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Abstract. We consider a Bayesian problem of estimating of probability of success in a
series of conditionally independent trials with binary outcomes. We study the asymptotic
behaviour of the differential entropy for a posterior probability density function conditional
on x successes after n conditionally independent trials, when n → ∞. Three particular
cases are studied: x is a proportion of n; x ∼ nβ , where 0 < β < 1; either x or n − x

is a constant. It is shown that after an appropriate normalization in the first and second
case limiting distribution is Gaussian and the differential entropy of a standardized RV
converges to the differential entropy of a the Gaussian distribution. In the third case, the
limiting distribution in not Gaussian, but still the asymptotics of the differential entropy
can be found explicitly.
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1. Introduction

Let U be a random variable (RV) uniformly distributed in interval [0, 1]. Given a
realization of this RV p, consider a sequence of conditionally independent identically
distributed (ξi, i = 1, 2, . . .), where ξi = 1 with probability p and ξi = 0 with proba-
bility 1−p. Let xi, each 0 or 1, be an outcome in trial i. Denote Sn = ξ1+. . .+ξn and
x =

∑n
i=1 xi. Note that RVs (ξi) are positively correlated. Indeed, P(ξi = 1, ξj = 1)

=
∫ 1

0 p
2dp = 1/3 if i 6= j, but P(ξi = 1)P(ξj = 1) = (

∫ 1

0 pdp)
2 = 1/4.

The probability that after n trials the exact sequence (xi, i = 1, ..., n) will appear
equals:

P(ξ1 = x1, ..., ξn = xn) =

∫ 1

0

px(1− p)n−xdp =
1

(n+ 1)
(

n
x

) . (1)
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This implies that the posterior probability density function (PDF) of the number of
x successes after n trials is uniform:

P(Sn = x) =
1

(n+ 1)
, x = 0, . . . , n.

It could be easily checked that the sufficient statistics for parameter p is Sn. Given
the information that after n trials one observes x successes, the posterior PDF takes
the form

fn(p|ξ1=x1, ..., ξn=xn) = fn(p|Sn=x) = (n+1)

(

n

x

)

px(1− p)n−x, 0 ≤ p ≤ 1. (2)

Note that a conditional distribution given in (2) is a Beta-distribution B(x+ 1, n−
x+1). “It is known that a Beta-distribution is asymptotically normal with its mean
and variance as x and (n − x) tend to infinity, but this fact is lacking a handy
reference”(see [3, p.1]). That is why we give the proof of this fact in two cases.

Consider an RV Z(n) on [0; 1] with a PDF (2). Note that Z(n) has the following
expectation:

Ex[Z
(n)] =

x+ 1

n+ 2
, (3)

and the following variance:

Vx[Z
(n)] =

(x+ 1)(n− x+ 1)

(n+ 3)(n+ 2)2
. (4)

Recall the definition of a differential entropy h(f) of an RV Z with the PDF f :

h(f) = hdiff (f) = −
∫

R

f(z)log(f(z))dz (5)

with the convention 0log0 = 0. When referring to the differential entropy of an RV Z
we mean the entropy of its PDF f . Consider a linear transformation X = b1Z + b2.
Then [1, 7]:

h(g) = h(f) + logb1, (6)

where g is a PDF of an RV X . Let Z̄ be the standard Gaussian RV with PDF ϕ,

ϕ(x) =
1√
2π
e−

x2

2 .

Then the differential entropy of Z̄ equals [7]:

h(ϕ) =
1

2
log (2πe) .

Recall the definition of the Kullback-Leibler divergence of g from f :

D(f ||g) =
∫

R

f(x)log
f(x)

g(x)
dx. (7)

Next, we consider a sequence of distributions fn of the form (2) with x = x(n)
changing with the size of the sample. The goal of our work is to study the asymptotic
behaviour of the differential entropy of the following RVs:
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1. Z
(n)
α with PDF f

(n)
α given in (2) when x = x(n) = ⌊αn⌋, where 0 < α < 1 and

⌊a⌋ is the integer part of a.

