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ABSTRACT. The aim of this paper is to connect the results of D. Bakié
and B. Guljas about C*-extensions of Hilbert C*-modules with results
of D.P. Blecher about Hilbert C*-extensions of operator spaces. In the
first part, we give conditions on a completely bounded linear operator
between Hilbert C*-modules for the possibility of extending the operator to
a ”corner-preserving” C*-morphism of the corresponding linking-algebras
(or, equivalently, for the operator being a Hilbert C*-morphism). The
second part provides an order preserving bijection between the sets of C*-
extensions of a Hilbert C*-module and its Hilbert C*-extensions, the latter
being a generalized version of Blecher’s Hilbert C*-extensions of operator
spaces defined in [5].

1. INTRODUCTION

The concept of a Hilbert C*-module is a generalization of the notion of a
Hilbert space. The first use of such objects was made by I. Kaplansky in 1953
([8])- The research on Hilbert C*-modules began in the 70es (W.L. Paschke,
[10]; ML.A. Rieffel, [12]). A complex vector space V which is a (right) algebraic
module over a C*-algebra A is a Hilbert .A-module if there is a map (inner
product) (.|.) :V x V— A with the properties

(r+ylz) = (z[2)+(ylz2),
(z|ya) = (z|y)a,
{@ly)® = (yl=),

(x|z) > 0,
(xlz) = 0 2x=0
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(for all z,y,z €V, a€ A) and such that V is complete with respect to the
norm defined by || = ||= /|| (x| ) |4. The simplest example of a Hilbert
A-module is the C*-algebra A with the inner product (a | b) = a*b. Two
classes of (A)-linear operators on V shall be considered in this paper: the C*-
algebra B 4(V') of adjointable maps and the C*-algebra K 4 (V') of generalized
compact operators! (the norm-closure of the linear span of all operators F; ,,
z,y € V, where Fy ,(z) = z(y | z)). Ka(V) is an ideal in B4(V). For more
details on Hilbert C*-modules see [9].

A Hilbert A-module V is said to be full if the linear span of all elements
(| y) (z,y € V) is dense in A. The closure of the mentioned linear span
is denoted (V | V) and it is always a (closed, twosided) ideal in 4. In most
cases it is possible to restrict the considerations to full Hilbert C*-modules.

Denote by V* the formal set {z* : © € V'}. Provided with the operations
¥ +y* = (x+y)*, ar* = (za*)* and (z* | y*) = (x| y), V* becomes a left
Hilbert A-module. The linking-algebra of a Hilbert A-module V is the set

,CV_{[;i 2:|:CL€A,KEKA(V),I,yEV},

provided with a x-algebra structure in the natural way. It is also a C*-algebra
(see [7]) and the embeddings of V and A and K 4(V') in Ly are completely iso-
metric (the last two embeddings are in fact C*-monomorphisms). For details
on operator spaces, completely bounded maps and complete isomorphisms,
see e.g. [11]. The linking-algebra has many uses, and one of its main ad-
vantages is that it carries all important information about the module, but
provides easier computations: the abstract inner product on V' becomes the
usual inner product on a C*-algebra:

0 0 o 270y
0 (z|ly)y | |0 0 0 0|’
If 7 is a (closed, twosided) ideal in A, then the set
Vi=[{za:2z€V,a eI}
is called an ideal submodule of V. Cohen’s factorization theorem implies that
Vi={za:ze€V,acl}.
One of the advantages of regarding only ideal submodules as subobjects of
Hilbert C*-modules is the possibility of constructing quotients: the algebraic
quotient of a Hilbert C*-module over a submodule can be provided with a
natural Hilbert C*-module structure only if the submodule is an ideal one. It
is also known that to an (essential) ideal submodule V; of V' corresponds the

linking algebra £; which is an (essential) ideal in Ly . For more details on
ideal modules see [1].

1The elements of K 4(V) are not compact in general, but they are constructed from
V in the same way as compact operators on a Hilbert space are constructed.
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An appropriate class of morphisms for the category of Hilbert C*-modules
over possibly different C*-algebras turned out to be the class of all linear
operators supported by a C*-morphism: if V' is a Hilbert A-module and W is
a Hilbert B-module the linear operator ¢ : V' — W is a Hilbert C*-morphism
if there is a C*-morphism ¢ : A — B with the properties

d(xa) = ¢(x)p(a)
(9() | o(v)) = p((z | )

for all z,y € V, a € A. We will also call such a morphism a @-morphism.
In fact, it is only necessary to require the second property, since the first is
an easy consequence. It is easily shown that every Hilbert C*-morphism is a
complete contraction. In [1] it is shown that a p-morphism is isometric? if
is injective and if V' is full and ¢ is injective, then ¢ is injective.

