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Summary 

Compared to the other marine engines for ship propulsion, turbocharged two-stroke low 

speed diesel engines have advantages due to their high efficiency and reliability. Modern low 

speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable 

fuel injection strategy and management of the exhaust valve drive. This paper carried out 

verified zerodimensional numerical simulations which have been used for MLP (Multilayer 

Perceptron) neural network predictions of marine two-stroke low speed diesel engine steady 

state performances. The developed MLP neural network was used for marine engine 

optimized operation control. The paper presents an example of achieving lowest specific fuel 

consumption and for minimization of the cylinder process highest temperature for reducing 

NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases 

heat flow for utilization. The obtained data maps give insight into the optimal working areas 

of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI) 

and the time of the exhaust valve opening (EVO). 

Key words: Marine two-stroke diesel engine; MLP neural network; Numerical 

simulation; Utilization; Start of fuel injection; Time of exhaust valve open; 

1. Introduction 

Two-stroke diesel engines are the main component of ship propulsion. They are applied 

for propulsion of different ship types and classes due to their low price (regarding other 

propulsion machines), reliability, high efficiency and their very simple maintenance and 

servicing [1]. 

Turbocharging provides an increase in engine power and a modest reduction of specific 

fuel consumption [2]. Turbocharging causes an increase of medium effective pressure and 

maximum temperature of the in-cylinder process. This has an influence on the strain of engine 

components (as a result of differing thermal expansions) and also on the emissions of 

pollutants [3]. 
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The diesel engine, as the main ship propulsion device, has to maintain very high 

reliability of its operation, even with the allowed degradation of performance when a failure 

occurs [4]. Precisely for this reason it is necessary to continuously monitor all the engine 

major operating parameters. Intelligent control system of the engine must have access to all 

diagnostic data and be able to adapt the engine to the optimal mode for desired operation [5]. 

In this paper, the main observed points were the engine steady states, although the 

numerical simulation model was not limited to steady state engine operation only. Standard 

engine simulations rarely include an analysis of engine transients and engine behaviour in 

exchanged working conditions. Simulation models based on neural networks in marine 

propulsion systems can achieve a number of objectives, such as the optimization of the 

propulsion system by changing the configuration or customizing the engine control settings 

[6], [7]. 

2. Engine specifications 

Two-stroke low speed marine diesel engine 6S50MC MAN B&W, whose data were 

used for numerical simulations, Table 1, is originally not designed for variable settings in fuel 

injection and exhaust valve opening. This can be done with the same manufacturer modified 

engine design, which has a new designation MCE for "intelligent" engine variant 

(electronically controlled electro-hydraulic drives for exhaust valves and fuel injection). 

Manufacturer set the basic angle settings for the start of fuel injection and the opening of the 

exhaust valve, so different settings of these angles may worsen or improve the engine 

operating parameters.  

Table 1  Specifications of selected marine diesel engine 6S50MC MAN B&W 

Data description Value 

Process type two-stroke, direct injection 

Number of cylinders 6 in line 

Cylinder bore 500 mm 

Stroke 1910 mm 

Ignition sequence 1-5-3-4-2-6 

Maximum continuous rating (MCR) 8580 kW 

Engine speed at MCR 127 min-1 

Maximal mean effective pressure 18 bar 

Maximal combustion pressure 143 bar 

Specific fuel consumption 

(with high efficiency turbocharger) 

171 g/kWh, on 100% load 

Compression ratio (obtained by calculation) 17.2 

Crank mechanism ratio 0.436 

Exhaust manifold volume 6.13 m3 

Inlet manifold volume (with intercooler) 7.179 m3 

2.1 Engine available data from test bed 

The main data of the marine diesel engine are obtained by measurement [8]. Such 

measurements are performed during the testing of the new engine on the test bed. Table 2 

presents the measured values for the selected engine steady operation points at 25%, 50%, 
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75%, 93.5%, 100% and 110% of engine load. The engine was produced at the Shipyard Split 

under the MAN B&W license. 

