UNIT-SPHERE PRESERVING MAPPINGS

Soon-Mo Jung* and Byungbae Kim
Hong-Ik University, Korea

Abstract

We prove that if a one-to-one mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ $(n \geq 2)$ preserves the unit $n-1$ spheres $\left(S^{n-1}\right)$, then f is a linear isometry up to translation.

1. Introduction

Let X and Y be normed spaces. A mapping $f: X \rightarrow Y$ is called an isometry if f satisfies the equality

$$
\|f(x)-f(y)\|=\|x-y\|
$$

for all $x, y \in X$. A distance $r>0$ is said to be preserved (conservative) by a mapping $f: X \rightarrow Y$ if

$$
\|f(x)-f(y)\|=r \text { for all } x, y \in X \text { with }\|x-y\|=r
$$

If f is an isometry, then every distance $r>0$ is conservative by f, and conversely. We can now raise a question whether each mapping that preserves certain distances is an isometry. Indeed, A. D. Aleksandrov [1] had raised a question whether a mapping $f: X \rightarrow X$ preserving a distance $r>0$ is an isometry, which is now known to us as the Aleksandrov problem. Without loss of generality, we may assume $r=1$ when X is a normed space (see [15]).
F. S. Beckman and D. A. Quarles [2] solved the Aleksandrov problem for finite-dimensional real Euclidean spaces $X=\mathbb{R}^{n}$ (see also $[3,4,5,6,7,8,10$, $11,12,13,14,16,17,18,19]):$

[^0]Theorem 1.1 (Theorem of Beckman and Quarles). If a mapping f : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(2 \leq n<\infty)$ preserves a distance $r>0$, then f is a linear isometry up to translation.

It seems to be interesting to investigate whether the 'distance $r>0$ ' in the above theorem can be replaced by some properties characterized by 'geometrical figures' without loss of its validity.

In [9], the first author proved that if a one-to-one mapping $f: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{n}(n \geq 2)$ maps the periphery of every regular triangle (quadrilateral or hexagon) of side length $a>0$ onto the periphery of a figure of same type with side length $b>0$, then there exists a linear isometry $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ up to translation such that

$$
f(x)=(b / a) I(x)
$$

In this note, we show further that if a one-to-one mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ $(n \geq 2)$ maps every unit $n-1$ sphere $\left(S^{n-1}\right)$ onto a unit $n-1$ sphere $\left(S^{n-1}\right)$, then f is a linear isometry up to translation.

2. MAIN THEOREM

Now, let us prove our main theorem.
THEOREM 2.1. If a one-to-one mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(n \geq 2)$ maps every unit $n-1$ sphere onto a unit $n-1$ sphere, then f is a linear isometry up to translation.

Proof. Assume $n \geq 3$ first. We show f preserves the distance 2. Assume $T_{1}, T_{2} \in \mathbb{R}^{n}$ and $d\left(T_{1}, T_{2}\right)=1$. Without loss of generality assume that $T_{1}=((1 / \sqrt{2}),(1 / \sqrt{2}), 0, \ldots, 0)$ and $T_{2}=(0,(1 / \sqrt{2}),(1 / \sqrt{2}), 0, \ldots, 0)$. Define $S_{1}, \ldots, S_{n}, S_{n+1}$ to be the unit $n-1$ spheres $\left(S^{n-1}\right)$ centered at $A_{1}=(\sqrt{2}, 0, \ldots, 0), \quad A_{2}=(0, \sqrt{2}, 0, \ldots, 0), \ldots, A_{n}=(0, \ldots, 0, \sqrt{2})$, and $A_{n+1}=(x, x, \ldots, x)$ respectively, where x is the unique negative real number satisfying $d\left(A_{i}, A_{n+1}\right)=2, \quad i=1, \ldots, n$. The S_{i} 's are all unit $n-1$ spheres such that any pair of these spheres meet each other at exactly one point. Then the same must be true for their image spheres $D_{1}, \ldots, D_{n}, D_{n+1}$. Denote the centers of these image spheres by $B_{1}, \ldots, B_{n}, B_{n+1}$. Because any pair of these spheres intersect each other at exactly one point, we have $d\left(B_{i}, B_{j}\right)=2$ whenever $i \neq j$.

