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412 Abstract
Classical continuous-time models for log-returns usually assume their independ-
ence and normality of distribution. However, nowadays it is widely accepted that 
the empirical properties of log-returns often show a specific correlation structure 
and deviation from normality, in most cases suggesting that their distribution is 
heavy-tailed. Therefore we suggest an alternative continuous-time model for log-
returns, a diffusion process with Student’s marginal distributions and exponentially 
decaying autocorrelation structure. This model depends on several unknown pa-
rameters that need to be estimated. The tail index is estimated by the method based 
on the empirical scaling function, while the parameters describing mean, variance 
and correlation structure are estimated by the method of moments. The model is 
applied to the CROBEX stock market index, meaning that the estimation of param-
eters is based on the CROBEX log-returns. The quality of the model is assessed by 
means of simulations, by comparing CROBEX log-returns with the simulated tra-
jectories of Student’s diffusion depending on estimated parameter values.

Keywords: log-return, heavy-tailed distribution, Student’s distribution, diffusion 
process, geometric Brownian motion

1 INTRODUCTION
CROBEX is the official stock market index of the Zagreb Stock Exchange, first 
published on September 1, 1997. The index is based on the free float market capi-
talization and includes the stocks of 25 companies. CROBEX serves as the main 
indicator for the Croatian stock market and closely describes the economic trends 
of the country. Like any other stock market index, CROBEX can be studied as the 
value (price) of a risky asset at some time point. A realistic modeling of a risky 
asset price through time is of great practical importance, especially in the risk as-
sessment and pricing of financial derivatives. For this purpose, the values of the 
financial asset in some time interval can be considered as a realization of some 
stochastic process (Pt , 0 ≤ t ≤ T). Many different classes of processes have been 
proposed as models for (Pt), both in discrete and continuous time (see e.g. Tsay, 
2010 for an overview). Instead of the price process Pt , t = 0, 1, ..., T, the financial 
time series data are usually investigated through the log-returns of the original 
series, that is:

= =, ,R
P

P
t Tt

t

t
…

−
ln

1
1 , .

The classical model for the price of the risky asset is a geometric Brownian mo-
tion (GBM), also known as the Black-Scholes model. If the asset value is assumed 
to follow the GBM model, then the log-returns Rt , t = 1, ..., T, form a sequence of 
independent normally distributed random variables. This feature of the log-returns 
is nowadays considered unrealistic for many financial data. Contrary to the GBM 
model, the log-returns of many risky assets exhibit very weak correlation, but are 
far from independent. Moreover, the distribution of log-returns has tails much 
heavier than Gaussian, thus showing that extreme events are more probable than 
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413in the GBM model. Models taking this into account use the so-called heavy-tailed 
distributions which have tail probabilities decaying at infinity as slow as the po
wer function. The importance of heavy-tailed distribution lies in the fact that they 
can realistically quantify the probabilities of extreme events. Such events are es-
pecially important in financial modeling while ignoring the possibility of large 
fluctuations often leads to a severe underestimation of risk. More details on these 
and other “stylized facts” of log-returns can be found in Cont (2001). 

In this paper we analyze the historic data of the CROBEX index. First, we show 
that the log-returns of CROBEX exhibit behavior characteristic for a risky asset. 
In particular, we present evidence that the underlying distribution of log-returns is 
heavy-tailed and far from Gaussian. Awareness of such property is of great impor-
tance in risk assessment. In the next step, we claim that the distribution of log-
returns can be successfully modeled with the Student’s t-distribution, which is 
heavy-tailed. Many empirical studies have confirmed this for other financial data 
(see e.g. Hurst and Platen, 1997). Since this makes a standard GBM model for the 
asset price inappropriate, in section 3.2 we propose a new model for the log-re-
turns based on the Student’s diffusion process. Diffusion processes have been 
successfully used before in financial modeling (see Bibby and Sørensen, 1996; 
and Rydberg, 1999). The model proposed here uses a stationary solution of the 
diffusion stochastic differential equation which has Student’s marginal distribu-
tion. Not only is the distribution modeled more realistically, but the dependence 
structure is also allowed to be more complex, since the constructed Student’s dif-
fusion process exhibits a form of weak dependence. In section 4 we estimate the 
parameters of the proposed model by using some recently introduced techniques. 
We tackle the statistically challenging problem of estimating the tail index of the 
log-returns which is the main parameter of any heavy-tailed distribution. It is 
worth mentioning that the estimation method used is non-parametric, in the sense 
that the tail index parameter is estimated without an assumption of the particular 
form of the underlying distribution. Estimation of other parameters of the model 
is also conducted with a brief discussion on the asymptotic properties of the esti-
mators used. The quality of the proposed model is assessed by the means of simu-
lations. Section 5 contains some concluding remarks and possible improvements 
with some guidelines and indications of further applications of the results. 