The examination was performed at the following environment state: 

 Ambient temperature  30 °C, 

 Ambient pressure 1005 mbar, 

 Relative humidity 50%. 

The engine was tested on diesel fuel D-2, whose features are, according to a supplier report: 

 Density 844.7 kg/m3, 

 Kinematic viscosity 3.03 mm2/s, 

 Sulfur content 0.45%, 

 Net caloric value 42.625 MJ/kg. 

Table 2 6S50MC MAN B&W measured data [8] 

Engine load (regarding MCR) 25% 50% 75% 93.5% 100% 110% 

Indicated power (kW) 2401 4406 6580 8170 8656 9499 

Effective power (kW) 2142 4099 6160 7667 8182 9014 

Engine speed (minˉ¹) 76.5 96 110.4 118.5 121.4 125.2 

Controller Index 44.3 55.4 68.1 77.3 79.2 85.8 

Compression pressure (bar) 46.2 70.3 97.5 117.6 123.7 137.8 

Maximal combustion pressure (bar) 66.6 97.4 129.6 143.3 141.4 139.3 

Mean indicated pressure (bar) 8.37 12.24 15.89 18.38 19.01 20.23 

Fuel rack position (mm) 39.7 50.3 63.3 73 75 81.8 

Intake manifold pressure (bar) 1.39 2.03 2.76 3.33 3.55 3.93 

Intake manifold temperature (°C) 25 29 34 40 41 45 

Exhaust manifold pressure (bar) 1.3 1.86 2.51 3.06 3.26 3.64 

Temperature before turbine (°C) 308 327 346 384 404 458 

Turbocharger rotational speed (minˉ¹) 7290 11360 13870 15360 15895 17110 

Specific fuel consumption (g/(kW·h)) 186.83 174.06 171.18 171.82 174.66 180.5 

2.2 Available data from simulation 

The data and mathematical model, used in the simulations, are the results of scientific 

research project "Numerical simulation and optimization of marine diesel engines" (069-

0691668-1725, Croatian Ministry of Science, Education and Sports). The developed 

MATLAB-SIMULINK simulation model gives satisfactory results, but unfortunately not 

sufficiently fast for engine real-time control and it is impractical for quick analysis. The 

accuracy provided by MATLAB-SIMULINK numerical simulations gave a relative error less 

than 3% in the interior and 5% on the borders of the engine operation field. This was a 

prerequisite for the high-quality neural network learning process in order to obtain her 

predictions at the same accuracy level. Numerical simulations can also investigate the engine 

working conditions outside the domain covered by the producer warranty. This is another 

reason why the developed MLP (Multilayer Perceptron) neural network used the results 

obtained by MATLAB-SIMULINK numerical simulations. 

Original MATLAB-SIMULINK simulation [8] were performed by means of the engine 

controller acting to fuel rack regarding the load set by the propeller at engine constant speed. 

In the presented research, a set of engine data for randomly distributed operation points was 
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obtained by simulations. Before each simulation, input parameters were selected randomly. 

Simulations were stopped after convergence was reached. The convergence criterion was the 

convergence of air to fuel ratio in the cylinder. If this criterion was not met in 30 successively 

iterated engine cycles, convergence for that input point was not reached. For each simulation, 

a file of input and output data is kept. From that file, converged data points are selected and 

filtered. The filtering results in removal of data if the specific fuel consumption is outside the 

expected range (those points were not the real steady state points), Table 3.  

Modern marine diesel engines with electro-hydraulic control of fuel injection and 

exhaust valve opening allow a very large area of engine customization in various modes. This 

entire area is usually too large for complete engine testing, and detailed measurements are not 

publicly available. This was precisely the reason due to which the development of the neural 

network was performed by using data obtained by numerical MATLAB-SIMULINK 

simulations. 