2. Z
(n)
β with PDF f

(n)
β given in (2) when x = x(n) = ⌊nβ⌋, where 0 < β < 1.

3. Z
(n)
c1 with PDF f

(n)
c1 given in (2) when x = c1 and Z

(n)
n−c2 with PDF f

(n)
n−c2 given

in (2) when n− x(n) = c2, where c1 and c2 are some constants.

Generally, it does not play an important role whether x(n) is integer or not. The
analysis also holds for arbitrary positive values. In fact, the main steps of the analysis
hold for complex values with positive real part although for complex values of x and
n − x the problem loses a direct probabilistic character. We stick to introduced
notations in the context of the formulated problem.

2. Main results

Theorem 1. Let Z̃
(n)
α = n

1
2 (α(1 − α))−

1
2 (Z

(n)
α − α) be an RV with PDF f̃

(n)
α . Let

Z̄ ∼ N (0, 1) be the standard Gaussian RV. Then

(a) Z̃
(n)
α weakly converges to Z̄:

Z̃(n)
α ⇒ Z̄ as n→ ∞,

(b) the differential entropy of Z̃
(n)
α converges to the differential entropy of Z̄:

lim
n→∞

h(f̃ (n)
α ) =

1

2
log (2πe) ,

(c) the Kullback-Leibler divergence of ϕ from f̃
(n)
α tends to 0 as n→ ∞:

lim
n→∞

D(f̃ (n)
α ||ϕ) = 0.

Theorem 2. Let Z̃
(n)
β = n1−β/2(Z

(n)
β − nβ−1) be an RV with PDF f̃

(n)
β and Z̄ ∼

N (0, 1) then

(a) Z̃
(n)
β weakly converges to Z̄:

Z̃
(n)
β ⇒ Z̄ as n→ ∞,

(b) the differential entropy of Z̃
(n)
β converges to the differential entropy of Z̄:

lim
n→∞

h(f̃
(n)
β ) =

1

2
log (2πe) ,

(c) the Kullback-Leibler divergence of ϕ from f̃
(n)
β tends to 0 as n→ ∞:

lim
n→∞

D(f̃
(n)
β ||ϕ) = 0.
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Theorem 3. Let Z̃
(n)
c1 = nZ

(n)
c1 be an RV with PDF f̃

(n)
c1 and Z̃

(n)
n−c2 = nZ

(n)
n−c2 an

RV with PDF f̃
(n)
n−c2 . Let Hk = 1 + 1

2 + . . .+ 1
k denote the partial sum of harmonic

series and γ the Euler-Mascheroni constant. Then

(a) lim
n→∞

h(f̃ (n)
c1 ) = c1 +

c1−1
∑

i=0

log(c1 − i)− c1(Hc1 − γ) + 1,

(b) lim
n→∞

h(f̃
(n)
n−c2) = c2 +

c2−1
∑

i=0

log(c2 − i)− c2(Hc2 − γ) + 1.

3. Proof of Theorem 1

Proof. (a) Let x = x(n) = ⌊αn⌋, where 0 < α < 1, and consider a RV

Z̃(n)
α = n

1
2 (α(1 − α))−

1
2 (Z(n)

α − α).

We proceed by the method of characteristic functions, and establish that

φ(t) = E[eitZ̃
(n)
α ] → e−t2/2 (8)

for all t ∈ R. Indeed,

φ(t) =

∫ 1

0

e
it (p−α)

√
n√

α(1−α) f (n)
α (p)dp

=(n+ 1)

(

n

x

)

e
it (−α)

√
n√

α(1−α)

∫ 1

0

e
it p

√
n√

α(1−α) px(1− p)n−xdp

and consider the integral:

I(t, α, n) =

∫ 1

0

e
n(it p√

α(1−α)n
+αlogp+(1−α)log(1−p))

dp. (9)

Denote g(p) = it p√
α(1−α)n

+ αlogp+ (1 − α)log(1 − p). The integrand in (9) has a

narrow sharp peak, and the integral is completely dominated by the maximum of
Re[g(p)] when n→ ∞. For fixed values of t, α and n→ ∞, it can be studied by the
saddle point method [4, Theorem 1.3, p.170]:

I(t, α, n) ≃ eng(p
∗)

√

2π

−ng′′(p∗)

(

1 +O

(

1

n

))

. (10)

Find the point of maximum of Re[g(p)] and deform the initial contour [0, 1] into the
steepest descent contour through the saddle point:

p∗ = α+ it

√

(1− α)α√
n

+O

(

1

n

)

.
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So, φ(t) takes the form:

φ(t) = e−t2(n+ 1)

(

n

x

)

(p∗)x(1− p∗)n−x

√

2π

−ng′′(p∗) +O

(

1

n

)

.

Here and below x = ⌊αn⌋. Next, by Stirling’s formula:

(n+ 1)

(

n

x

)

≃ (n+ 1)
nn

xx(n− x)(n−x)

√

n

2πx(n− x)
.

So, the straightforward computation yields:

(p∗)x(1− p∗)n−x ≃αx(1− α)(n−x)eit
√

(1−α)αn+ (1−α)t2

2 −it
√

(1−α)αn+αt2

2

=e
t2

2

(x

n

)x
(

n− x

n

)n−x

.

It can be checked that the next term in the asymptotics of log p∗ (as well as log(1−
p∗)) is decaying to 0 after multiplication by αn and (1 − α)n, respectively.

We have for t ∈ R

φ(t) ≃e−t2 (n+ 1)nn

xx(n− x)(n−x)

√

n

2πx(n− x)
e

t2

2

(x

n

)x
(

n− x

n

)n−x
√

2πx(n− x)

n3

≃e− t2

2

This fact establishes the pointwise convergence of characteristic function to its Gaus-
sian limit and it completes the proof of part (a).

(b) Write the differential entropy in the form:

h(f (n)
α ) = −

(

log

[

(n+ 1)

(

n

x

)]

+ (n+ 1)

(

n

x

)

xI1 + (n+ 1)

(

n

x

)

(n− x)I2

)

, (11)

where

I1 =

∫ 1

0

px(1− p)n−xlog p dp, (12)

I2 =

∫ 1

0

px(1− p)n−xlog(1− p) dp. (13)

Integrals I1 and I2 can be computed explicitly by reducing to the standard integral

∫ 1

0

xµ−1(1 − xr)ν−1log xdx =
1

r2
B
(µ

r
, ν
)(

ψ
(µ

r

)

− ψ
(µ

r
+ ν

))

, (14)

where ψ(x) is the digamma function, and B(x, y) is the Beta-function [5, #4.253.1]
and in considering case r ≡ 1, µ− 1 ≡ x, ν − 1 ≡ n− x.

For integral I1, we get:

U1 = (n+ 1)

(

n

x

)

xI1 = −x(ψ(n+ 2)− ψ(x+ 1)).
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Similarly, for the second integral I2, we obtain:

U2 = (n+ 1)

(

n

x

)

(n− x)I2 = −(n− x)(ψ(n + 2)− ψ(n− x+ 1)).

After summation of these two integrals and by using the asymptotics for the digamma
function [5, #8.362.2], we obtain:

U1 + U2 = xlogx− nlogn+ (n− x)log(n− x)− 1

2
+O

(

1

n

)

.

Next, we apply Stirling’s formula to the first term in (11):

U0 =log

[

(n+ 1)

(

n

x

)]

=nlogn− xlogx− (n− x)log(n− x)

+
1

2
logn− 1

2
logα− 1

2
log(1− α)− log(

√
2π) +O

(

1

n

)

.

Here, as before, x = ⌊αn⌋. So, we obtain the following asymptotics of the differential
entropy:

lim
n→∞

[

h(f (n)
α )− 1

2
log

2πe[α(1− α)]

n

]

= 0. (15)

Due to (6), the differential entropy of RV Z̃
(n)
α has the form:

lim
n→∞

[

h(f̃ (n)
α )

]

=
1

2
log (2πe) . (16)

(c) By the definition of the the Kullback-Leibler divergence:

D(f̃ (n)
α ||ϕ) =− h(f̃ (n)

α )−
∫ 1

0

f̃ (n)
α (p) logϕ(p)dp

=− 1

2
log (2πe) +

1

2
log(2π) +

1

2

∫ 1

0

p2f̃ (n)
α dp+O

(

1

n

)

= O

(

1

n

)

,

∫ 1

0 p
2f̃

(n)
α dp = 1+O

(

1
n

)

is the second moment of Z̃
(n)
α . This completes the proof.

