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ABSTRACT 

Traffic flow data are stochastic in nature, and an abun-
dance of literature exists thereof. One way to express sto-
chastic data is the Langevin equation. Langevin equation 
consists of two parts. The first part is known as the deter-
ministic drift term, the other as the stochastic diffusion term. 
Langevin equation does not only help derive the determinis-
tic and random terms of the selected portion of the city of 
Istanbul traffic empirically, but also sheds light on the under-
lying dynamics of the flow. Drift diagrams have shown that 
slow lane tends to get congested faster when vehicle speeds 
attain a value of 25 km/h, and it is 20 km/h for the fast 
lane. Three or four distinct regimes may be discriminated 
again from the drift diagrams; congested, intermediate, and 
free-flow regimes. At places, even the intermediate regime 
may be divided in two, often with readiness to congestion. 
This has revealed the fact that for the selected portion of 
the highway, there are two main states of flow, namely, con-
gestion and free-flow, with an intermediate state where the 
noise-driven traffic flow forces the flow into either of the dis-
tinct regimes.
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1.	INTRODUCTION 

In this study, stochastic traffic data are modelled 
using a stochastic differential equation, known as Lan-
gevin equation. By Langevin equation, deterministic 
and random terms are estimated non-parametrically. 
The authors assume a similarity between vehicular 

traffic flow and random movement of interacting pollen 
grains suspended in a fluid (Brownian motion). Even 
though vehicles do not correspond to pollen grains 
per se, vehicular speed differences in one dimension 
represent the Brownian motion. Random interactions 
of agents/particles are seen explicitly in underlying 
dynamics of a stochastic system like vehicular traffic 
flow. Similar to the Brownian motion, vehicular traffic 
flow phenomenon generally shows complex multi-par-
ticle interactions and non-linearity. Considering dy-
namic systems, an attempt is made to obtain the time 
evolution and the dynamics of traffic flow by including 
delta-correlated Gaussian distributed white noise. 
Thus the information about the stochastic process of 
traffic flow by means of experimental data is extracted. 
The desired formulation of the process in this study 
would be compatible with this stochastic differential 
equation.

Phase transitions between different traffic states 
would also be considered. Langevin equation is com-
posed of deterministic and stochastic forces which 
include the Wiener process. The work deals with the 
drift and the diffusion coefficients, which are the 
Kramers-Moyal coefficients [1]. It is too difficult to 
build exact (deterministic) relations due to the na-
ture of vehicular traffic flow. Deterministic models in 
traffic field (e.g. single regime and multi-regime para-
metric models) are also well-studied and their analyt-
ical tractability is strong [2]. However, the measured 
traffic data generally involve noise and randomness. 
It is intended to focus on obtaining a stochastic mod-
el to capture the traffic flow dynamics. It is assumed 
that the deterministic and stochastic forces are not 
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explicitly time-dependent, and the traffic flow remains 
stationary within the observation period. It is believed 
that the Langevin equation is quite a versatile tool in 
the analysis of stochastic time series data such as the 
traffic flow. 

There is a large variety of microscopic and mac-
roscopic approaches to model traffic flow in physics 
and transportation literature. Some of the techniques 
used in traffic flow modelling such as hydrodynamics 
models, Lighthill–Whitham model, gas-kinetic mod-
els, car-following models, optimal velocity models and 
cellular automata models can be found in [3]. There 
are numerous examples of traffic modelling studies 
including stochastic elements. For example, Boel and 
Mihaylova [4] consider consecutively connected road 
sections (cells) and their interactions and present a 
stochastic compositional model for traffic flow dynam-
ics on freeways. The authors point out that the mod-
el could be applied to on-line estimation, routing and 
ramp metering control at large freeway networks. The 
studies by Kim and Zhang [5] and Li et al. [6] are also 
representative of stochastic analysis.

Alperovich and Sopasakis [7] categorize the mod-
els describing traffic behaviour. According to the cat-
egories, deterministic type models (without random 
effects) have no descriptive capabilities especially 
to capture transient behaviour. To do this, stochastic 
models would be more feasible. Likewise, Liebe et al. 
[8] emphasize that the description of flow dynamics 
would be incomplete without stochastic forces.

Three recent and relevant articles are worth men-
tioning. In the study of Laval and Leclercq [9], Hamil-
ton-Jacobi partial differential equations were used to 
form a flow surface. For the triangular flow density dia-
gram, solution methods were shown. It is claimed that 
the study generates new models and acts as a unifying 
model. But it lacks an additive noise term to approxi-
mate the traffic flow. A stochastic traffic flow model is 
offered in Jabari and Liu [10]. This renders accounts 
stochastic for the uncertainty in driver gap choices. 
Random headway distributions were generated in or-
der to ensure non-negative flow densities. Instead of 
adding a random noise to the traffic flow, a variety of 
distributions could be incorporated as a novelty, and 
as an example, the distribution is a Gaussian in Jabari 
and Liu [11]. 