Table 3 Simulated data from MATLAB-SIMULINK [8] 

Engine load (regarding MCR) 25% 50% 75% 93.5% 100% 110% 

Indicated power (kW) 2401.5 4407.5 6581 8169.5 8658.2 9499.7 

Effective power (kW) 2141.7 4098.6 6159.7 7666.7 8181.8 9014 

Engine speed (minˉ¹) 76.5 96 110.4 118.5 121.4 125.2 

Compression pressure (bar) 47 70.06 97 116.5 124.1 137.52 

Maximal combustion pressure (bar) 69.9 94 126 144 142 140.1 

Mean indicated pressure (bar) 8.37 12.24 15.89 18.383 19.01 20.23 

Fuel rack position (mm) 39.23 50.83 63.73 72.37 75 81.9 

Intake manifold pressure (bar) 1.38 2.075 2.83 3.36 3.554 3.925 

Intake manifold temperature (°C) 23 26 33.55 39.15 40.95 44.5 

Exhaust manifold pressure (bar) 1.3 1.89 2.58 3.05 3.24 3.6 

Temperature before turbine (°C) 307 326 347 377 397 447 

Turbocharger rotational speed (minˉ¹) 7450 11356 13868 15360 15896 17113 

Specific fuel consumption (g/(kW·h)) 180 173.6 171.12 171.9 174.598 179.9 

3. Neural network model 

The power of the neural network is due to massively parallel distributed structure, and 

ability to learn, therefore to generalize. Generalization means that the neural network can 

produce "reasonable" outputs for inputs not seen during training or "learning", [9]. The 

smallest unit of an artificial neural network is the artificial neuron. The neuron makes the 

basic unit for processing the input to the output. The word artificially must be emphasized, 

because even though artificial neurons mimic biological neuron, it is different from biological 

and represents only its simplified model. 

 

Fig. 1  Neuron with bias 
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Each artificial neuron has the following elements: inputs to neuron xi, connection 

weights wk, summation operator Σ, activation function f, bias θk and output from neuron yk, 

Figure 1. 

Linear sum of neuron inputs uk is defined in following equation: 


p

1

kkjk -wu  (1) 

where wkj are connection weights of k neuron with j input, and p is a number of neuron 

inputs. The output value from neuron yk is defined in following equation: 

)( kk ufy   (2) 

An MLP neural network with one hidden layer was chosen in this paper. The MLP 

neural network can have many hidden layers, Figure 2, but one layer is enough for output 

functions with continuous values.  

 

Fig. 2 MLP neural network 

The hidden layer has a sigmoid function as activation function, one of the most used 

activation functions. The output layer also has a sigmoid function, although it is common to 

have a linear function in the output layer for the problems with continuous values in outputs. 

The linear function in the output layer was tried but for this problem a more stable 

convergence was achieved with the sigmoid function. Sigmoid function is defined as: 

x1

1
)(




e
xy  (3) 

The shape of training data dictates the number of neurons in the input layer and in the 

output layer. The number of neurons in the hidden layer has to be set. The strategy for finding 

number of hidden neurons was trying numbers in ascending order (2, 4, 10, 20, 40 and 80).  

The number of 40 neurons was chosen. Using more neurons would result in increased 

difficulties in finding weights without increasing the performance of neural network, FANN 

(Fast Artificial Neural Network) [10].  

FANN library was used for neural network learning because of the performance it gives. 

Learning was achieved by a custom made application developed in C programming language. 

Post processing was performed in scripting programming language python with pyfann 

library (which uses the same FANN library). 
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Table 4  Input parameters range 