The heavy-tailed nature of the CROBEX index has been addressed so far in sev-
eral references. In Žiković and Pečarić (2010), left and right-hand CROBEX tails 
are fitted to separate generalized Pareto distributions, and such a model proved to 
be successful in forecasting some risk measures. The same distribution is advo-
cated in Arnerić, Lolić and Galetić (2012). Since the method we use here in as-
sessing the tail index is non-parametric, it provides a more robust estimate. Most 
frequently traded stocks included in the CROBEX were modeled by GARCH 
process with Student’s innovations in Arnerić, Jurun and Pivac (2007), confirming 
the heavy-tailed structure of CROBEX. A similar model has been considered in 
Miletić and Miletić (2015) for CROBEX and other stock indices of the Central 
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414 and Eastern European capital markets. On the global level, there is an inexhaus-
tive list of papers dealing with modeling of stock market indices. Comprehensive 
empirical studies analyzing distribution of log-returns were done in Gray and 
French (1990), Hurst and Platen (1997), Jondeau and Rockinger (2003); see also 
Tsay (2010) and references therein. 

2 THE CLASSICAL MODEL AND HEAVY-TAILED DISTRIBUTIONS
In empirical finance, the classical model refers to the price process of the risky 
asset modeled with the GBM. GBM is a continuous time stochastic process

S S t W t Tt t= −








 +












≤ ≤0

2

2
0ex α σ σ , .

Here S0 is the initial price and (Wt , 0 ≤ t ≤ T) denotes the standard Brownian mo-
tion on [0, T], that is a process with stationary independent increments, continuous 
sample paths and such that Wt is Gaussian (normal), Wt ~ N (0, t). The parameter  
α > 0 can be interpreted as the expected rate of return and parameter σ > 0 as 
volatility, and therefore one of the indicators of the riskiness of the asset.

Instead of the price process Pt , t = 0, 1, ..., T, the financial time series data is usu-
ally investigated through the log-returns of the original series. More precisely, 
log-return at time t is defined as

= =, ,R
P

P
t Tt

t

t
…

−
ln

1
1 , .

Log-returns are scale independent quantities and can usually be plausibly mod-
eled as a stationary sequence. Moreover, there is no loss of information as know-
ing the log-returns values and the initial price P0 gives the price at time T by the 
equation: 

	 P P RT
t

T

t=










=
∑0

1
exp � (1)

The advantage over the usual returns (Pt – Pt-1 )/Pt  is that Rt is additive in the sense 
of (1) and usually stationary.

If the asset value is assumed to follow the GBM model, then the log-returns are 

	 t tR W+ = , , ,t= −








 …α σ σΔ

2

2
1 T � (2)

where ∆Wt  =  Wt –  Wt-1 are one-step increments of the Brownian motion. This 
means that Rt , t = 1, ..., T, is a sequence of independent normally distributed ran-
dom variables, more precisely 



d
a

n
ijel g

r
a

h
o

va
c, n

en
a

d šu
va

k:
h

eav
y-ta

iled m
o

d
elin

g o
f c

r
o

b
ex

fin
a

n
c

ia
l th

eo
ry a

n
d 

pr
a

c
tic

e
39 (4) 411-430 (2015)

415
Rt ~ , . α σ σ−











2
2

2

As discussed in the Introduction, it is highly unlikely to encounter this property in 
many financial data and there is a need for using heavy-tailed distributions. 

Heavy-tailed distributions are of considerable importance in modeling a wide 
range of phenomena in finance and many other fields of science. Prominent exam-
ples of such distributions are Pareto distribution, stable distribution and Student’s 
t-distribution. Distribution of some random variable X is said to be heavy-tailed 
with index α > 0 if its tail probabilities decay as a power law, i.e. 