Research using Langevin equation is far and wide, 
but there are only a few studies in transportation lit-
erature. Some of the related Langevin equation stud-
ies will now be discussed. Friedrich et al. [12] perform 
observed data and numerically formulate dynamic 
model equation. The study analyzes tremor data of 
the three different tremor groups and compares them. 
They utilize two-dimensional Langevin equation which 
includes measured time series and created time se-
ries by a time-delay method. In the study the numer-
ical algorithm is first applied to data from a chaotic 

electric circuit. Afterwards, the study uses the dataset 
collected at a sampling rate of 800 Hz and applies 
the method. According to their analysis, deterministic 
parts of the dynamics of physiological and essential 
tremor are similar in terms of having a fixed point, but 
different in terms of damping and rotation. However, 
Parkinson’s disease dynamics is formed with a limit 
cycle. The study points out that there might be other 
possible scientific applications especially in the time 
series of non-linear, complex systems. 

Gradisek et al. [13] extend the method for analysis 
of stochastic processes (i.e. Langevin equation) to the 
class of periodically forced stochastic processes. The 
study shows how to estimate deterministic term, and 
the method is illustrated performing both synthetic 
and experimental data. The authors emphasize the ne-
cessity of forcing period T and stroboscopic data since 
the deterministic term has periodic dependency.

In the most relevant study, Kriso et al. [1] investigat-
ed the iterative dynamics of traffic flow with respect to 
deterministic and stochastic forces by considering Lan-
gevin equation. The authors point out that their method 
provides more insight in traffic dynamics rather than 
presentation of fundamental diagrams. That study also 
presents the fundamental diagrams in which density 
and flux states of the cars are included. The authors 
deal with one- (velocity) and two-dimensional (flux-ve-
locity) dynamics of the traffic. The diffusion part has 
provided a thorough understanding of the traffic dy-
namics as it is emphasized in the study. The stable 
and unstable fixed points are obtained for traffic phase 
transitions. The sampling rate is rather precise, but it 
would be problematic in processing the traffic flow data 
when no traffic is present for a given lane. 

In this research, the sampling rate is kept deliber-
ately a little longer for the concerns mentioned above. 
Also, no manuscript thus far has provided an in-depth 
interpretation of drift and diffusion diagrams. Here, 
all the positive and negative values of drift data have 
been expounded and qualified. Additionally, the mean-
ing of the slopes of the aforementioned diagrams is 
elaborated.

2.	METHOD

Since Langevin equation has a stochastic term, it 
would be proper to talk first of the white noise and its 
characteristics. White noise is an idealization in that it 
spans the complete frequency range. It has a uniform 
power spectrum. The white noise is usually considered 
stationary and normally distributed. It is delta-correlat-
ed in time [14].

R t t N t tηη δ( ) ( / ) ( )2 1 0 2 12− = − 	 (1)

where Rηη is the autocorrelation function, N0 is a real 
positive constant and δ is the well-known Dirac delta 
function.
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Power spectral density of white noise η is uniform 
and defined by 0(ƒ) / 2S Nηη =  for ƒ R∈ .

The Wiener Process is a continuous time stochastic 
process with w(t) as the integral of white noise: 

w t d
t

( ) ( )= ∫η λ λ
0

	 (2)

Every independent increment in the Wiener pro-
cess is normally distributed with zero mean and vari-
ance ( / )N t0 2 . Since the Wiener process involves in-
dependent increments, it satisfies Markovian property 
presented here by mathematical expectation:

E w t( ){ } = 0 	 (3)

E w t N t2
0 2( ) ( / ){ } = 	 (4)

In Langevin equation (Eqn. 6), X(t) is the vehicle 
speed and has Markovian property since X(t) at time 
t depends on the preceding time t-τ. By Markov de-
scription, the process has no memory prior to t-τ. 
Thus, one-step conditional Markov density functions 
are expressed as follows 

P X t X tk k+ ( ) −( )( )1 | τ 	 (5)

d
dt
X t g X t h X t t( ) ( ( )) ( ( )) ( )= + η 	 (6)

In Langevin equation, the time derivative of X(t) 
equals the sum of the deterministic and stochastic 
components where g(X(t)) is the deterministic com-
ponent, h(X(t)) is the amplitude matrix and η(t) is the 

Gaussian distributed white noise. This work could also 
have been based on a band-limited white noise as-
sumption, without loss of generality.