It is a natural question if there is a natural, ”corner-preserving”, exten-
sion of such a morphism between two C*-modules to a C*-morphism between
the corresponding linking algebras, i.e. if for such a ¢ exists a C*-morphism
® : Ly — Ly of the form & = [ ;1 :i ] where ¢ : K4(V) — Kg(W)
is also a C*-morphism. In the first part of this paper it is shown that such
an extension is possible for every Hilbert C*-morphism (with domain a full
module) and also a more general result: every completely bounded operator
between Hilbert C*-modules satisfying a natural condition (which is auto-
matic for a Hilbert C*-morphism) can be extended to a C*-morphism of the
corresponding linking algebras.

It is well known that the multiplier algebra M(A) of a C*-algebra 4 can
be realized as the strict completion of A. D. Baki¢ and B. Guljas have gener-
alized this concept for Hilbert C*-modules (for details, see [2]), by introducing
the strict topology on a Hilbert C*-module induced by an ideal submodule
V. A strict completion of a (full) Hilbert .A-module V' is a Hilbert B-module
W which is V-strictly complete and such that A is an essential ideal in B. It
is proven in [2] that the strict completion of a Hilbert A-module V is (up to
isomorphism) the Hilbert M (A)-module M(V) = B(A, V) (consisting of all
adjointable maps from A to V). When V = A, then M(V) = M(A).

For a full Hilbert A-module V' we define its C*-extension as a quadruple
(W, B, ¢,¢) such that W is a Hilbert B-module, ¢ : A — B is an injective
C*-morphism with the image Im(y) an ideal in B, ¢ : V' — W a p-morphism
and I'm(¢) = Wi (e). If Im(¢p) is an essential ideal in B, we speak of essential
extensions. The above mentioned strict completion is an C*-extension (using
natural maps v : A — M(A) and T : V. — M(V)) and it is shown in [2]
that it is the maximal C*-extension of V. The second part of this paper is
an attempt of providing a connection between this concept of C*-extensions

2In fact, ¢ will be completely isometric.
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of a Hilbert C*-module and of Hilbert C*-extensions Hilbert C*-extensions of
operator spaces defined in [5].

2. EXTENDING OPERATORS BETWEEN HILBERT C*-MODULES TO
C*-MORPHISMS OF LINKING-ALGEBRAS

As is described in the introduction, Hilbert C*-morphisms are operators
between Hilbert C*-modules supported by a C*-morphism of the correspond-
ing C*-algebras. As one can expect, there is a natural way to extend such a
morphism to a C*-morphism of the corresponding linking-algebras.

PROPOSITION 2.1. Let V be a full Hilbert A-module and W a Hilbert B-
module. If ¢ : A — B is a C*-morphism and ¢ : V — W is a p-morphism,
then there are unique C*-morphisms ¢ : Ka(V) = Kg(W) and ® : Ly — Ly
such that

¢(Fry) = Fo).o(0)
for all x,y eV and

*

¥t a
for all KeK4(V),ae A, x,ycV.

@[K x]:[wo ¢<x>}

PROOF. First we check that by ¢(Fy ) = Fy(a),4(y) We have well defined
a C*-morphism ¢ : K4(V) — Kg(W). We shall use the known fact that (see
[4]) that K4(V) =V ®pa V* (completely isometrically, with respect to the
isomorphism defined by 2 ® 4 y* — Fy ). By (2,9*) — Fy(a),4(y) @ bilinear
operator V x V* — Kg(W) is defined. Using the universal property of the
algebraic tensor product we obtain a unique linear operator ¢ : V@ V* —
Kp(W), ¢(x @ y*) = Fy(z),6(y)- Since ¢ is a p-morphism we also have

P@a®y") = Fowa)ow) = Fowea)ew) = Fo@)ow)ea)
= Fya),p(yar) = Pz @ ay®).