Input parameter* Value range** Dimension 

nM 75 … 130 min-1 

xreg 12 … 82.7 mm 

SOI -10 … +10 °CA 

EVO -20 … +20 °CA 

* For details, see Input parameters in the Table 5 

** regarding the reference value of the engine 

Table 5  Input and output variables list 

Ord. Variable label Variable description Dimension 

Convergence designation 

1 Konverg Simulation convergence 1-Yes, 0-No 

Input parameters 

2 nM Engine speed min-1 

3 xreg Fuel rack position mm 

4 SOI Start of injection °CA 

5 EVO Exhaust valve open °CA 

Output values 

6 MM Engine torque Nm 

7 Pef Engine power kW 

8 be Specific fuel consumption g/kWh 

9 TEM Exhaust manifold temperature K 

10 Tout,T Turbine outlet temperature K 

11 TIM Intake manifold temperature K 

12 mflow,T Mass flow on the turbine kg/s 

13 λEM Air excess ratio - 

14 pIM Intake manifold pressure Pa 

15 pEM Exhaust manifold pressure Pa 

16 nTC Turbocharger rotational speed min-1 

17 mflow,C Mass flow on the compressor kg/s 

18 pmax Maximum cylinder pressure Pa 

19 Tmax Maximum cylinder process temperature K 

20 Qw Heat transferred to the cylinder walls J 

 

The data available from simulation, organized as records, were divided into three data 

sets: for training, validation and testing. The training data set was used for training of 

network, validation data set was used to decide when to stop the training and testing data set 

for evaluation of the trained neural network performance. The size of the training data set is 

about 70% of data, and size of validation and testing data sets were 15% each. The lists of 

inputs and outputs with respective ranges and units are given in Table 4 and Table 5.   
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Input and output data were scaled in the range [0, 1]. Scaling is not mandatory for all 

MLP neural networks but the scaling of input data helps in finding initial weights giving all 

inputs of one record the equal importance. 

Scaling of output values is important because of sigmoid activation function in output 

neurons. Data scaling can influence on training performance [11]. 

The MLP is a neural network that can be trained using supervised learning. In 

supervised learning, training data consist of input-output pairs, and the neural network is 

trying to find a mapping function that will generate the output for given input values. Through 

the learning process, the network changes their weights. In the training of the artificial neural 

network convergence depends on the initial start weights vector. So, to test some structure, it 

is necessary to repeat the process of learning with different randomly selected weights. Each 

parameter has influence on the performance. In this paper, a more advanced batch training 

algorithm iRPROP (improved resilient backpropagation) [12] was used, which is a variety of 

the standard RPROP (resilient backpropagation) training algorithm [13]. It achieves good 

results for many problems, the training algorithm is adaptive and the learning rate does not 

have to be specified. 

The tanh error function is an error function that makes large deviations of stand-outs, by 

altering the error value used during the training of the network. This is the default error 

function in FANN. Usually it performs better, but, however it can give poor results with high 

learning rates, [10]. 

Table 6  Error level by number of data 

 Training data (the number of data) Validation data (the number of data) 

<5% <10% <15% ≥15% ∑ <5% <10% <15% ≥15% ∑ 

MM 783 23 3 0 809 190 10 0 0 200 

be 809 0 0 0 809 200 0 0 0 200 

TEM 784 21 3 1 809 190 10 0 0 200 

Tout,T 772 28 7 2 809 181 18 1 0 200 

TIM 785 22 2 0 809 196 4 0 0 200 

mflow,T 765 37 6 1 809 188 12 0 0 200 

pIM 803 6 0 0 809 200 0 0 0 200 

pEM 806 3 0 0 809 199 1 0 0 200 

nTC 797 11 0 1 809 199 1 0 0 200 

mflow,C 775 30 3 1 809 192 8 0 0 200 

pmax 760 49 0 0 809 186 13 1 0 200 

Tmax 804 5 0 0 809 199 1 0 0 200 

 

The learning of the neural network repeats from epoch to epoch by using the training 

algorithm. After each epoch the errors on training and on validation data are determined. The 

process of learning is repeated while errors are decreasing. Training with train data is stopped 

when the error on validation data set starts to increase. Usually the error values tend to 

oscillate so it is important not to stop the iterations immediately, but to try training for a 

number of epochs and keep the track of weights with the minimum error. Table 6 presents the 

errors of the most important output variables after achieving minimum error. 
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When displaying simulation results of the MLP neural network, it should be considered 

that the angle delay of the start of fuel injection (SOI) has a negative sign for earlier shift and 

positive sign for the later shift in regard to reference settings by the engine manufacturer. The 

same angle delay principle was used also for the exhaust valve opening (EVO). 