Adapting Ito’s definition [1] by taking forward differ-
ence, the following is obtained:

g X t X t x X t x( ( )) ( ) ( )= + −( ) =τ 	 (7)

h X h X X t x X t xT T

X t x(( )) (( )) ( ) ( ) ( )= + −( ) + −( ) =τ τ 	 (8)

Here T represents the matrix transpose, the angle 
brackets represent the conditional moments. In our 
case, X(t) variable is one-dimensional and the trans-
pose is not implemented. 

The deterministic component of the Langevin 
equation g(X(t)) is known as drift and it is basically a 
speed difference term. The stochastic component of 
the Langevin equation h(X(t)) is the diffusion term, 
which could also be considered as standard deviation 
observed at a given speed. Please note that the diffu-
sion term is not an exact square of the drift term.

The angle brackets in Eqn. 7 and Eqn. 8 define the 
averaging. This averaging is performed as follows. For 
a given speed value, the successive speed differenc-
es, which followed at exactly tau seconds later, inter-
spersed in fifteen-day period have been checked. All 
these differences for that given speed value are com-
puted, which happens to be the reference value. Then 
all those instances are counted, and the summation of 
differences is divided by this count.
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Figure 1  –  Speed-volume diagram of the slow lane
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3.	DATA ANALYSIS RESULTS 
AND DISCUSSION

The authors have obtained traffic volume and 
speed data for one traffic observation point at the Is-
tanbul highway. The data are from only one direction at 
three lanes for 15 consecutive days in 2012. The data 
at 2-minute intervals from 5:00 p.m. to 9:00 p.m. are 
processed. The highway is a link to Istanbul TEM (Tran-
sit European Motorway) and the traffic observation 
point at the selected portion of the highway is near 
a large number of residential and commercial areas.

This study first obtains the fundamental diagram 
(Figure 1) of traffic flow (speed-volume) at the slow lane. 
The spread of the speed-volume quantities would pro-
vide a general idea about traffic characteristic of the 
uninterrupted flow on the selected highway. Afterwards, 
the study evaluates the dynamics of the traffic flow on 
the highway. To this end, a sampling interval, total mea-
surement time and step size are specified. After obtain-
ing the deterministic part and noise amplitude, the data 
are simulated implementing Langevin equation in M-file 
developed by the authors in MATLAB environment.

To further grasp the traffic flow dynamics of the se-
lected highway, the drift and diffusion diagrams of all 
the three lanes in the light of Langevin equation are 
constructed. Here, X(t) is the speed value. Hence, drift 
g(X(t)) is the speed difference X(t+τ)-X(t), Eqn. 7, and 
diffusion h(X(t)) is the absolute value of the speed dif-
ference (X(t+τ)-X(t))(X(t+τ)-X(t))T, Eqn. 8.

After obtaining the drift and diffusion diagrams, 
the drift diagram is evaluated in terms of the slope 
of the drift curve. For example, when the drift curve 
decreases (negative slope), the traffic congestion rate 

diminishes. In contrast, the positive slope in drift curve 
indicates an upward trend in traffic congestion. 

In other words, for the negative slope in the drift di-
agram the vehicles in the previous interval have higher 
average speed than the vehicles in the current inter-
val; thus the traffic congestion rate decreases and the 
spacing values between successive vehicles are great-
er. Conversely, in the positive slope, the vehicles in the 
previous interval have lower speed and the spacing 
between successive vehicles is shorter. Thus, the vehi-
cles would be slower and the traffic congestion occurs. 
In drift and diffusion diagrams the data points are not 
necessarily successive counts. Instead, drift and dif-
fusion diagrams are representative of traffic regimes 
composed of data points scattered in time.

Kriso et al. [1] examine three different flow regimes 
in drift and diffusion diagrams for the highway close 
to Köln-Nord in Germany. For example, for lane C (fast 
lane) it is seen that there are regular drift values, i.e. 
there are no large deviations in the drift diagram. Thus, 
it can be interpreted that the highway has generally 
heavy traffic. However, in our study, there are mainly 
irregular successive drift values as shown in Figure 2a 
since a series of zigzags can be seen and the slopes 
fluctuate in the drift diagram. Exceptionally, drift values 
remain horizontally more regular between the speed 
values of 45 km/h and 85 km/h in the diagram. In this 
speed range, the fact that the slope is stable and al-
most zero indicates that the traffic flow is regular. No-
tably, in the speed range of 12 km/h to 45 km/h, the 
slope changes from positive to negative or vice versa. 
Hence, the traffic flow occasionally oscillates between 
congested and uncongested in that speed range. 