Consequently, we can pass to the quotient i.e. to the modular algebraic tensor
product and obtain an unique linear operator @ : V@4 V* — Kg(W).

If it is bounded with respect to the Haagerup norm on V ® 4 V*, then we
can extend the last map to the desired C*-morphism between the C*-algebras
of generalized compact operators. It is sufficient to check the boundedness
on positive elements i.e. on F4(V);. Using the fact that the completely
bounded norm of a C*-morphism equals its usual norm and the formula (see

[4D) 122 Foiei sy = Il @i | 25)] [l az, 4y we obtain:
160 Frowd) 1= D Fowosw =1 Ko@) | (@) Iar,m)
=l eallwi | )] 1<l @ lleoll (i [ 2] =1 @ (1Y Fao
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Let us finally check that the extension by continuity obtained by the
preceding calculation is a C*-morphism:

@((Z Fzzyl)(z Fap)) = @(Z Foityilas) ;) = Z Fo(ityi 1a;)).6(b5)
i J 2%

4,
= @(Z le7y1)¢(z Faiybi)7
i J

(so by continuity we have (K1 Kj3) = ¢(K1)p(K>3) for all K1, Ky € K4(V)),

and
@((ZFw“yl)*) = @Z uz,wz ZF¢yl
(Z Fqb(xl Yi) =o( Zsz,uz

(so by continuity we have ¢(K*) = @¢(K)* for all K € KA(V)).
Now we have ¢ (and ¢*), ¢ and @, so defining
o[ K 2] o[ 28 0]
y*oa " (y") »(a)
for all K e K4(V),a € A, z,y €V we obtain a linear operator between the
linking-algebras which is easily checked to be an C*-morphism. o

Above we have obtained the expected result that a morphism of Hilbert
C*-modules can be extended to a C*-morphism of the corresponding linking-
algebras. It is natural to pose a more general question: under which conditions
can a (bounded) linear operator between two Hilbert C*-modules be extended
to a C*-morphism between their linking-algebras? In [13] B. Solel has proven:

THEOREM 2.2 (Solel). Every surjective linear isometry ¢ : V.— W be-
tween full Hilbert C*-modules can be extended to a surjective linear isometry
® : Ly — Lw of the corresponding linking-algebras mapping the diagonal
KA(V)®A of Ly onto the diagonal Kp(W)® B of Lyw . If ¢ is a 2-isometry,
¢ ¢

14

e and the maps ¢ and @

then ® is C*-morphism of the form ® = [
are C*-isomorphisms.

We shall prove another theorem of similar kind: removing the condition
of surjectivity (and 2-isometry) and replacing them by another condition we
shall obtain a result for another general situation.

First observe the following simple facts:

LEMMA 2.3. For a full Hilbert C*-module V' and a @p-morphism ¢ : V —
W of (right) Hilbert C*-modules, there is a C*-morphism ¢ : Ka(V) —
Kg(W) such that ¢ is also a ¢-morphism of left Hilbert C*-modules. The



320 F.M. BRUCKLER

dual is also true: if ¢ is a ©-morphism of left Hilbert C*-modules, there is
o C*-morphism ¢ : A — B (defined by p((z | ) = (6(z) | 9(y))) and  is
a p-morphism of right Hilbert C*-modules. We shall call such a ¢ a o — -
morphism.

PROOF. The first claim is proven in Proposition 2.1. The dual can be
proven in the same way, except that A and K 4(V) exchange their roles (and
one uses the correspondence A = V* ®pk vy V which holds for full Hilbert
C*-modules V). It is obvious from the definition of ¢ resp. of ¢ that ¢ is a
p-p-morphism. O

LEMMA 2.4. If a linear operator ¢ : V. — W can be extended to a C*-

¥
¢*
C*-morphisms and ¢ is a ¢ — p-morphism. In particular, ¢ is a complete
contraction and has the following property: for all x,y,z€V we have

(2.1) P(x(y | 2)) = ¢(x)(o(y) | ¢(2))-

Proor. If @ is of the above form, by checking its action on elements of

0 nd 0 2 ] we obtain that ¢ and ¢ are C*-morphisms.

morphism ® : Ly — Ly of the form & = [ Z; ], then ¢ and ¢ are

K

0 o™ o

It also follows by simple calculation that ¢ is a ¢ — ¢-morphism and that
property 2.1 holds. Since every p-morphism is a complete contraction, so is