4. The ANN model applications in engine operation optimization 

After the neural network learning, some analyses have been carried out. The developed 

neural network model allows a fast calculation of the engine steady state operation 

parameters. In a very short time it is possible to cross the whole area of solutions for a given 

SOI and EVO and to calculate all the necessary characteristics [14]. The area solutions for 

searched SOI and EVO are available in discrete steps of 0.5 °CA. The decision making for the 

best SOI – EVO combination depends mostly on the specific fuel consumption be, the 

maximum cylinder pressure pmax and the maximum cylinder process temperature Tmax [15], 

[16]. 

4.1 ANN results for a full engine load and for 50% engine load 

 

 Fig. 3  Engine effective power, Pef [MW] Fig. 4  Engine effective power, Pef [MW] 

 - for a full load - for a 50% load 

Effective power shows the same trend, regardless of whether it is at full load or at 50% 

engine load, Figure 3 and Figure 4. SOI has a decisive influence on the engine effective 

power. The maximum effective power was reached with the start of fuel injection just before 

the engine factory settings. Moving the SOI for later reduces the effective power, and later 

injection causes the proportional decrease in effective power. EVO has an almost constant 

effect on the engine effective power for the selected SOI. 

  

 Fig. 5  Specific fuel consumption, be [g/kWh] Fig. 6  Specific fuel consumption, be [g/kWh] 

 - for a full load - for a 50% load 

The specific fuel consumption has been the lowest for the SOI just before the factory 

settings, and the same is optimal for engine operation regarding the specific fuel consumption 

and effective power. Also in this situation, for specific fuel consumption, EVO has an almost 
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constant effect for the selected SOI. The specific fuel consumption change has a similar trend 

at full and at 50% engine loads, Figure 5 and Figure 6. 

  

 Fig. 7  Exhaust gases thermal flow at the Fig. 8  Exhaust gases thermal flow at the 

 turbine outlet, Q  [kW] - for a full load turbine outlet, Q  [kW] - for a 50% load 

The exhaust gases thermal flow at the turbine outlet leads to similar conclusions as for 

the exhaust gases temperature after the turbine, regardless of the engine load, Figure 7 and 

Figure 8. Although it is not explicitly visible in Figure 8, this picture also points to the engine 

operation instability at a very early SOI and late EVO at 50% load, which is reflected in the 

changes of the engine operation area borders. 

  

 Fig. 9  Maximum pressure in the engine Fig. 10  Maximum pressure in the engine  

 cylinder, pmax [MPa] - for a full load cylinder, pmax [MPa] - for a 50% load 

At full engine load, Figure 9 shows that the maximum pressure in the cylinder is 

obtained for very early SOI shift and very late EVO shift. This working area at this engine 

load is stable and there is no danger of falling out of operation. Also, in this same area the 

effective power decreases and the specific fuel consumption increases, and surely this 

working area is not preferred for selection. The maximum cylinder pressure rapidly decreases 

for later SOI shift, and earlier EVO shift regarding to the engine referent values. 

  

 Fig. 11  Maximum temperature in the engine Fig. 12  Maximum temperature in the engine  

  cylinder, Tmax [°C] - for a full load cylinder, Tmax [°C]  - for a 50% load 
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Maximum cylinder pressure at 50% load shows the same trend as for a full engine load, 

Figure 10. The only exception is the area of early SOI shift and late EVO shift, which also at 

this engine load shows unstable engine operation due to worsened scavenging process. 

The highest temperature in the engine cylinder, for both of the observed loads was 

achieved at a very early SOI shift and proportionally early EVO shift, Figure 11 and Figure 

12. However, it should be noted that too high temperatures in the engine cylinder cause high 

emissions, primarily emissions of nitrogen oxides, and under these conditions the engine 

certainly could not provide the required environmental standards. Regarding the maximum 

temperature of the engine process, usually a compromise between the achieved emissions and 

the produced heat necessary for utilization has to be found. 