4. Proof of Theorem 2

Proof. (a) Let x = x(n) = ⌊nβ⌋, where 0 < β < 1, and consider Z̃
(n)
β such that

Z̃
(n)
β = n1−β/2(Z

(n)
β − nβ−1).

In this case, it is more convenient to proceed by the method of moments. We use the
following classical result. Let fn be a sequence of distribution functions with finite
moments µk(n). Let µk(n) tends to νk for each k as n→ ∞, where νk are moments
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of distribution f and the distribution f is uniquely defined by its moments. Then
fn weakly converges to f as n→ ∞ [9].

Consider RV Z̃
(n)
β = n1−β/2(Z

(n)
β − nβ−1), where Z

(n)
β has PDF (2) when x =

⌊nβ⌋, and compute all moments of Z̃
(n)
β . First, E(Z̃

(n)
β ) → 0 as n → ∞ because

E(Z
(n)
β ) = nβ−1 + O

(

1
n

)

. Next, we check that E

[

(

Z̃
(n)
β

)2
]

= n2(1−β/2)
E(Z

(n)
β −

nβ−1)2 → 1 as n→ ∞. Compute central moments for any k > 1:

E

[

(

Z̃
(n)
β

)k
]

= nk− βk

2 (1− n1−β)−k(1 − nβ−1)k 2F1[−k, nβ + 1;n+ 2;n1−β], (17)

where 2F1[−k, nβ + 1;n + 2;n1−β] is the hypergeometric function, which is in this
case the polynomial:

2F1[−k, nβ + 1;n+ 2;n1−β] =

k
∑

i=0

(−1)i
(

k

i

)

(nβ + 1)i
(n+ 2)i

ni(1−β),

where (q)n is the rising Pochhammer symbol. For n > 0,

(q)n = q(q + 1) . . . (q + n− 1)

and (q)0 = 1.
Consider the asymptotics of terms separately:

nk− βk

2 (1− n1−β)−k(1− nβ−1)k ≃ O(n
kβ

2 )

and

2F1[−k, nβ + 1;n+ 2;n1−β] ≃ O(n−[0.5+0.5k]β), (18)

where ⌊k⌋ is the integer part of k. For k odd

nk(1−β/2)
E(Z

(n)
β − nβ−1)k = O(n

kβ

2 )O(n−[0.5+0.5k]β) ≃ O(n−β/2) → 0 (19)

as n→ ∞. For k even

nk(1−β/2)
E(Z

(n)
β − nβ−1)k = O(n

kβ

2 )O(n−[0.5+0.5k]β) = O(1). (20)

We see that every even central moment tends to a constant which is the coefficient
in front of term n−[0.5+0.5k]β in the hypergeometric function. For k even, we have:

nk(1−β/2)
E(Z

(n)
β − nβ−1)k → (k − 1)!. (21)

These imply that a RV Z̃
(n)
β weakly converges to the standard Gaussian RV.

(b) Write the differential entropy in the form:

h(f
(n)
β ) =−

(

log

[

(n+ 1)

(

n

x

)]

+ (n+ 1)

(

n

x

)

xI1 + (n+ 1)

(

n

x

)

(n− x)I2

)

=− (U0 + U1 + U2), (22)
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where I1 and I2 are defined in (12) and (13) and can be computed explicitly by (14).
As before, we apply Stirling’s formula for U0:

U0 =nlogn− xlogx− (n− x)log(n− x) + logn

+
1

2
(−lognβ − log(1 − nβ−1))− 1

2
log(2π) +O

(

1

nβ

)

.