P X x L x
x

(| | ) ( ) ,> = α

where L(t), t > 0 is a slowly varying function, that is, L(tx)/L(x) → 1 as x → ∞, for 
every t > 0. In particular, this implies that E|X|q < ∞ for q < α and E|X|q = ∞ for 
q > α. The parameter α is called the tail index and measures the “thickness” of the 
tails. The lower the value of α is, the more probable are extreme values of X. This 
way extreme events can be modeled and these events are usually the most impor-
tant as they can generate great profit but also, more importantly, catastrophic loss. 
On the other hand, the usual Gaussian distribution has tail probabilities that decay 
exponentially fast as ~e-x2/2 when x → ∞. For this reason, Gaussian distribution is 
inadequate for modeling phenomena that can exhibit extreme behavior.

Pioneering work in applying heavy-tailed models to finance was done by B. Man-
delbrot in Mandelbrot (1963) where stable distributions have been advocated for 
describing fluctuations of cotton prices. Stable distributions allow for tail index 
value 0 < α < 2, which is nowadays considered an unrealistically small value for 
most time series data. A richer modeling ability is provided by the Student’s 
t-distribution, which allows for arbitrary tail index parameter. 

2.1 THE CROBEX LOG-RETURNS
The data considered in this paper consist of 2524 closing values of the CROBEX 
stock market index collected in the period from January 3, 2005 until December 
31, 2014. The time series of values is shown in figure 1(a). This and all other fig-
ures in the paper are made from the publicly available CROBEX data with Wolf-
ram Mathematica software.

The log-returns of the CROBEX index are shown in figure 1(b). From the appear-
ance of the plot, it seems plausible to model the log-returns as a realization of the 
stationary sequence of random variables R1, ..., RT with T = 2523.

As the first step of the analysis, we investigate the underlying distribution of the 
sequence R1, ..., RT. For this purpose, a histogram is plotted in figure 2(a) and one 
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416 can see that it has sharper peak and tails heavier than Gaussian distribution. These 
characteristics are known as the stylized facts of asset returns and are common for 
almost all data of this type. Heavy-tails of the underlying distribution are con-
firmed with the QQ-plot of normal quantiles on the x-axis with respect to the 
empirical quantiles on the y-axis (figure 2(b)). The left end of the pattern is below 
the reference line and the right end of the pattern is above the line which indicates 
tails heavier than Gaussian. Further evidence of the heavy-tailed nature of 
CROBEX will be given in subsection 4.1 where the tail index will be estimated.

Figure 1 
CROBEX data in period January 3, 2005 – December 31, 2014
      (a) CROBEX values		                 (b) Log-returns
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Figure 2 
Distribution analysis of CROBEX log-returns
     (a) Histogram of log-returns		   (b) QQ-plot of log-returns
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3 �STUDENT’S DIFFUSION AS MODEL FOR TIME EVOLUTION  
OF LOG-RETURNS

GBM, the classical model for stock prices and values of the stock market indices, 
implies both independence and normality of distribution of log-returns (equation 
(2)). The log-returns on financial markets usually are not in correspondence with 
these demands, i.e. over a long time period they often show a specific correlation 
structure and a deviation from normality. In most cases their distribution exhibits 
heavy tails and for CROBEX this was indicated in section 2. A natural heavy-
tailed generalization of the Gaussian distribution is provided by Student’s t-distri-
bution, which we now introduce.
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4173.1 STUDENT’S DISTRIBUTION
Student’s distribution represents a natural choice for modeling the distribution of 
log-returns, because of its heavy-tailed characteristics and still close relationship 
with the normal distribution. In order to capture more information from the real-
ized log-returns, we use Student’s distribution with three parameters:

− shape parameter υ>0 (also called the number of degrees of freedom), 
− scale parameter δ>0,
− location parameter μ ∈ R. 

This distribution, usually denoted as T(υ, δ, μ), is defined by the probability den-
sity function 

	 f x x( ) =
+
















+
−




















−
+Г

Г

ν

δ   π ν
μ

δ

ν1
2

2

1
2

1
2

xx∈, � (3)

where Γ(∙) denotes the classical gamma function (see Abramowitz and Stegun, 
1964). If υ is an integer, then T(υ, υ, 0) coincides with the usual t-distribution 
widely used in statistics. For large values of the parameter υ Student’s T(υ, δ, μ) 
distribution behaves approximately like the normal distribution. Probability den-
sity functions (PDFs) of standard normal distribution and Student’s distributions 
with zero mean, unit variance and υ = 3, υ = 7 and υ = 9 degrees of freedom are 
plotted in figure 3(a), while the right tails of all four PDFs are plotted in figure 3(b).

