5 we have
I(F' + G)(a, b)|| = [|F(a,b) + G(a, b) |
(2.6) < |1F(a, D) + [|G(a, 0)| < [[F] - lla, bl + |G| - [l b]
= (IFI + 1G] - lla b]l.
Thus F + G € Lo(D,Y).
Analogously we show that «- F' € Lo(D,Y) and
(2.7) (e F)(a,b)|| = llac- F(a,b)[| <[ a [ | F']| - [|a, b]|-

Moreover it is easy to prove that the set Lo(D,Y) is a real linear space.
Now we will show that the function || - ||: L2(D,Y) — [0,00) given in
Definition 2.3 satisfies all conditions of a norm.
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If |F|| = 0, then ||F(a,b)|| = 0 for all (a,b) € D. Thus F(a,b) = 0 for
every (a,b) € D. Conversely, if F' is a zero operator, then
[F]| = sup{||F(a,b)[; (a,b) € D,lla,bl]| =1} = 0.
As a consequence we have the condition
|F|| = 0 if and only if F = 0.

From (2.7) we have | a | - |F|| € P (®F), which with Theorem 2.5 (a) implies
the inequality |ja - F|| <| | - || F||. Assume « # 0. Then

1 1
1Pl =5 o P < i arL
o]

Le. [a|-||F[| < lla- FI; thus [ e | - [ FI| = [la- FJ|.
For o = 0 the equality |- F| =| a | - ||F| is obvious. Therefore
lao- Fl| =] |- ||F]| for a € R.
The condition (2.6) implies ||F|| + ||G|| € P F+%). Hence and from The-
orem 2.5(a) we have |[F + G| < ||F|| + ||G||. This completes the proof.
o

THEOREM 2.8. If D is a 2-normed set and Y is a Banach space, then
Ly(D,Y) is a Banach space.

PROOF. According to Theorem 2.7, Lo(D,Y) is a normed space.
Let {F,;n € N} be a Cauchy sequence in Ly(D,Y). Then

lim ||Fn — Fnl =0

and for every (a,b) € D the following inequality
[Fn(a,b) = Fin(a,b)|| = [|(Fn — Fin)(a, )| < [[Fn — Fi]l - ||a, b

is true. Thus {F),(a,b);n € N} is a Cauchy sequence in Y for every (a,b) € D.
Because Y is complete, the sequence {F},(a,b);n € N} is convergent for every
(a,b) € D. Let us denote

F(a,b) = lim F,(a,b).

n—oo

We shall show that F' € Ly(D,Y).
For a,b,c,d € X such that a,c € D*ND ? we have

Fla+e,b+d)= lim F,(a+c¢,b+d)
= lim F,(a,b)+ lim F,(a,d)+ lim F,(c,b) + lim F,(c,d)
= F(a,b) + F(a,d) + F(c,b) + F(c,d).
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Moreover for a, 3 € R and (a, b) € D we have:
F(aa, fb) = 7111};0 F,(aa, 5b)
= nlLIr;O af - F,(a,b)
=af- nlLH;o F,(a,b)
=af - F(a,b).
Thus F' is a 2-linear operator.
The inequality
[ ERll = [[Emll [< 1 Fn = Fonll

implies that {||F},||;n € N} is a Cauchy sequence in R. As a consequence this
sequence is bounded, that is, there exists K > 0 such that ||F,| < K for all
n € N. Using this result we get
1F(a, b)|| < [[Fn(a, )| + |F(a,b) = Fu(a, b)

< Fll - lla, bl + 1 F'(a; b) = Fu(a, b)]|

< K - o, bl + | Falarb) — F(a, )]
Letting n — oo we obtain ||F(a,d)|| < K - ||a,b|| for every (a,b) € D, which
means that F' is bounded. So we have shown that F' € Ly(D,Y).

Now let us suppose that (a,b) € D and ||a,b|| # 0. Let € > 0. Because
{F,;n € N} is a Cauchy sequence, there exists n, € N such that

|En — Foll < Z for all n,m > n,.