As can be seen in the drift diagrams, the following 
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Figure 2a  –  Drift diagram of the slow lane per two-minute interval
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conclusions can be deduced:
–– There are congested traffic flow regimes up to 45 

km/h both for the slow lane and fast lane, but up 
to 50 km/h for the middle lane (Figures 2a, 2b, 2c).

–– The traffic speed is almost stable between 45 
km/h and 85 km/h (Figure 2a).

–– The traffic flow characteristic changes after 85 
km/h and results in a free-flow regime. 

–– The drift values enter into the negative zone and 
the congestion dissolves (Figure 2a).
Incidentally, even though the terms such as con-

gested, intermediate, etc. are obvious, it would be 

timely to explain these terms in connection with drift 
diagrams. Since the drift term is actually a speed dif-
ference term, a large positive value would hint a faster 
following vehicle approaching a jam. When the drift is 
roughly zero, this would indicate the same speed traf-
fic flow. From the drift diagrams it is clear that there is 
a transition from a certain regime to another when the 
drift assumes zero values. This transition occurs after 
45 km/h and another one could be observed at about 
85 km/h. These three distinctive regimes are called 
congested, intermediate and free-flow by the authors 
based only on the drift characteristics.
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Figure 2b  –  Drift diagram of the middle lane per two-minute interval
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When the diffusion equation (Eqn. 8) is considered 
in our study, the sign of the difference between succes-
sive speed values disappears and only the absolute 
values are meaningful since diffusion values could 
also be considered as a standard deviation for the 
designated drift value in the traffic flow. The outcomes 
obtained from diffusion diagrams (Figures 3a, 3b, 3c) 
corroborate the outcomes of the drift diagrams. For 
example, between 45 km/h and 85 km/h in Figure 2a, 
the speed values of the vehicles are very close in the 
traffic flow. After 85 km/h in the diagram, the differ-
ence between the speed-values increases and free-
flow regime occurs. However, before almost 45 km/h, 
the congested flow regime occurs. The speed-volume 
curve (Figure 1) also upholds the congested regime at 
before 45 km/h since the forced-flow conditions have 
already started. 

As shown in Figure 2a, the traffic flow has a tenden-
cy to concentrate in the middle zone (approximately 
between 45 km/h and 85 km/h). Furthermore, a sta-
ble flow can be observed in the range of 60-65 km/h 
on the highway. According to the observations, 82% of 
the total vehicles traversing at the surveillance point 
on the highway have average speed values within 45 
km/h – 85 km/h limits. This supports the idea of the 
concentration of the traffic flow in the middle zone. 
In the drift diagram (Figure 2a), the speed values 45 
km/h and 85 km/h can denote the boundaries to the 
neighbour states. 

Both positive and negative drift values are inter-
preted in the drift diagrams. For example, in Figure 2a, 
the drift values of 20 km/h and 5 km/h are different in 
terms of congestion rates. Thus, when the drift value is 
20 km/h, the traffic tends to get congested more rap-

idly than the drift value of 5 km/h. When the drift value 
range is in the neighbourhood of zero, as represented 
by the intermediate regime, not much could be said 
of the vehicle speeds. The only explanation is that the 
distance between the vehicles in traffic flow is fixed. 
Hence, the experimental data must be inspected to as-
certain the traffic flow in zero (or almost zero) drift val-
ues. On the other hand when the drift moves towards 
negative values, the vehicles start breaking away, 
clearing any possible congestion. As seen in Figure 2a, 
at a drift of -5 km/h, the congestion dissolves more 
rapidly than it does at -1 km/h. Since the departure 
from zero drift into a negative one is the indication 
of a transition from intermediate to free-flow regime, 
zero drift may not be considered a part of free flow. 
The free-flow zone also indicates a rapid detachment 
regime of the traffic flow. The drift diagrams for each 
three lanes show that both on the fast lane and slow 
lane, there is a clearer dissolution of the traffic where 
the drift values are negative in the free-flow regime. As 
it is also expected, the dissolution in the middle lane is 
less pronounced. 

Since what is said in accordance with drift dia-
grams holds true for diffusion diagrams as well, we 
refrain from restating what has already been stated. 
However, diffusion graphs reveal one interesting fact 
regarding all the lanes (Figures 3a, 3b, 3c). If congested 
regimes are inspected, dispersion among the speeds 
of the vehicles is greater than the free-flow regime, for 
example. This could be explained by the fact that in 
congested regime vehicle speeds range in a wider in-
terval as opposed to the speeds in the free-flow zone. 
Free-flow zone denotes a traffic flow with less disper-
sion in speeds resulting in a more consistent traffic. 
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Figure 3a  –  Diffusion diagram of the slow lane per square root of two-minute interval
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The analytical approach to the determination of the 
regimes is through zero drift transitions. A computer 
code may automatically cluster the data points with 
respect to zero drift axis. However, the use of absolute 
value in the diffusion term renders any regime distinc-
tion impossible.