4.2 The optimization of SOI and EVO for maximum thermal flow of exhaust gases for 

utilization 

The simulation results indicated that the SOI shift for 3.5 °CA later, and EVO shift for 

20 °CA later, ensure the highest exhaust gas thermal flow, 9.5% higher than the reference 

one, Figure 13, with an increase in specific fuel consumption, Figure 14. The increase in 

specific fuel consumption is small enough, that increased fuel cost will be very quickly paid 

off by using higher obtained exhaust thermal flow for the utilization process. At the same time 

the engine power (ie. engine torque at the constant engine speed) decreased by approximately 

7%, Figure 15. 

Presented simulation results show justifiability for SOI and EVO shifts, in order to 

obtain a sufficient additional thermal flow, which can be effectively applied in the utilization 

process. In that way, it is possible to achieve significant savings in the ship propulsion plant 

with such a diesel engine and with the possibility of achieving multi-criteria optimization. 

 

 Fig. 13 Exhaust thermal flow Q  [kW] Fig. 14 Specific fuel consumption be [g/kWh] 

 at the turbine outlet   

 

Fig. 15 Engine torque MM [kNm] 
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In this mode of engine operation, excessive pressures and temperatures in the engine 

cylinder can be avoided, Figure 16 and Figure 17. This fact proves that the displayed change 

of operating parameters would not lead to significant thermal load increase, or to high 

increase in emissions. Such operating parameters change during the actual engine operation 

surely will result in a substantial impact on the entire propulsion plant efficiency. 

  

 Fig. 16  Maximum pressure in the engine  Fig. 17  Maximum temperature in the engine  

  cylinder  pmax [MPa] process Tmax [°C] 

Graphs in figures 5, 7, 9, 11 and figures 13, 14, 16, 17 are similar in shape but the 

ranges are not the same. The figures show various operating modes. 

4.3 Satisfying the required thermal capacity at constant torque and engine speed 

In this case, the engine operating point was given with engine speed nM = 118.5 min-1 

and the required torque MM = 465 kNm. The minimal required exhaust thermal flow after 

turbine minQ  = 3200 kW was also given. The limits on the position of the fuel rack were 

between 40 and 75 mm. Additionally, the limits for the highest maximum temperature of the 

engine process Tmax,lim = 1900 °C and the maximal allowable pressure in the cylinder pmax,lim = 

14 MPa were also set. The pressure values from the simulation can exceed the limited value 

of 14 MPa but those working points are constrained in optimisation algorithm because they 

are not used in real engine operation. 

The initial idea was to find the engine operation point at which all given conditions are 

met. For referent settings of SOI and EVO the given value of exhaust thermal flow was not 

achieved. In order to achieve the operating point where the parameters are equal or the nearest 

possible to default ones, SOI and EVO shifts were allowed. 

In order to achieve and maintain the engine torque, since it varies by SOI and EVO 

shifts, it was necessary to make a fuel rack position correction. After this step, the engine has 

reached a working point where the desired thermal flow was satisfied. In that working point, 

the desired engine torque was also reached. 

Simulation passes the entire field of SOI and EVO shifts, and for each of the shifts a 

new fuel rack position was calculated. With the new position of the fuel rack, the predefined 

engine torque and engine speed (nM = 118.5 min-1, MM = 465 kNm) must be satisfied. Then it 

is checked if the new operation point satisfies a predetermined minimum exhaust thermal flow 

on the turbine outlet. Finally, the simulation checks if the newly determined operation point 

has a lower specific fuel consumption than the previous one. If at least one point satisfies all 

these conditions, the system has a solution. 
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Fig. 18  Engine torque MM [kNm] 

At given operating conditions, engine torque shows almost constant value, but stable 

change for almost the entire working area, for all SOI and EVO shifts, Figure 18. The only 

exceptions are the areas of large SOI shift later than the reference value, with intense loss of 

engine torque, and thus engine power, due to the worsened scavenging conditions. A major 

SOI shift to later shows late fuel injection, so in this area incomplete combustion can be 

expected, which results in a huge loss of engine torque. It is necessary to avoid the area where 

these phenomena occur, because it is impossible to achieve a stable operating point. 

