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ON TWO OF JOHN LEECH’S UNSOLVED PROBLEMS
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Abstract. Let {X, Y,Z,A,B, C} ∈ Q+ be such that X2 + Y 2 = A2,
X2 + Z2 = B2 and Y 2 + Z2 = C2. We consider the problem of finding
T ∈ Q+ such that either

1. T 2 −X2 = , T 2 − Y 2 = , T 2 − Z2 =
or
2. T 2 −A2 = , T 2 − B2 = , T 2 − C2 = .

We show that problem 2 always has a solution and we provide a formula
for T . Extensive computation has been unable to find a single solution of
problem 1.

1. Introduction

The perfect Rational cuboid problem is still unsolved despite the inherent
simplicity of the question. We look for a cuboid with strictly positive integer
edges X,Y, Z, such that all the face diagonals and the space diagonal are also
integers.

Thus we want A,B,C,D ∈ Z with

(1.1) X2 + Y 2 = A2, X2 + Z2 = B2, Y 2 + Z2 = C2

and

(1.2) X2 + Y 2 + Z2 = D2

In [3], the late John Leech provides an extensive overview of this prob-
lem. This survey, in fact, is the basis for the discussion of the perfect cuboid
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problem in Richard Guy’s classic book ”Unsolved Problems in Number The-
ory” ([2]). Leech calls a cuboid satisfying (1.1) only a classical rational cuboid.
If a perfect cuboid did exist, then

D2 −X2 = C2, D2 − Y 2 = B2, D2 − Z2 = A2

and

D2 −A2 = Z2, D2 −B2 = Y 2, D2 − C2 = X2.

At the end of [3], Leech asks for solutions of the following related problems,
where we assume (X,Y, Z,A,B,C) ∈ Z satisfy (1.1)

Problem 1.1. Find T ∈ Z such that

(1.3) T 2 −X2 = E2, T 2 − Y 2 = F 2, T 2 − Z2 = G2,

with E,F,G all integers.

Problem 1.2. Find T ∈ Z such that

(1.4) T 2−X2−Y 2 = E2, T 2−X2−Z2 = F 2, T 2−Y 2−Z2 = G2,

with E,F,G all integers.

Note that this can be written

T 2 −A2 = E2, T 2 −B2 = F 2, T 2 − C2 = G2.

Since a solution of the perfect cuboid problem would provide a solution to
both problems, if either of these problems has no solution, then there cannot
be a perfect cuboid. Note that the converse is not true. If either Problem 1.1
or Problem 1.2 has a solution, we would still need X2 + Y 2 + Z2 = .

2. Generating classical rational cuboids

We first discuss generating solutions to (1.1). Using the classic parame-
trization of Pythagorean triangles, we have that

(2.1)
Y

X
=

e2 − 1

2e
,

Z

X
=

f2 − 1

2f
,

Z

Y
=

g2 − 1

2g
,

where e, f, g ∈ Q. Thus

(2.2)
(e2 − 1)(g2 − 1)

4eg
=

f2 − 1

2f
,

which gives the quadratic in g

(2.3) g2 +
2e(1− f2)

f(e2 − 1)
g − 1 = 0.

For this to have rational solutions the discriminant must be a rational square,
so there must exist d ∈ Q such that

(2.4) d2 = e2f4 + (e4 − 4e2 + 1)f2 + e2.
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Considered as a quartic in f , this has a rational point f = 0, d = e, and
so is birationally equivalent to an elliptic curve. Using the method described
in Mordell ([5]), we can show that this elliptic curve is of the form

(2.5) v2 = u3 + (e2 + 1)2u2 + 4e2(e2 − 1)2u = u(u+ 4e2)(u+ (e2 − 1)2),

with the reverse transformation

(2.6) f =
v

2e(u+ (e2 − 1)2)
.

The properties of elliptic curves are very well described in Silverman and
Tate ([6]). The use of elliptic curves in rational cuboid research is exemplified
by Bremner ([1]) and the undergraduate thesis of van Luijk ([4]).