®. O

the form

From the Solel’s theorem is we conclude that every surjective 2-isometry
has the property (2.1). The main result of this section is the following:

THEOREM 2.5. Let V' be a full Hilbert A-module and W a Hilbert B-
module. Let ¢ : V. — W be a completely bounded linear operator with the
property (2.1). Then there exist (unique) C*-morphisms ¢ : A — B, ¢ :
Ka(V) = Kp(W) and ® : Ly — Lw such that ¢ is a ¢ — p-morphism and
o= (;f* ¢
injective. If ¢ is surjective and W is full, then all the above C*-morphisms
are surjective. In particular, any surjective linear isometry of full Hilbert C*-
modules having the property (2.1) is an isomorphism of Hilbert C*-modules.

. If ¢ is a complete isometry, all the above C*-morphisms are

ProOOF. By Lemma 2.3, it suffices to show that ¢ is a ¢- or @p-morphism.
We again use the fact that for full modules A = V* ®,k_,(v) V holds (com-
pletely isometrically). Using the universal property of the algebraic tensor
product we obtain a linear operator ¢ : V*® V — B from the bilinear opera-
tor (z*,y) — (¢(x) | ¢(y)). To switch to the modular tensor product, we use
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the relation (2.1) and the continuity of ¢. We have (for finite sums)
(@ Fory) @y) = 0> _(yilwi | 2)* @ y)
= Z Syi(zi | 2) | 6(y)) = (2.1) =Y (S(y:)(d(x:) | ¢(2)) | S(y))
= (6(x) | $(x:)(S(w:) | $y)) = Z<¢<x> | d@i)(b(y:) | 6(v))
= (21) = Y (6(@) | oty | 9) = 0(@* @ (3 Fov ) )

This implies that

p((z"Kx) @ y) = p(z" @ K)y)
for all Ky € F4(V): If K = limy K, then K* = limy K} and ¢(Kz) =
limy ¢(Kxz) (due to continuity of ¢: || ¢(Kz)—¢(Krz) ||<|| (K—=K))z |— 0).

As the inner product on a Hilbert C*-module is continuous in each of its
variables separately, it follows that

p(("K) ®@y) = (o(K"x) | ¢(y)) = limr(p(K3x) [ ¢(y)) =

= limx(¢(z) | o(Kxy)) = (o(x) | 9(Ky)) = p(z* @ Ky).
Passing to the quotient we obtain an operator which we again denote ¢ :
V* ®k vy V — B. To extend ¢ by continuity to all of A, we have to check

the continuity with respect to the (modular) Haagerup norm. Here we need
the complete boundedness of ¢:

o] a<ll ¢ llesll [2ij] lln

ie.
n

1D (@ni) | Sl 1< & 130 D (wni | 2as))
k=1

k=1
for all n € N and x;; € V. Taking

zg 0 ... O
[z] =] @ :
z, O 0
with arbitrary x1,...,x, € V we get
n d(b(zk) | Plzx)) O ... 0
11D (bw) | pla)] | = |l : : S
k=1 0 0 ... 0
SHxk |zk) 0 ... 0
< o lZl : E S
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or finally

oY 2k @) ) 1= D (o(ze) | dlan)) |
<o 120D Gan L) 1= 6 120 D ok @raovy @ || -

This shows that ¢ is continuous on positive elements in V* @ K 4(V)V, which
are dense in A, because V is full by assumption. As every element in a C*-
algebra is a linear combination of four positive elements, ¢ can be extended by
continuity to A and it is easily verified that this extension is a C*-morphism.
By Proposition 2.1 we now obtain ¢ i ®. O

An analogy of the well-known theorem that every C*-morphism is a (com-
plete) contraction is the following;:

COROLLARY 2.6. Fvery completely bounded operator between Hilbert C*-
modules ¢ : V. — W with V full and which satisfies (2.1) is a complete

contraction.

ProoOF. By the above theorem, ¢ is a ¢-morphism, and as such it is a
complete contraction. O

Note that according to the above corollary one can define a Hilbert C*-
morphism without referring to the supporting C*-morphism: if ¢ : V. — W
is a bounded linear operator (and V a full module), we call ¢ a Hilbert C*-
morphism if it has property (2.1).