Figure 3 
PDFs of standard normal distribution and Student’s distributions with zero mean, 
unit variance and various degrees of freedom ν
(a) Normal and Student’s PDFs � (b) Right tails of normal and Student’s PDFs
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418 The left and the right-hand tails of Student’s T(υ, δ, μ) distribution (3) decrease 
like |x|-ν-1, i.e. this distribution is heavy-tailed and the tail index corresponds to 
degrees of freedom, that is α = υ. In particular, moments of order greater than υ do 
not exist. The central moment of order n exists under the restriction n < υ, n ∈ N,  
and it is given by the following expression: 

E R E R
n n

n

n

( [ ])−



 =

+







−

























−
δ
π

ν νГ Г Г1
2 2 2

1

,,

,

, ,n k

n k

k= −

=









∈
2 1 

0 2

� (4)

where R is the random variable with Student’s T(υ, δ, μ) distribution, i.e. R~T(υ, δ, μ). 
We will be mainly interested in its expectation and variance:

	 E R Var R[ ] = > ( ) =
−

>μ  ν δ
ν

ν, ; , .1
2

2
2

� (5)

The model developed in this paper uses Student’s T(υ, δ, μ) distribution as the 
marginal distribution of the stationary sequence Rt ,  t = 1, ..., T of log-returns. 
Student’s distribution is heavy-tailed and thus fits the usual empirical properties 
for the log-returns distribution. Additional parameters μ and σ allow more flexibil-
ity in modeling as they describe the mean and the variance when υ > 2, i.e. when 
mean and variance exist. When υ → ∞, Student’s distribution reduces to normal 
distribution and the log-returns would have the same distribution as in the stand-
ard GBM model. That distributions of log-returns can often be fitted extremely 
well by Student’s distribution has been confirmed in many empirical studies; see 
Hurst and Platen (1997), Heyde and Liu (2001), Heyde and Leonenko (2005) and 
references therein.

3.2 STUDENT’S DIFFUSION MODEL
Here we propose a model that generalizes the model (1) for log-returns and incor-
porates Student’s distribution (3). The obvious step in this direction would be to 
replace ∆Wt, t = 1, ..., T in (1) by a sequence of independent random variables with 
Student’s distribution. However, this would imply independence of log-returns 
which is an unrealistic property for the asset returns.

A more advanced model can be built by taking (Rt , 0 ≤ t ≤ T) to be a stationary 
diffusion process such that Rt ~T(υ, δ, μ) for some parameters υ, δ and μ and which 
exhibits the so-called β-mixing dependence structure with the exponentially de-
caying rate, meaning that the coefficient which in some way describes the depend-
ence in the process (Rt , 0 ≤ t ≤ T) tends to zero exponentially fast. This type of 
mixing implies another type of mixing called α-mixing or strong mixing, which is 
more frequently used in the studies of the dependence structures of stochastic 
processes. For more general details on mixing theory we refer to Bradley (2005), 
and Abourashchi and Veretennikov (2010). Such a choice will allow (Rt , 0 ≤ t ≤ T) 
to have the exponentially decaying autocorrelation function ρ(t) = Corr(Rs , Rs+t), 
0 ≤ s < s + t ≤ T, and heavy-tailed marginal distribution.
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419A stationary diffusion process with prescribed marginal distribution can be con-
structed as a solution of a particular stochastic differential equation (see Bibby, 
Skovgaard and Sørensen, 2005). For ν > 2 Student’s diffusion is a stochastic pro-
cess satisfying the stochastic differential equation 

	 , ,dR R dt
R

dW t Tt t
t

t= −( ) +
−

+
−





















≤ ≤θ  μ θδ
ν

μ
δ

2
1

1 0
2 2

� (6)

where (Wt , 0 ≤ t ≤ T) is a standard Brownian motion and θ > 2 is the so-called auto
correlation or dependence parameter appearing in the autocorrelation function 

	 R e( ) = ≤−, ,ρ θt R s s t Ts s t
t( ) = < + ≤+Corr .0 � (7)

Moreover, if Student’s diffusion starts from Student’s T(υ, δ, μ) distribution, i.e. if 
R0 ~T(υ, δ, μ), then Rt ~T(υ, δ, μ) for all t ∈ [0, T] and the process (Rt , 0 ≤ t ≤ T) is 
said to be strictly stationary (all of its finite-dimensional distributions are invariant 
to time-shifts).