4.	CONCLUSION

This manuscript has tried to reveal the underlying 
dynamics of the selected portion of a highway in the 
city of Istanbul. Langevin equation is used to account 

for the stochastic nature of the traffic flow. Langevin 
equation consists of two parts, the deterministic and 
the noise-induced terms. Hence, the authors were able 
to separate the deterministic and random terms of the 
traffic flow for the given segment. Langevin equation 
provides an instantaneous view of the traffic flow char-
acteristics. It is seen that the traffic flow tends to get 
congested fast until about 25 km/h speed for the slow 
lane, and eases afterwards. This maximum is roughly 
20 km/h for the fast lane. Congested regime lasts until 
about 45 km/h speeds for slow and fast lanes, and 
50 km/h for the middle lane. An intermediate regime 
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Figure 3b  –  Diffusion diagram of the middle lane per square root of two-minute interval
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follows until speeds of 85 km/h, often with a propen-
sity to flow back into the congested state for the slow 
lane. Vehicles move in synchrony in this intermediate 
state, as their drift values dwell mostly around zero. As 
apparent from the diffusion graphs, free-flow regimes 
start at about 85 km/h, 100 km/h, and 100 km/h, 
for slow, middle and fast lanes, respectively. We did 
not mention the compatibility of the white noise as-
sumption of the noise in the traffic flow, even though it 
seems to be working quite well. An upcoming work may 
focus on the true nature of the noise embedded deep 
in the data. A curious behaviour of the traffic data is 
that occasional breakaways may be seen both in free-
flow and congested regimes, even if temporarily. We 
wish to analyze this behaviour, next, in a broader sto-
chastic perspective. 

ÇAĞLAR KOŞUN, M.Sc. 
E-posta: caglarkosun@iyte.edu.tr, cglrksn@gmail.com 
İzmir Yüksek Teknoloji Enstitüsü 
Şehir ve Bölge Planlama Bölümü 
İzmir 35430, Türkiye 
HÜSEYİN MURAT ÇELİK, Ph.D. 
E-posta: celikhus@itu.edu.tr 
İstanbul Teknik Üniversitesi 
Şehir ve Bölge Planlama Bölümü 
İstanbul 34437, Türkiye 
SERHAN ÖZDEMİR, Ph.D. 
E-posta: serhanozdemir@iyte.edu.tr 
İzmir Yüksek Teknoloji Enstitüsü 
Makina Mühendisliği Bölümü 
İzmir 35430, Türkiye

ÖZET 
 
LANGEVIN DENKLEMİ KULLANILARAK ARAÇ TRAFİK 
AKIŞININ ANALİZİ

Trafik akış verisi stokastik yapıya sahiptir ve buna ait old-
ukça zengin bir literatür vardır. Stokastik veriyi ifade etmenin 
bir yolu da Langevin denklemiyle olmaktadır. Langevin den-
klemi iki kısımdan oluşmaktadır. Birinci kısım deterministik 
sürüklenme terimi, ikinci kısım ise stokastik difüzyon terimi 
ile bilinmektedir. Langevin denklemi İstanbul trafiğinden 
seçilen yerin deterministik ve rastgele terimlerini çıkart-
makla birlikte trafik akışının dinamiğine de ışık tutmaktadır. 
Çevreyolunun seçilen yerinde sağ şeritte hızın 25 km/sa, 
sol şeritte ise hızın 20 km/sa olduğu anlarda trafiğin daha 
hızlı sıkışma eğiliminde olduğu sürüklenme grafiklerinde 
görülmektedir. Sürüklenme grafiklerinden sıkışık, ara ve 
serbest akış rejimleri gibi üç veya dört ayrı rejim elde edile-
bilmektedir. Hatta ara rejim de kendi içinde ikiye ayrılabilir. 
Trafik akışı, sıkışık ve serbest akış olmak üzere iki ana rejime 
ayrılmakta ve trafiği bu rejimlere zorlayan gürültüye dayalı 
trafik akışının bulunduğu ara rejim verilmektedir.

ANAHTAR SÖZCÜKLER

Langevin denklemi; trafik dinamiği; Brown hareketi; trafik 
rejimleri; trafik akışı; stokastik güçler; sürüklenme; difüzyon;
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