Thus || Fy,(a,b) = Fpn(a,b)|| < ||F — Full - |la,b]| < 5 -[la, b]| for all n,m > n,.
The equality
F(a,b) = lim F,(a,b)

implies that there exists n1 = n1(a,b) > n, such that
€
15, (a, b) = F(a, b)[} < 7 - [la, Bl
As a consequence we obtain
||Fn(aﬂ b) - F(a7 b)” < ”Fn(aﬂ b) - Fn1 (a, b)” + ||Fn1 (a, b) - F(a7 b)H
<= la,b]
2 b)

for n > n,, (a,b) € D and ||la,b|| # 0. If ||a,b|| = 0, then F,(a,b) =0 =
F(a,b), so || Fy(a,b)—=F(a,b)|| = §-[la, bl|. Thus [|F,(a,b)—F(a,b)|| < 5-[la, b]|
for all n > n,, (a,b) € D, ie.

%E’P(F”_F) for n > n,.
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Therefore ||, — F|| < § < e for n > n,, which means that the sequence
{Fn;n € N} is convergent to F' in L2(D,Y). Hence we have shown that

Ly(D,Y) is a Banach space, which finishes the proof. O
From Theorem 2.8 and Theorem 1.7 the following corollary follows.

COROLLARY 2.9. If X is a symmetric 2-normed set and Y is a Banach
space, then Lo(X,Y) is a symmetric sequentially complete 2-normed space
with the 2-norm defined as follows:

IE, Gl = [IF]l - |G| for F,G € La(X,Y).

3. BANACH-STEINHAUS THEOREMS FOR BOUNDED 2-LINEAR OPERATORS

In this section we will consider properties of sequences of operators from
L2(D,Y’). We will formulate Banach-Steinhaus Theorems for a family of these
operators.

ProPOSITION 3.1. Let D be a 2-normed set, Y a normed space and
{Fu;n € N} C Lo(D,Y). If the sequence of norms {||F,|;n € N} is
bounded, then for each (x,y) € D the sequence of norms {||Fn(z,y)|;n € N}
is bounded.

PROOF. From the assumption it follows that there exists a positive num-
ber M such that ||F,| < M for each n € N. Thus for (z,y) € D we obtain

[ (@ )| < \[Enll - [l yll < M- [z, y]| for each n € N.
o

THEOREM 3.2. Let X be a generalized 2-normed space and Y a normed
space. If {F,;n € N} C Lo(X,Y) is pointwise convergent to F and the
sequence of norms {||Fy||;n € N} is bounded, then F € La(X,Y).

ProoOF. For all z,y € X we have
F(z,y) = lim F,(z,y).

Thus the operator F' is a 2-linear operator.

Because the sequence of norms {||F,|;n € N} is bounded, then there
exists M > 0 such that ||F,| < M for all n € N. Thus [|[F,(z,y)]] <
1Bl - Nz, yl| < M - |z, y||. Let us take ,y € X. Then

I1F(z, )|l < [1Fnlz,y) = F(, )| + | Faz,y)|| <
<N Fu(z,y) = Fz,9)|| + M - [|2, ]|
By letting n — oo we obtain |[F(z,y)|| < M - ||z,y|| for each z,y € X. This

gives that F' is bounded. As a consequence we have shown that F' € Lo(X,Y).
O

(3.1)
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THEOREM 3.3. Let Y be a Banach space, (X,|| -, - ||) a generalized 2-
normed space and let A be a linearly dense set in the spaces (X,71(X)) and
(X, T2(X)). If a sequence {F,;n € N} C Lo(X,Y) is pointwise convergent
on the set A and the sequence of norms {||F,|;n € N} is bounded, then the
sequence {Fy,(x,y);n € N} is convergent in'Y for each x,y € X.

PROOF. Let X, be the linear subspace of X generated by A. We will con-
sider X, as a 2-normed space with the same 2-norm induced by that of X. Let
z,y € Xo. Then z = 121+ - -+ apTr, y = briy1 +- - -+ byys, where a;,b; € R,
zi,y; € Ai=1,2,..,ki=1,2,...,t;k,t € N, and

k t
Fo(,y) =YY aibj - Fulwi,y;).
i=1 j=1

Because the sequence {F}, (2, y;);n € N} is convergent for all x;,y; € A, then
{F.(z,y);n € N} is convergent in X,.
Let | F,|| < M for every n € N. Let us take a number ¢ > 0 and z,y € X.
Since X, is a dense set in (X, 77(X)) we can choose z, € X, such that
5
6M
Moreover there exists y, € X, with the property

lz — 20, y|| <

3
||x07y - yoH < 6—M7

because X, is also a dense set in (X, 72(X)).
The sequence {F),(x,,yo); 7 € N} is convergent, so it is a Cauchy sequence
in Y. Therefore there exists a number n, € N such that

| Fuo. o) = Fia (o, o) | < 5 for each n,m > m.