For Rt interpreted as the log-return at time t, equation (6) could be interpreted 
in  view of the change of the log-return in a small time interval [t, t  +  ∆t], 
0 ≤ t < t + ∆t ≤ T: 

	 R Rt t+ +∆ ∆R t
R

W Wt t
t

t t t− = −( ) +
−

+
−





















−(∆θ  μ θδ
ν

μ
δ

2
1

1
2 2

)). � (8)

Equation (8) relates the log-return Rt + ∆t at time (t + ∆t) to the log-return Rt at time  
t taking into account the increase of time ∆t and the change of the value of the 
Brownian motion (Wt + ∆t – Wt), i.e. its increment between time points t and (t + ∆t). 

Therefore, it could be interpreted as follows: the log-return Rt + ∆t could be ob-
tained from the historical log-return Rt by adding to it the increase of time ∆t 
with the factor θ(μ – Rt) and the increment of the Brownian motion (Wt + ∆t – Wt) 
between time points t and (t + ∆t) with the factor 

	
2

1
1

2 2θδ
ν

μ
δ−

+
−





















Rt , � (9)

where both factors depend on the historical log-return Rt, parameters ν, δ and μ of 
the Student’s T(υ, δ, μ) distribution and the autocorrelation parameter θ. Factor (9) 
can be understood as conditional variance of the Gaussian innovation term 
(Wt + ∆t – Wt), conditionally on the past values of Rt. This structure resembles the 
discrete time conditional heteroscedasticity models, e.g. ARCH models. It is well-
known that there is an intimate relation between GARCH models and diffusions 
processes (see e.g. Fornari and Mele, 2000 and references therein).
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420 4 FITTING THE CROBEX LOG-RETURNS TO STUDENT’S DIFFUSION
In view of the empirical properties of log-returns of the risky asset presented in sec-
tion 2 and remarks on the suitability of Student’s distribution for modeling the mar-
ginal distribution of log-returns presented in section 3, Student’s diffusion (6) seems 
to be a plausible stochastic model for log-returns. In this section CROBEX log-re-
turns will be fitted to Student’s diffusion. More precisely, we derive estimators of 
parameters ν, δ, μ and θ and calculate their values based on the CROBEX data.

4.1 ESTIMATION OF UNKNOWN PARAMETERS
The parameter estimation problem will be treated in three separate but dependent 
steps. First, the parameter ν will be estimated as the tail index parameter by using 
the method based on the empirical scaling function recently introduced in Graho-
vac et al. (2015). This estimated value of ν will be treated as the known value of 
this parameter in the estimation of parameters μ and δ by the classical method of 
moments (see Serfling, 1980). Finally, the autocorrelation parameter θ will be es-
timated by the generalized method of moments based on Pearson’s sample corre-
lation function (see Leonenko and Šuvak, 2010).

4.1.1 Estimation of parameter ν
The shape parameter ν corresponds to the tail index of Student’s distribution. Ex-
treme value theory provides many methods for estimating the unknown tail index 
(see Embrechts, Klüppelberg and Mikosch, 1997 for an overview). Here we will 
use a novel approach introduced in Grahovac et al. (2015), based on the so-called 
empirical scaling functions. Suppose that we are given a zero mean sample 
X1,  X2,  ...,  Xn, coming from some stationary heavy-tailed sequence with strong 
mixing property with an exponentially decaying rate. Partition function of this 
sample is defined as 

− +( )S n t
n t

Xq
i

n t

j

t

i j

q

( , )
/

,
/

=
= =
∑ ∑1

1 1
1 t

where q > 0 and 1 ≤ t ≤ n. Using this definition the empirical scaling function at 
the point q based on the points si ∈ (0,1), i = 1, ..., N, can be defined by 

) (

The estimation method is based on the asymptotic behavior of τ̑N,n. One can show 
that for each q > 0, when n, N → ∞, τ̑N,n (q) tends in probability to 
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where α is the tail index. This implies that the shape of the empirical scaling func-
tion depends on the value of the tail index. Since τ̑N,n (q) can be easily computed 
from the sample, this provides information on the unknown tail index. The asymp-
totic form τ∞N is plotted in figure 4(a). For the heavy-tailed samples the empirical 
scaling function will approximately have the shape of the broken line. The break 
of the line occurs at point α. The limiting case α → ∞ corresponds to non heavy-
tailed distributions and the scaling function would be a straight line q/2 (dotted in 
figure 4(a)). This way it is possible to detect heavy tails in data. Estimation can be 
done by fitting the empirical scaling function to its asymptotic form. Taking some 
points qi ∈ (0, qmax), i = 1, ..., M, tail index can be estimated as 

	 = ) (i i( (q qα τα∈ ∞( )
=

∞∑mi α    0
1

2
, )) .

i

M
τN,n − � (10)

More details on the method can be found in Grahovac et al. (2015). It is important 
to note that the estimation does not depend on the particular form of the underlying 
distribution and the only assumption is that the sample comes from the class of 
heavy-tailed distributions, which in particular also includes Student’s distribution.