REMARK 2.7. With a different argument than above, one can prove that
a bounded operator satisfying (2.1) is contractive, even if the module is not
full. For this it is necessary to note that for all elements = of a general Hilbert
C*-module the formula

| @] 2o =l @ |
is valid: since (z | z) is selfadjoint, one has
I @ | 2)z |? | (& [z)x | (2| z)z) [[=]| (x| z)(z | z)(z | z) |
— @la P=le e

Accordingly, for a bounded operator ¢ satisfying (2.1) one has

Fe@) P =l {e@) | 6(x)) (=) I=]l ¢((w | z)2) |
< Dol lelazl=lel-I=]?

from where || ¢ ||< 1 easily follows.

The question remains if the condition (2.1) is necessary for the above
constructions? By Solel’s results, for a surjective 2-isometry ¢ it is not a
necessary condition. It can also be removed in a slightly more general case:
For a 2-isometry ¢ : V. — W such that its range ¢(V) is a Hilbert C*-
submodule of W, one can apply the Solel theorem to ¢ : V. — ¢(V) and
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obtain ® : Ly — Lyw) € Lw of the form [ g;p* z ] such that ¢ is a
@ — w-morphism.

But the result from Theorem 2.5 covers some cases which cannot be
obtained by Solel’s theorem because even for a complete isometry between

Hilbert C*-modules it is possible that the range is not a Hilbert C*-module.

EXAMPLE 2.8. Let V=W = A and let ¢ : A — A be a (completely iso-
metric) completely positive operator. As closed submodules of A are precisely
the right (closed) ideals in A, and as it is known that a completely positive

operator generally doesn’t map ideals onto ideals, it follows that ¢(.A) doesn’t
have to be a Hilbert C*-submodule of A.

It is also not possible to replace the condition (2.1) by restricting the
theorem to complete isometries because there are complete isometries which
don’t have this property:

EXAMPLE 2.9. Define ¢ : A — A by ¢(a) = v*av, where v is an isometry
which isn’t a coisometry. Then ¢y, [a;;] = diag(v*)[a;j]diag(v) and

v 0

diag(v) = .
0 v

is also an isometry which isn’t a coisometry for all n € N. This means that
¢ is a complete isometry if it is an isometry. It is obviously a contraction.
Because v is isometric, we have

[al= sup (ag|&) < sup (avg|v§) = sup (v'avg|§) =| ¢(a) ||

ligl<1 llvgli<1 llvgll<1

so ¢ is a (complete) isometry.

But ¢ of this form can fail to hold (2.1). Taking e.g. A = B(l2) and v to
be an unilateral shift, for a € A defined by ae; = aes = e, ae; =0 fori > 3
(by e; we denote the canonical basis of l2), we have ¢(aa*a)e; = 2e1 # e1 =

¢(a)(a)* d(a)er.

3. HILBERT C*-EXTENSIONS OF OPERATOR SPACES AND EXTENSIONS OF
HiLBERT C*-MODULES

In [5] D. P. Blecher introduces extensions of operator spaces which are
Hilbert C*-modules, an order relation on the set of all such extensions and
proves that there is a minimal Hilbert C*-extension of a given operator space
(and in [6] proves there is a maximal one). The definition is as follows:

DEFINITION 3.1. A Hilbert C*-extension of an operator space X is an
ordered pair (V,i), where V is a Hilbert C*-module, and i : X — V is a
complete isometry such that i(X) generates the linking algebra Ly .
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Since every Hilbert C*-module is an operator space, the natural question
to ask is what happens if X is already a (full®) Hilbert C*-module. Examining
the definition more carefully, it is obvious that in this case the Hilbert C*-
extension is unique - the only full Hilbert C*-module generating the same
linking algebra is the module we started with.