We, first, investigate the torsion points, which are the points of finite
order. It is clear from (2.5) that there are 3 finite points of order 2 at
(0, 0),(−4e2, 0) and (−(e2 − 1)2, 0). The fact that the coefficient of u is a
square suggests that we might have points of order 4, and, in fact, we find 4
points of order 4 at

(2e(e2−1), ±2e(e2−1)(e2+2e−1) ), (−2e(e2−1), ±2e(e2−1)(e2−2e−1) ).

Thus, the torsion subgroup must be isomorphic to Z/2Z ⊕ Z/4Z or Z/2Z ⊕
Z/8Z. For the latter to occur, we would require

(2.7) 2e(e2 − 1) = or − 2e(e2 − 1) = ,

both of which can be transformed into looking for points of infinite order on
y2 = x3 − 4x. This is just asking whether 2 is a congruent number and it is
a classical result that this is not the case. Thus the torsion subgroup will be
isomorphic to Z/2Z⊕ Z/4Z.

We find that the 7 finite torsion points give f undefined, f = 0 or f = ±1,
none of which give a non-trivial cuboid. We thus need curves with points of
infinite order.

Setting e = m/n with m,n ∈ Z and gcd(m,n) = 1, and u = h/n4, v =
g/n6 we have the curve with integer coefficients

(2.8) g2 = h3 + (m2 + n2)2h2 + 4m2n2(m2 − n2)2h.

Numerical experiments show that this elliptic curve has rank 0 often. The
simplest choice to give rank 1 is m = 5, n = 2, with (−405, 270) being of
infinite order. This gives f = 3/8 and hence g = 7/18. Since we can ignore
signs, we finally have X = 240, Y = 252 and Z = 275.

3. Second stage

Given a rational cuboid with sides (X,Y, Z) and face diagonals (A,B,C),
both problems have essentially the same second stage. Given a trio of integers
(I, J,K), find T such that

(3.1) T 2 − I2 = , T 2 − J2 = , T 2 −K2 = .
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Thus there must exist p, q ∈ Q such that

(3.2)
T

I
=

p2 + 1

2p
,

T

J
=

q2 + 1

2q
,

so that

(3.3) q2 −
I(p2 + 1)

Jp
q + 1 = 0.

As before, the discriminant must be a rational square, so we consider the
quartic in p

(3.4) d2 = I2p4 + (2I2 − 4J2)p2 + I2

The obvious rational point means that the quartic is also birationally equiv-
alent to an elliptic curve, which is

(3.5) w2 = z3 − (I2 + J2)z2 + I2J2z = z(z − I2)(z − J2),

with

(3.6) p =
w

I(z − J2)
.

This curve has 3 points of order 2 at (0, 0), (I2, 0) and (J2, 0). Order 4 points
will exist if

(3.7)
(z2 − I2J2)2

4(z3 − (I2 + J2)z2 + I2J2z)
= 0 or I2 or J2

has a rational solution, which requires

(3.8) |I2 − J2| = ,

so will be rare amongst the cuboids we consider.
In general, we need to have an elliptic curve with rank at least 1.
Suppose we take I = 240 and J = 252 from the previous section. The

elliptic curve is

w2 = z3 − 121104z2 + 3657830400z,

with Denis Simon’s ellrank software ([7]) giving the rank as 2 with generators
G1 = (70560, 2540160) and G2 = (56448, 677376).

The point G1 gives p = 3/2 and then q = 9/7 and T = 260. We have
T 2 − I2 = 1002 and T 2 − J2 = 642. Unfortunately, T 2 −K2 = 2602 − 2752

which is certainly not a square.

4. Computational experiments

We vary e = m/n and generate rational cuboids with sides (X,Y, Z) and
face diagonals (A,B,C). For each combination of two lengths from a particu-
lar triad we try to determine points on the corresponding elliptic curve. From
each point, we generate T and test if it satisfies the three square requirements.
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The time-consuming aspect of the calculation is the attempt to determine
the rank of (2.5) and (3.5). There is no guaranteed method for doing this.
As all calculations were done using the Pari-gp package, we could use ellrank,
which is written in Pari. This, however, can be very lengthy, especially for
large values of I and J .

As an alternative, we can try to find points by simple searching. This
should be done using the minimal elliptic curve as points tend to be smaller
in the number of digits.