The empirical scaling function computed on the sample of CROBEX log-returns 
R1, ...., Rn with n = T = 2523 is shown in figure 4(b). A clear departure from the line 
q/2 confirms that the log-returns are heavy-tailed. The scaling function has a shape 
of the broken line and breaks at around value 5. Computing the estimator by equa-
tion (10) gives the value α ̑ = 4.827. The estimated value appears as a break in the 
plot of the scaling function in figure 4(a). The plot of τ∞N for α = 4.827 (dashed in 
figure 4(b)) almost coincides with the empirical scaling function, confirming the 
quality of the estimate. Therefore, the estimated value of the shape parameter υ is 
υ ̑ = 4.827 and as such is consistent with many other studies that suggest that the 
tail index value of the asset returns is between 3 and 5 (see e.g. Hurst and Platen, 
1997).
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422 Figure 4 
Scaling functions
   (a) Asymptotic form                                         (b) Empirical for CROBEX data
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4.1.2 Estimation of parameters μ and δ
The problem of estimation of the location parameter μ ∈ R and the scale param-
eter δ > 0 is approached by assuming that υ is equal to its estimated value 4.827. 
Suppose that R1, ...., Rn is a random sample of n log-returns. Parameters μ and δ 
will be estimated by the classical method of moments in which estimators are 
obtained as solutions of the system of equations relating the theoretical moments 
to the corresponding empirical moments. Since μ and δ are parameters of the mar-
ginal distribution of Student’s diffusion (6), estimators will be obtained by relat-
ing the expectation E[Rt] = µ and the second moment E[R2

t] = δ2/(υ – 1) + μ2 to the 
first and the second empirical moments 

	 = =∑ ∑n
R RR

n
Rn

k

n

k n
k

n

k
= =

1 1

1

2

1

2 � (11)

respectively. Solutions of this system of equations with respect to the unknowns δ 
and μ are the estimators of these parameters: 
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Computing the values of estimators δ ̑ and μ ̑  based on the CROBEX log-returns 
results in estimated values of parameters δ and μ of Student’s diffusion. Estimated 
values of all three parameters of the marginal distribution of Student’s diffusion 
are given in table 1.

Table 1 
Estimated values of parameters υ, δ and μ of Student’s diffusion

Parameter υ δ μ
Estimated value 4.827 0.025 0.00004
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4234.1.3 Estimation of parameter θ
Autocorrelation parameter θ > 0 is estimated by the generalized method of mo-
ments based on the empirical autocorrelation function. Autocorrelation function 
(ACF) of Student’s diffusion is well defined if υ > 0, so its existence is assured by 
the estimated value 4.827 of the parameter υ (see table 1).

The empirical counterpart of the autocorrelation function (7) is given by the abso-
lute value of Pearson’s sample correlation function 

� (14)

where the term in the numerator represents the empirical covariance of random 
variables Rs and Rt+s, while the term in the denominator represents the product of 
the empirical standard deviations of random variables Rs and Rt+s, 0 ≤ s < s + t ≤ T. 
Pearson’s sample correlation function (or empirical ACF), plotted in figure 5 for 
lags t = 0, 1,  ..., 30, shows autocorrelation in the time series of log-returns for 
small values of lag t and suggests the exponential decay of autocorrelations with 
respect to the lag t. Notice that after lag 10 the estimated correlations stabilize near 
zero, so the majority of the exponentially decaying autocorrelation structure of 
Student’s diffusion is contained in these first few correlations. For alternative 
methods of estimation of the autocorrelation parameter based on a small number 
of lags we refer to Forman (2005).