As far as 0 < β < 1, the remainder tends to 0 as n → ∞. Note that the rate
of decaying depends on parameter β, contrary to remainder in Theorem 1. Now
U1 + U2 can be computed as follows:

U1 + U2 = xlogx− nlogn+ (n− x)log(n− x)− 1

2
+O

(

1

nβ

)

.

So, we proved that

lim
n→∞

[

h(f
(n)
β )− 1

2
log

2πe(1− nβ−1)

n2−β

]

= 0.

Due to (6), the differential entropy of RV Z̃
(n)
β has the form:

lim
n→∞

h(f̃
(n)
β ) =

1

2
log (2πe) .

(c) Similarly, by the definition of the Kullback-Leibler divergence:

D(f̃
(n)
β ||ϕ) =− h(f̃

(n)
β )−

∫ 1

0

f̃
(n)
β (p) logϕ(p)dp

=− 1

2
log (2πe) +

1

2
log(2π) +

1

2

∫ 1

0

p2f̃
(n)
β dp+O

(

1

nβ

)

= O

(

1

nβ

)

,

∫ 1

0
p2f̃

(n)
β dp = 1 +O

(

1
nβ

)

is the second moment of Z̃
(n)
β .

5. Proof of Theorem 3

Proof. (a) Let x = c1, where c1 is some integer constant. Consider the differential

entropy h(f
(n)
c1 ) = −(U0 +U1 +U2), where U0, U1 and U2 defined in (22). Applying

Stirling’s formula to U0:

U0 = logn− log(x!) + xlogn+O

(

1

n

)

.

Next, we compute U1 + U2 via formula (14) as before. The only difference will be
in the asymptotics of digamma functions [5, #8.365.3, #8.365.4], because of x = c1,
where c1 is constant:
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ψ(n − x + 1) ≃ logn + 1/2−x
2n , and ψ(x + 1) = Hx − γ, here Hx is the partial

sum of harmonic series and γ stands for the Euler-Mascheroni constant. Using that
x = c1:

lim
n→∞

[

h(f (n)
c1 ) + logn

]

= c1 +

c1−1
∑

i=0

log(c1 − i)− c1(Hc1 − γ) + 1.

Due to (6), it can be written in the following form:

lim
n→∞

h(f̃ (n)
c1 ) = c1 +

c1−1
∑

i=0

log(c1 − i)− c1(Hc1 − γ) + 1.

(b) Let n − x(n) = c2, where c2 is some integer constant. In a similar way, we

compute h(f
(n)
n−c2), where n − x = c2 and c2 is a constant. The asymptotics of the

digamma function is given as follows [5, #8.365.4]:

ψ(n− x+ 1) = Hc2 − γ where x = n− c2,

and the final result for the differential entropy:

h(f
(n)
n−c2) = −logn+ c2 − c2(Hc2 − γ) +

c2−1
∑

i=0

log(c2 − i) + 1 +O

(

1

n

)

.

In terms of standardized RV Z̃
(n)
n−c2 , due to (6) we obtain:

lim
n→∞

h(f̃
(n)
n−c2) = c2 +

c2−1
∑

i=0

log(c2 − i)− c2(Hc2 − γ) + 1.

6. Conclusion

We demonstrated that the limiting distributions of the standardized RV Z̃(n) when
n → ∞ in cases 1 and 2 are Gaussian. However, the asymptotic normality does
not imply automatically the limiting form of the differential entropy. In general, the
problem of taking the limits under the sign of entropy is rather delicate and was
extensively studied in the literature, cf., i.e., [2, 6]. In the third case, the limiting
distribution is not Gaussian, but still the asymptotics of the differential entropy can
be found explicitly.

For the Bayesian problem studied here, the explicit asymptotic expansions of the
Shannon, Renyi, Tsallis and Fisher entropies are presented in [8]. The considered
problem seems important because of natural extensions of this topic. The so-called
weighted differential entropy is the most recent one (see [10, 11, 12] and the reference
therein). The weighted version of these entropies is defined in [8] and the explicit
asymptotic expansions for the stated Bayesian problem are obtained.
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