There is also the possibility of using some simple algebra to derive a
method which seems to work well in practice. Both the elliptic curves are
very similar in structure, so we just describe the process for (3.5).

For curves of the form of (3.5), we have that z = dU2/V 2 and w =
dUW/V 3, where d, U, V,W ∈ Z and d is squarefree, with gcd(U, V ) = 1 and
gcd(d, V ) = 1. Substituting gives

(4.1) dW 2 = d2U4 − (I2 + J2)dU2V 2 + I2J2V 4.

Thus, d|(IJ), so we can work out possible values of d easily. Now

4dW 2 = 4d2U4 − 4(I2 + J2)dU2V 2 + 4I2J2V 4,

= (2dU2 − (I2 + J2)V 2)2 − (I2 + J2)2V 4 + 4I2J2V 4,

= (2dU2 − (I2 + J2)V 2)2 − (I2 − J2)2V 4.

Define

α = 2dU2 − (I2 + J2)V 2, β = (I2 − J2)V 2, γ = 2W,

so that

(4.2) α2 = β2 + d γ2.

This can be parameterised by

α = p2 + d q2, β = p2 − d q2, γ = 2pq.

Some elementary algebra gives

(4.3)
dU2

V 2
=

p2I2 − d q2J2

p2 − d q2
.

We loop over (p, q) in some specified range, compute the right-hand-side ex-
pression for possible d, and see if it gives a point on the curve. These ideas
give a code which is significantly faster than using ellrank.

Having found R generator points G1, . . . , GR on the curves, we compute
points on the curve from

(4.4) P = n1G1 + . . .+ nRGR +Tor,

where the ni are integers up to some limit and Tor is a torsion point.
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5. Numerical results

Using all the ideas of the previous sections, codes for both problems were
constructed in Pari-gp. The numerical results are totally different for the two
problems.

Initial runs produced no solutions for Problem 1.1 but several solutions
to Problem 1.2. Deeper investigation with Problem 1.2 suggested that all
classical rational cuboids satisfy Problem 1.2, and, eventually, we managed to
prove

Theorem 5.1. All classical rational cuboids where X2 + Y 2 = , X2 +
Z2 = , and Y 2+Z2 = , also satisfy T 2−(X2+Y 2) = , T 2−(X2+Z2) =
and T 2 − (Y 2 + Z2) = for some T ∈ Q.

Proof. The proof is basically just chasing various formulae, together
with two crucial observations from the numerical output.

By using the formulae in section 3, we have

(5.1) T =
z2 − I2J2

2w
,

as long as w 6= 0. It is easy to check that T 2 − I2 and T 2 − J2 are always
squares.

In the specific case of Problem 1.2, I = A and J = B from section 2. We
assume e is a free parameter and use (2.6) to give f , with (u, v) a non-torsion
point on (2.5). The elliptic curve (3.5) can thus be expressed in terms of e
and u.

The first observation from the data is that this elliptic curve always has
a rational point with z = e f AB which can be written

(5.2) z =
(e2 + 1)(4e6 − 8e4 + 4e2(2u+ 1) + u2)

16e2(u+ (e2 − 1)2)
,

with

(5.3) w = ± z
u2 + 4(e2 − 1)u− 4(e2 − 1)2

4v
.

The second observation from the data is that this point does not usually give
a solution to Problem 1.2, but double this point does.

Doubling the point and simplifying gives a point with

(5.4) z =
(e2 + 1)2(4e6 − 8e4 + 4e2(2u+ 1) + u2)2

64e4v2

and

(5.5) w = ± z
(e2 − 1)(2e3 − 2e+ u)(2e3 − 2e− u)

8e2v
.
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All these formulae give a formula for T as

(5.6)
(u2 + 4e2(e2 − 1)2)((e2 + 1)2u2 + 16e2(e2 − 1)2u+ 4e2(e4 − 1)2)X

16e2(e2 − 1)(2e3 − 2e+ u)(2e3 − 2e− u)v
.

Using this value of T it is possible to check that T 2−Y 2−Z2 is a square.