Figure 5 
Empirical ACF (dotted) and theoretical ACF (solid) for θ=0.91
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For fixed t, the method of moments estimator for θ is derived by solving, with 
respect to the unknown parameter θ, the equation that relates the empirical auto-
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424 correlation function (14) to the theoretical autocorrelation function ρ(t) = e-θt given 
in (7). The estimator is given by the following expression: 

	 t lθ ρ

( ) .n= − ( )1
t

tn
� (15)

Notice that for each lag t we obtain a single estimate of θ. Since the majority of the 
autocorrelation structure is held by the first 10 lags, to obtain just one estimate of 
the parameter θ we calculate the value of the estimator θ̑(t) for t = 1, ..., 10 and the 
final estimate 0.91 for θ is obtained as the mean of these 10 values (see table 2). The 
theoretical autocorrelation function ρ(t) = e-θt for θ = 0.91 is also plotted in figure 5.

Table 2
Estimation of parameter θ of Student’s diffusion

Lag t 1 2 3 4 5 6 7 8 9 10
Value of θ̑(t) 2.19 1.87 0.80 0.91 0.63 0.81 0.60 0.32 0.69 0.27
Estimated value of θ 0.91

Figure 6 
Empirical ACF for the squared log-returns
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Beside plotting the theoretical and the empirical ACF, the usual graphical method 
for exploring the dependence structure of log-returns is the ACF of their squares, 
which are often used as the volatility approximations. From nice theoretical prop-
erties of Student’s diffusion and the methodology based on its eigenfunctions (or-
thogonal Routh-Romanovski polynomials, see Leonenko and Šuvak, 2010) it fol-
lows that the autocorrelation function of the squared log-returns, which is well 
defined for υ > 4, is given by:
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425Autocorrelation function (16) is exponentially decaying function of the lag t. 
From the empirical ACF of squared CROBEX log-returns, estimated by Pearson’s 
sample correlation function (14) for squared data and plotted in figure 6, we see 
that it corresponds to the theoretically suggested exponential decay.

4.2 NOTES ON THE ASYMPTOTIC BEHAVIOR OF PARAMETER ESTIMATORS
In this section we briefly discuss the two most commonly analyzed asymptotic 
properties of estimators – consistency and asymptotic normality of the estimators 
θ̑, δ̑, μ̑ of parameters θ, δ, μ. Generally, estimator k̑n, where n emphasizes its de-
pendence on the number of observations, is a consistent estimator of the unknown 
parameter k if the probability that the absolute deviation of k̑n from k can be made 
arbitrarily small by choosing n large enough. Furthermore, estimator k̑n is asymp-
totically normal if for large n the standardized estimator k̑n has an approximately 
standard normal distribution. For more details on these properties of estimators 
we refer to Serfling (1980).

4.2.1 Consistency
It is well known that the first and the second empirical moments R̄n and  given 
in (11) are consistent estimators of the first and the second theoretical moments 
and that the Pearson sample correlation function ρ̑n (t) given by (14) is a consistent 
estimator of the autocorrelation function ρ(t) = Corr(Rs, Rs+t), (see Serfling, 1980). 
Since estimators μ̑, δ̑ and θ̑ are continuous transformations of the estimators ̄Rn and  

 and ρ(t), from the continuous mapping theorem (see Serfling, 1980) it follows 
that μ̑, δ̑ and θ̑ are consistent estimators of parameters μ, δ and θ, respectively.

4.2.2 Asymptotic normality
Estimators μ̑ and δ̑ are continuous transformations of estimators R̄n and  which 
are known to be asymptotically normal due to the β-mixing property of Student’s 
diffusion (see Leonenko and Šuvak, 2010). Therefore, according to the delta-
method (see Serfling, 1980) it follows that for υ > 4 the bivariate estimator (μ̑, δ̑) 
is also asymptotically normal, i.e. 

where υ is supposed to be the known value of the tail index of marginal distribu-
tion of Student’s diffusion and δ̑, μ̑ and θ̑ are consistent estimators of parameters 
δ, μ and θ given in (12), (13) and (15), respectively. The covariance matrix 
∑(υ, δ̑, μ̑, θ ̑ ) could be represented as D∑Dτ, where
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426 and the elements of the matrix ∑ are as follows: 

σ δ
ν θ11

2
2

2
2

1
1=

− −
+



















e
,

σ μδ
ν

δ σ
θ12

2
2

21
22

2
2

1
1=

− −
+














=





e
,

2 4− −( )
4 1( )δ    ν

( )
σ

ν ν
μ  δ
νθ ν

ν
θ22

2
4

2
2 2

1

2 21

1

8
2

1

1
=

−

−
+

− −−
−











e e

( )3 2δ ν ( )( ) ( )
( )

++
− + − − − −

− −
4 2 4 4

2 4

4 2 2 4

2
μ  δ ν ν δ ν

ν ν( )
.