As a consequence we obtain
||Fn(‘r=y) - Fm(xvy)” = HFn(x — %o + xo,y) - Fm(x — Xo + foay)”

< |[Fa(z — 2o, y)|| + | Fm (2 — 20, y)|
+ ||Fn($07y) - F’m(‘rovy)H

<@ — o, Y)|| + [[Fin(z — 20, 9) |
+ [P0,y — Yol + [[Fon (w0, ¥ — 9ol
+ [ Fn (20, Yo) — Finl(To, yo) |l

< Fall- |z = 2o, yll + |1 Fm|l - [z — o, y|

13

FIEl - 120,y = yoll + 1l - llo, y = woll + 5

15
§2M ||3€—$07y||+2M ||moay_yo||+§ <e
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for n,m > n,. Hence we have shown that {F,(x,y);n € N} is a Cauchy
sequence in Y for each x,y € X. Because Y is complete, then the sequence
{F.(z,y);n € N} is convergent in Y, which finishes the proof. O

THEOREM 3.4. Let (X,|| -, - |) be a generalized 2-normed space and
Y a Banach space. If a sequence {F,;n € N} C Lo(X,Y) is pointwise
convergent to F € Lo(X,Y) on a linearly dense set A in the spaces (X, T1(X))
and (X, T2(X)) and the sequence of norms {||Fy|l;n € N} is bounded, then
{Fn;n € N} is pointwise convergent to F' and the inequality || F|| < sup || Fy||

holds.

PROOF. It follows from Theorem 3.3 that the sequence {F,(z,y);n € N}
is convergent in Y for each z,y € X. Let us denote

H(z,y) = nlLH;O F,(z,y) for every z,y € X.

We must show that H(z,y) = F(x,y) for all z,y € X. Using Theorem 3.2 we
see that H € L2(X,Y). From assumption it follows that H(x,y) = F(x,y)
for all x,y € A, i.e. (H— F)(x,y) =0 for z,y € A. Because Ly(X,Y) is a
linear space, then H — F € Lo(X,Y). As a consequence H — F' is an 2-linear
operator and (H — F)(x,y) =0 for z,y € X,, where X, denote the set of all
linear combinations of elements from A. Moreover H — F' is bounded, thus
there exists K > 0 such that ||(H — F)(z,y)|| < K- ||z, y|| for every xz,y € X.

Let € > 0,2,y € X. Since the set X, is dense in (X, 77 (X)) we can choose
T, € X, such that

oYl < 577
I = 20, < 5o

There exists y, € X, with the property

g
lZo,y — woll < K

because X, is also dense in (X, 73(X)). Then we have

0<||(H = F)(z,y)|| = |(H-F)
=[|(H = F)(z — 20,y) + ( )
= II( )@ = 20, y) + (H — F) (@0, y — Yo + Yo) |
=[(H = F)(z — 20,y) + (H — F)(%0,y — Yo) + (H — F)(z0, Yo) ||
= (H = F)(z — 20,y) + (H = F)(%0,y — o)l

<(H = F)(z = 20,y)|| + |(H = F)(20,y — o)l

< K-z — 20,y + K |70,y — vol|| <e.

— —

T—To+ To,y)|l
H — F)(x0,y)|

T
5

=

=

This gives ||(H — F)(z,y)|| = 0 for each z,y € X, i.e. H(z,y) = F(z,y) for
every x,y € X.
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Let us denote M = sup||F,||. Then for every n € N and z,y € X such
that ||z, y|| <1 we have
[En (@, )l < [ Enll -z, yll < M.

Thus
[F(z,y)ll = [|1F'(z,y) = Fu(x,y) + Fu(z, y)||
< F(z,y) = Fa(z,y)ll + [|1Fn (2, )]l
< |[F(z,y) — Fa(z,y)| + M.

By letting n — oo we obtain || F(z,y)|| < M for z,y € X such that ||z, y| < 1.
This implies || F|| = sup{||F(z,y)|;z,y € X, ||z, y|| < 1} < M, which finishes
the proof. O
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