As an example, consider the parametric solution of Euler

X = 8k(k4−1), Y = (k2−1)(k4−14k2+1), Z = 2k(3k4−10k2+3),

which has

A = (k2 − 1)(k4 + 18k2 + 1), B = 2k(5k4 − 6k2 + 5), C = (k2 + 1)3.

We have

e =
k2 + 1

4k
, f =

2(k2 − 1)

k2 + 1
, g =

(k − 1)(k2 + 4k + 1)

(k + 1)(k2 − 4k + 1)
.

From this we find a point (u, v) on (2.5) with

u =
(k − 1)2(k2 + 4k + 1)2

16k3
,

v =
(k2 − 1)(k2 + 4k + 1)2(k4 + 8k3 − 14k2 + 8k + 1)

256k5
,

which finally gives

(5.7) T =
T1T2

8(k2 + 1)(k2 + 4k + 1)(k2 − 4k + 1)(3k4 − 10k2 + 3)
,

where

T1 = 5k8 + 8k7 − 12k6 − 104k5 + 222k4 − 104k3 − 12k2 + 8k + 5

and

T2 = 5k8 − 8k7 − 12k6 + 104k5 + 222k4 + 104k3 − 12k2 − 8k + 5.

If we choose k = 3, we have X = 1920, Y = 352 and Z = 936, with A = 1952,
B = 2136 and C = 1000. The value of T is 6434041/2145.

6. an alternative approach to Problem 1.1

For Problem 1.1, the situation is totally opposite. Extensive computation
has failed to find a single solution. We also attempted to solve the problem
from a different angle.

If T exists, then

T 2 = X2 + J2 = Y 2 +K2 = Z2 + L2,

for J,K,L ∈ Q.
Thus, there exists angles θ and µ such that

(6.1)

(

Y
K

)

=

(

cos θ sin θ
− sin θ cos θ

)(

X
J

)
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and

(6.2)

(

Z
L

)

=

(

cosµ sinµ
− sinµ cosµ

)(

X
J

)

.

Thus

J =
Y −X cos θ

sin θ
, K =

Y cos θ −X

sin θ
,

J =
Z −X cosµ

sinµ
, L =

Z cosµ−X

sinµ
.

It is also clear that cos θ, sin θ, cosµ and sinµ are rational, so we can assume

cos θ =
1− p2

1 + p2
, sin θ =

2p

1 + p2
, cosµ =

1− q2

1 + q2
, sinµ =

2q

1 + q2
,

where p, q ∈ Q.
Equating the two expressions for J gives the equation

(6.3) −p(X + Z)q2 + (p2(X + Y )−X + Y )q + p(X − Z) = 0

and, if this is to give rational q, the discriminant must be a rational square.
Some standard algebra leads to the quartic

g2 = h4 + (2X2 + 2Y 2 − 4Z2)h2 +X4 − 2X2Y 2 + Y 4,

where h = p(X + Y ).
This quartic has a rational solution at h = 0, g = ±(X2 − Y 2), so is

birationally equivalent to an elliptic curve, which we can show has the form

(6.4) s2 = t(t−X2 + Z2)(t− Y 2 + Z2),

with p = s/(t(X + Y )).
The curve has, in general, a torsion subgroup isomorphic to Z/2Z⊕Z/2Z,

and none of the torsion points give a non-trivial solution to the problem. We
must, therefore, test whether the curve has strictly positive rank.

We can easily adapt the codes from earlier to this case. But, again, ex-
tensive testing has failed to find a non-zero rational solution for T . We used
hundreds of hours of computer time with Pari on a variety of lap-top com-
puters. We tried different values of the parameters, different search depths,
different powers of generators, all to no avail. These failures, of course, do
not prove a solution does not exist.

These failures have led the author to conjecture that a solution to Problem
1.1 does not exist, with the implication that a perfect cuboid does not exist!

In support of the non-existence of a perfect cuboid is the fact that restric-
tions on possible values for the integer edges and diagonals of such an object
have been produced by several authors, such as Korec and Kraitchik. In the
section of the perfect cuboid in Guy’s book it is quoted that the product of
all the edges and diagonals would have to be divisible by

28 × 34 × 54 × 7× 11× 13× 17× 19× 29× 37.
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