For more details on the methodology of analysis of asymptotic properties of some 
of these estimators and calculation of explicit form of the covariance matrix 
∑(υ, δ̑, μ̑, θ ̑ ) we refer to Leonenko and Šuvak (2010).

4.3 INFERENCE ON THE QUALITY OF THE MODEL
The quality of the model is examined by simulations. To obtain some objective 
indicators that relate CROBEX log-returns and Student’s diffusion as the stochastic 
model for them, we simulated 1000 independent sample paths of this process by 
using estimated values of parameters υ, δ, μ and θ (see tables 1 and 2). Student’s 
diffusion can be simulated using the so-called Milstein scheme for simulating paths 
of solutions of stochastic differential equations (see Iacus, 2009 for more details). 
The length of each simulated sample path coincides with the number of observed 
CROBEX log-returns. Several of these sample paths are plotted in figure 7.

In this setting for each time point t we deal with the sample of 1000 simulated data 
that will be used to describe the CROBEX log-return at t by the sample percen-
tiles. More specifically, for each time point t we calculate the 5th percentile, the 
lower quartile (25th percentiles), median, upper quartile (75th percentile) and 95th 
percentile of the sample of 1000 data simulated for this exact time point. The val-
ues of these sample percentiles for each t, together with the time series of CROBEX 
log-returns, are plotted in figure 8.

Furthermore, we estimate probabilities that CROBEX log-returns fall outside the 
interquartile interval and the interval between the 5th and the 95th percentiles:  

− �13.99% of CROBEX log-returns fall outside the interquartile interval – we 
can say that the probability that the CROBEX log-return is smaller than the 
lower quartile and greater that the upper quartile is estimated to be 0.1399, 

− �2.46% of CROBEX log-returns fall outside the interval between the 5th and 
the 95th percentiles – we can say that the probability that the CROBEX log-
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427return is smaller than the 5th percentiles and greater that the 95th percentiles 
is estimated to be 0.0246. 

These probabilities indicate that the simulated paths of Student’s diffusion with 
parameters υ = 4.827, δ = 0.025, μ = 0.00004 and θ = 0.91 capture the time evolu-
tion of the historical values of CROBEX log-returns quite well. Moreover, there 
are no values of CROBEX log-returns that fall outside the interval between the 
minimal and the maximal simulated value of Student’s diffusion at time t.

Figure 7 
Simulated trajectories of Student’s diffusion
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Figure 8 
CROBEX log-returns and percentiles of 1000 simulated trajectories of Student’s 
diffusion
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428 5 CONCLUSION
In this paper we introduced stationary Student’s diffusion as a model for log-re-
turns of stock prices or values of a stock market index. The model captures some 
main features characteristic for log-returns of risky assets, mainly heavy-tailed 
marginal distribution and nontrivial dependence structure. The parameters of the 
diffusion process provide flexibility in fitting the model to data. Here we concen-
trated on fitting the CROBEX log-returns to the proposed model. Our analysis 
shows that CROBEX, as well as many other stock market indices, exhibits heavy 
tails. This important fact must always be taken into account in any serious risk 
analysis. Simulations of Student’s diffusion process show that it can realistically 
model risky asset returns and reproduce many of their features, like volatility 
clustering, meaning that periods of low volatility are followed by periods of high 
volatility, indicating partial predictability of volatility fluctuations.

The main purpose of the proposed model is not to forecast future values; rather it is 
tailored for a quality risk assessment. Computation of some risk measures, like e.g. 
value at risk (VaR), in the context of the proposed model has not been considered in 
this work. However, from the estimated parameters of stationary Student’s distribu-
tions, it is easy to compute the VaR as the quantile of this distribution. From the 
comparison with the normal distribution made in figure 3, it is clear that these esti-
mates will tend to give more pessimistic, although realistic predictions. We also did 
not consider the problem of option pricing which would require a more detailed 
approach. Option pricing problem can be approached through Monte Carlo simula-
tions but could also be built on the known expressions for the transition density of 
the Student’s diffusion. 

The model proposed is flexible enough to cover a wide range of heavy-tailed data. 
Some extensions of the model may include considering Student processes with 
prescribed dependence structure. A large class of such models has been proposed 
in Heyde and Leonenko (2005). Another possible extension of the model would 
be a diffusion process using the so-called skewed Student’s distribution which al-
lows for non-symmetry of the tails through an additional skewness parameter.
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