As described in the introduction, there is a natural extension concept
for Hilbert C*-modules. The objective of this section is to provide a con-
nection between Blecher’s Hilbert C*-extensions of operator spaces and the
C*-extensions of Hilbert C*-modules as introduced by D. Baki¢ and B. Guljas
([2])- In order to obtain such a connection, it is necessary to generalize
Blecher’s definition in a way which will ensure that taking an operator space
which is also o Hilbert C*-module one generally gets more than one extension.
Since the reason why Blecher’s definition doesn’t give more than one exten-
sion for a Hilbert C*-module is in the condition that the image of the operator
space in its extension generates the whole linking-algebra, we will alter the
definition so that we’ll require that the image generates only a natural subob-
ject of the linking-algebra: an ideal. So we’ll use the following generalization
of Blecher’s definition:

DEFINITION 3.2. A Hilbert C*-extension of an operator space X is a
triple (W, B, ¢), where W is a Hilbert B-module and ¢ : X — W is a complete
isometry such that the image ¢(X) generates a C*-algebra which is an ideal
in the linking-algebra Lyy .

Note that the requirement that ¢(X) generates an ideal in the linking-
algebra can be replaced by the equivalent condition that it is an ideal sub-
module of W.

Since ideal submodules generated by essential ideals are in 1—1-correspon-
dence with essential ideals in the linking-algebra, it is also possible to define
an essential Hilbert C*-extension of an operator space X as an Hilbert C*-
extension satisfying the additional property that ¢(X) generates an essential
ideal in the linking-algebra.

To obtain the 1 — 1-correspondence between Hilbert C*-extensions in the
sense of Definition 3.2 and C*-extensions in the sense of Baki¢ and Guljas,
the first step is the following:

PROPOSITION 3.3. Fuvery (essential) C*-extension of a full Hilbert C*-
module is an (essential) Hilbert C*-extension of the module.

PRrOOF. If V is a full Hilbert C*-module and (W, B, ¢, ¢) a C*-extension
of V, then by definition ¢(V') generates an ideal in Ly . Since every isometric
morphism of Hilbert C*-modules is completely isometric, (W, B, ¢) is a Hilbert
C*-extension of V. It is also obvious that an essential C*-extension is an
essential Hilbert C*-extension of V. O

3Note that we considered C*-extensions only for full modules.
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Using the results of the previous section it is now possible to prove that the
complete isometry ¢ in the definition of a Hilbert C*-extension is a morphism
of Hilbert C*-modules. This will imply that there is an 1 — 1-correspondence
between the two definitions of extensions (for a given full Hilbert C*-module).

THEOREM 3.4. (W, B, @) is a Hilbert C*-extension of a full Hilbert A-
module V if and only if (W, B, ®,p) is a C*-extension of V, where ¢ : A — B
is an injective C*-morphism required for the C*-extension (i.e. such that ¢ is
a p-morphism).

ProoOF. Let (W,B,¢$) be a Hilbert C*-extension of a full Hilbert A-
module V. By definition ¢ is a complete isometry and ¢(V) is an ideal
submodule of W, generated by an ideal Z in B i.e. ¢(V) = Wz. Without loss
of generality we may assume that W7z is a full module. This means we have
a surjective complete isometry ¢ : V. — Wz. By Solel’s theorem it induces
C*-isomorphisms ¢ : A - T C B, ¢ : K4(V) —» Kz (Wz) C Kp(W) and
®: Ly — Lw, C Lw. So ¢ : A— B is the required injective C*-morphism
with an ideal 7 as its image, corresponding to the image ¢(V') = Wr.

As the corresponding C*-morphism ¢ of an morphism ¢ of Hilbert C*-
modules is unique, the mapping (W, B, ¢, ¢) — (W, B, ¢) is injective, and by
the preceding proposition it is surjective. O

Blecher defined an order relation for Hilbert C*-extensions of a given
operator space, which can be applied to our generalized definition as well:

DEFINITION 3.5. If (W1,B1,¢1) and (Wa,Ba, ¢2) are two Hilbert C*-
extensions of an operator space X, we define (W1,B1,¢1) < (Wa, Ba, @)
if there is a surjective complete contraction T : Wy — Wi such that
T¢o = ¢1 and there is a surjective C*-morphism 7 : Lw, — Lw, such that

%[8 g]:[g Tgx)]forallmEWQ.

For C*-extensions, a sensible definition of the order relation (inspired by
the above in order to ensure that the correspondence between Hilbert C*-
extensions and C*-extensions is order preserving, but ensuring the maximal
essential extension to remain maximal in this order) is:

DEFINITION 3.6. Let (W1781;¢17<P1) and (WQ,BQ,¢2,(P2) be two C*-
extensions of a Hilbert C*-module V.. We define (W1, B1, ¢1,¢1) < (Wa, Ba,
@2,2) if there is a surjective C*-morphism 7 : By — By and a surjective
T-morphism T : Wo — W1 such that T = @1 and T'oo = ¢1.