  

 Fig. 19  Specific fuel consumption be [g/kWh] Fig. 20  Exhaust thermal flow Q  [kW] 

  at the turbine outlet 

Even in this operation mode, specific fuel consumption was the lowest at the reference 

(factory) engine settings, Figure 19. Large increases in specific fuel consumption occurred 

only at intense shift of SOI for later, where a huge exhaust thermal flow at the turbine outlet 

was available, Figure 20, but it is necessary to avoid this operating area due to the large 

reduction in engine torque and highly probable fall-out from the drive, Figure 18. Maximum 

exhaust thermal flow, in the engine stable operation area, is presented in Table 7. 

Table 7  Exhaust heat flow maximizing for a given nM = 118.5 min-1 and MM = 465 kNm 

SOI 

°CA 

EVO 

°CA 

MM 

kNm 

be 

g/kWh 

xreg 

mm 

Pef 

MW 

Tmax 

°C 

pmax 

MPa 

Q  

kW 

0 0 457.7 165.7 55 5.68 1452.2 11.67 2984.4 

+4.5 -2.5 465 175.7 59 5.77 1404.6 10.28 3300.9 
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 Fig. 21  Maximum pressure in the engine Fig. 22  Maximum temperature in the engine 

 cylinder  pmax [MPa] process Tmax [°C] 

Maximum cylinder pressure occurs in areas of very early SOI shift, and very late EVO 

shift, Figure 21. Therefore, for the maximum cylinder pressure it is optimal to hold SOI and 

EVO parameters to reference values, with the recommended EVO shift to earlier, in order to 

avoid excessively high pressures. In this area, other operating parameters do not indicate a 

sudden or unexpected change, so this engine operating area would be advisable for given 

conditions. EVO shift to earlier, while retaining the referent SOI, would be recommended also 

for maximum engine process temperature, Figure 22, because the maximal temperature would 

be optimal for utilization, and thermal load of engine working parts or emissions remain 

acceptable. The optimal solution could be achieved also with more complex methods of 

optimization (multi-criteria optimization, multi-objective optimization, etc.). 

5. Conclusion 

In this paper, the changes in the characteristics of "intelligent" marine two-stroke diesel 

engine were studied, when crank angles for the start of fuel injection (SOI) and for the 

opening of the exhaust valve (EVO) were shifted. The fuel injection strategy (fuel injection 

flow) and the exhaust valve opening curve did not change, which was left for future research. 

The investigations have pointed to the great potential that provides electro-hydraulic control 

of fuel injection and exhaust valve drive to bring the modern marine diesel engine in the 

desired working conditions. 

Some aexamples of the described neural network applications in optimization of marine 

diesel engine were presented, in order to achieve the desired exhaust heat flow for the 

utilization purposes, along with minimum specific fuel consumption, as well as to maintain 

maximum engine process temperature as low as possible in order to reduce NOx emission. 

The developed neural network model is fully prepared for the reception of new data, 

measured during the engine operation. With comparisons of measured data and data obtained 

by the neural network, it will be possible to evaluate the quality of measured data and the 

entire measuring system. This was already proven on various sets of measured data. 

The neural network model was developed using data obtained from numerical 

simulations, for the engine steady state operation, with verification from available data 

measured on the test bed. Therefore, the existence of high-quality numerical simulation model 

in neural network development was very important. Also, the resulting neural network model 

has limitations (eg. the model is valid for engine steady state operation, for the same type of 

engine, the same selected turbocharger etc., but the obtained structure can effectively learn on 

the data for a new engine type). 

Data for the neural network learning and testing must be within all steady state regimes 

of engine operation. But once the requested data were obtained, and neural network 

optimized, learned and operational, it is capable to give the required engine data almost 3000 

times faster in regards to conventional numerical simulation. 
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