Now if we are given two sets in \mathbb{R}^{n}, each of which contain $n+1$ points whose mutual distances are all equal to 2 , then there is an isometry $\phi: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} with $\phi\left(B_{i}\right)=A_{i}$, and consequently $(\phi \circ f)\left(S_{i}\right)=S_{i}, i=1, \ldots, n+1$. Since $S_{1} \cap S_{2}=\left\{T_{1}\right\}$ and $S_{2} \cap S_{3}=\left\{T_{2}\right\}$, we have necessarily $(\phi \circ f)\left(T_{1}\right)=T_{1}$ and $(\phi \circ f)\left(T_{2}\right)=T_{2}$. Thus $d\left(f\left(T_{1}\right), f\left(T_{2}\right)\right)=1$, as desired.

For $n=2$, consider two points A and B in \mathbb{R}^{2} which are separated from each other by the unit distance. Then we can draw three unit circles $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ such that any two of them touch each other at one point as in Figure 1. If
we call $\mathrm{c}_{i}=f\left(\mathrm{C}_{i}\right)(i=1,2,3)$, then we get the three contact points $a, \mathrm{~b}, \mathrm{c}$ which form the three vertices of a regular triangle with unit distance. Now since $f(\mathrm{~A})=a$ and $f(\mathrm{~B})=\mathrm{b}$, the proof is complete (see Figure 1).

Figure 1

Acknowledgements.

The authors express their cordial thanks to the referee for his valuable suggestions to shorten the proof of the main theorem.

References

[1] A. D. Aleksandrov, Mapping of families of sets, Soviet Math. Dokl. 11 (1970), 116-120.
[2] F. S. Beckman and D. A. Quarles, On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4 (1953), 810-815.
[3] W. Benz, Isometrien in normierten Räumen, Aequationes Math. 29 (1985), 204-209.
[4] W. Benz, An elementary proof of the theorem of Beckman and Quarles, Elem. Math. 42 (1987), 4-9.
[5] W. Benz and H. Berens, A contribution to a theorem of Ulam and Mazur, Aequationes Math. 34 (1987), 61-63.
[6] R. L. Bishop, Characterizing motions by unit distance invariance, Math. Mag. 46 (1973), 148-151.
[7] K. Ciesielski and Th. M. Rassias, On some properties of isometric mappings, Facta Univ. Ser. Math. Inform. 7 (1992), 107-115.
[8] D. Greewell and P. D. Johnson, Functions that preserve unit distance, Math. Mag. 49 (1976), 74-79.
[9] S.-M. Jung, Mappings preserving some geometrical figures, Acta Math. Hungar. 100 (2003), 167-175.
[10] P. S. Modenov and A. S. Parkhomenko, Geometric Transformations, Vol. 1, Academic Press, New York, 1965.
[11] B. Mielnik and Th. M. Rassias, On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc. 116 (1992), 1115-1118.
[12] Th. M. Rassias, Is a distance one preserving mapping between metric spaces always an isometry? Amer. Math. Monthly 90 (1983), 200.
[13] Th. M. Rassias, Some remarks on isometric mappings, Facta Univ. Ser. Math. Inform. 2 (1987), 49-52.
[14] Th. M. Rassias, Mappings that preserve unit distance, Indian J. Math. 32 (1990), 275-278.
[15] Th. M. Rassias, Properties of isometries and approximate isometries, in: Recent Progress in Inequalities, G. V. Milovanovic, Ed., Kluwer (1998), pp. 341-379.
[16] Th. M. Rassias and C. S. Sharma, Properties of isometries, J. Natur. Geom. 3 (1993), 1-38.
[17] Th. M. Rassias and P. Šemrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc. Amer. Math. Soc. 118 (1993), 919925.
[18] E. M. Schröder, Eine Ergänzung zum Satz von Beckman and Quarles, Aequationes Math. 19 (1979), 89-92.
[19] C. G. Townsend, Congruence-preserving mappings, Math. Mag. 43 (1970), 37-38.
S.-M. Jung

Mathematics Section
College of Science and Technology
Hong-Ik University
339-701 Chochiwon
Korea
E-mail: smjung@wow.hongik.ac.kr
B. Kim

Mathematics Section
College of Science and Technology
Hong-Ik University
339-701 Chochiwon
Korea
E-mail: bkim@wow.hongik.ac.kr
Received: 15.09.2003.
Revised: 07.11.2003.

[^0]: 2000 Mathematics Subject Classification. 51K05.
 Key words and phrases. Isometry, unit-circle preserving mapping.
 *The first author was supported by Korea Research Foundation Grant (KRF-2003-015-C00023).