PROPOSITION 3.7. The bijection between Hilbert C*-extensions and C*-
extensions of a given full Hilbert C*-module from the Theorem 8.4 is order
PTeServing.



326 F.M. BRUCKLER

PROOF. Let (W1, B, ¢1,01) < (Wa, Ba, ¢a, ¢2) be two C*-extensions of
a full Hilbert .A-module V. By definition, there is a surjective C*-morphism
7 : By — B; and a surjective 7-morphism T : Wy — Wj such that 7o = ¢
and T'¢s = ¢1. The induced C*-morphism of the linking-algebras, denote
it by 7, is obviously surjective (because, by its definition, the induced mor-
phism ¢ between the C*-algebras of compact operators is surjective if ¢ is).
Accordingly (W1, By, ¢1) < (Wa, Ba, ¢2).

If (Wh,By,01) < (Wa,Ba, ¢2) are two Hilbert C*-extensions of V' and
T : Wy — Wi the corresponding surjective complete contraction with the
property T'¢o = ¢1 and if 7 : Lo — L1 is the surjective C*-morphism with the

property 7 8 ] = [ 8 TE;E) ], then T must satisfy the property (2.1):

0
[0 76l ] o]0 019 ]

~+([s 5[ o[03])
=[5 5] [ ol [s 5]
[0 0L oo 5]
_{8 T:c(Tg(/)|Tz>]

By Theorem 2.5 there is a C*-morphism 7 : By — Bj such that T is a 7-
morphism. Because of the 1 — 1-correspondence between the two notions of
extensions, there exist injective ¢; : A — B; such that ¢; is a ¢;-morphism (for
1 =1,2). V is a full module, so 1 = Tps. By assumption, 7 is surjective, and
7 is (by construction) its lower right corner, so 7 is a surjective C*-morphism.
This means that (W1, By, ¢1,p1) < (Wa, Ba, @2, ¢2). O

As noted before the Definition 3.6, this definition not only ensures the
order correspondence between the two notions of extensions, but is also chosen
in such a way that the maximal essential C*-extension M (V) = B 4(A,V) of a
given full Hilbert C*-module V' (which is a generalization of the multiplier C*-
algebra as noted in the introduction) is maximal in this order. This shall be
proven as the final result of this paper. In the original proof of maximality of
M(V') another order was used, so this is not an obvious result. The originally
used order between C*-extensions of a given full module V is defined by
(W1, B1,01,01) < (Wa, Ba, ¢a, @2) if there is an injective C*-morphism ¢ :
B1 — By and a w-morphism ¢ : W7 — Ws such that o1 = @2 and ¢¢1 = ¢s.
Our definitions of order relations use surjective morphisms, so it is not obvious
that the maximal (with respect to the just described order) essential extension
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is maximal in our sense. The morphisms v : A — M(A) and T : V — M(V)
are the canonical embeddings.

PROPOSITION 3.8. (M(V), M(A),T,~) is a mazimal essential C*-exten-
sion of a full Hilbert A-module V', with respect to the order defined in Defini-
tion 3.6.

PRrROOF. Let (W, B, ¢,¢) be any essential C*-extension of V. Suppose
(W,B,d,0) > (M(V),M(A),T,v) ie. there is a surjective C*-morphism
p: B — M(A) such that pp = v and a surjective p-morphism R : W — M(V)
such that Rp =T. As ¢(A) is an essential ideal in B, and Ker(p) is a closed
ideal in B, we have ¢(A) N Ker(p) # {0} if Ker(p) # {0}. But if a€ A is
such that ¢(a) € p(A) N Ker(p), then 0 = p(p(a)) = v(a). As v is injective, it
follows that a = 0 i.e. Ker(p) = {0}. So p is a C*-isomorphism. Accordingly,
R is injective so B is isomorphic to M(A) and W to M(V). O

COROLLARY 3.9. (M(V), M(A),T") is a mazimal essential Hilbert C*-
extension of a full Hilbert A-module V.

PROOF. As any injective order preserving mapping preserves maximal
elements, the bijective order preserving correspondence between Hilbert C*-
extensions and C*-extensions of V' provides the result. O
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