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ABSTRACT. It is known that the variety M,, generated by all monoids
of order n is finitely based if n < 3 and non-finitely based if n > 6. The
present article establishes the finite basis property of the variety M4. This
leaves My as the last open case in the finite basis problem for the vari-
eties M,,.

1. INTRODUCTION

1.1. Finite basis problem. A basis for a semigroup S is a set of identities
satisfied by S that axiomatizes all identities of S. A semigroup is finitely
based if it has a finite basis. By 1970, the finite basis property has been
established for several important classes of semigroups such as commutative
semigroups ([18]), idempotent semigroups ([2,6,7]), and finite groups ([17]).
However, examples of non-finitely based finite semigroups ([18]) have also been
discovered by then, and presently, the problem of deciding when a finite semi-
group is finitely based remains open. This led researchers to investigate, over
the years, the finite basis problem for various explicit classes of semigroups
that either exist very naturally or play important roles in other parts of math-
ematics. Some of these examples include the semigroup B,, of binary relations
on {1,2,...,n} and its subsemigroup R,, of reflexive binary relations, and the
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semigroup T, of transformations of {1,2,...,n} and its subsemigroup &, of
extensive transformations. These semigroups are non-finitely based for all
except the first few values of n:

e B3, is finitely based if and only if n =1 ([23]);

e 7, is finitely based if and only if n < 2 ([23]);

e R, and &, are finitely based if and only if n < 4 (]9, 14,25]).
Refer to the surveys by Shevrin and Volkov ([20]) and Volkov ([24]) for more
information on the finite basis problem for finite semigroups in general.

1.2. Main result. The finite basis property of finite semigroups has also
been investigated collectively. For each n > 1, let S,, denote the variety gen-
erated by all semigroups of order n and let M,, denote the variety generated
by all monoids of order n. In the 1980s, Volkov ([23]) considered the vari-
ety S,, and proved that it is non-finitely based whenever n > 5. In fact, since
the Brandt monoid of order six is well known to be inherently non-finitely
based ([19]), the varieties S,, and M,, are non-finitely based for all n > 6. On
the other hand, it follows from Luo and Zhang ([16]) that the varieties S,
and M, are finitely based if n < 3. Recently, Li et al. ([15]) proved that
the variety Sy is finitely based. Consequently, the variety S,, is finitely based
if and only if n < 4. The finite basis property of the varieties My and Mj
currently remains unknown.

The objective of the present article is to prove that the variety My is
finitely based. To simplify the statement of the main result, define the deletion
closure of an identity U =~ V, written U ~ V, to be the identity system
that contains U =~ V and any nontrivial identity obtained by eliminating all
occurrences of some letters in U =~ V. For instance, the deletion closure

rhrkaz? ~ hakz represents the system
zhrka? ~ ha’ke, xzha® ~ ha®, 2°ka? ~ ?kz, o' ~ 25,
Note that if a moni)id satisfies an identity U =~ V, then it also satisfies the
deletion closure U =~ V.
THEOREM 1.1. The identities
0 B haka ~ zhxkx, zha’kz ~ w3hkz, xhy*z’ky ~ zhaz?y?ky,
) rhykzytxdy ~ zhykyxtxdy, chykzytydx ~ chykyxtydz

constitute a finite basis for the variety My.

The finite basis property of the varieties S,, and M,,, with the exception
of the open case M, is summarized in the following table:

n<4 n=5 n>6
S, is finitely based Yes No No
M, is finitely based Yes ? No
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It is of interest to note that while semigroups of order five are all finitely
based ([11,22]), the variety S5 they generate is not.

1.3. Hereditarily finitely based varieties. A finitely based variety that sat-
isfies the stronger property of containing only finitely based semigroups is said
to be hereditarily finitely based. Since each finite basis involves finitely many
identities with finitely many variables, membership in a hereditarily finitely
based variety provides a sufficient condition for the finite basis property that
can be verified in polynomial time. When identifying finitely based semi-
groups from a given fixed class €, one obvious first step is to find out which
semigroups from € belong to known hereditarily finitely based varieties. For
instance, this technique was employed in the classification of all finitely based
semigroups of order six ([12,13]).

Recently, Luo and Zhang proved that the variety Ss is hereditarily finitely
based ([16]); the varieties S,, and M, thus satisfy the same property whenever
n < 3. Since the varieties S4 and My are finitely based, it is natural to
question if they are also hereditarily finite based. The answer to this question
is, however, known for some time to be negative ([8, Corollary 3.17]). It follows
that the finite basis property of the varieties S4 and M, cannot be deduced by
recognizing them as subvarieties of some hereditarily finitely based varieties.
Exhibiting explicit finite bases seems unavoidable in establishing the finite
basis property for S, and My; the same situation likely applies to the open
case Mj if it turns out to be finitely based.

1.4. Organization. After some background material is given in Section 2,
it is shown in Section 3 that the variety My is generated by only five monoids
of order at most four. This enables one to easily verify that the variety My sat-
isfies the identities (0). Restrictions on identities satisfied by the variety My
are established in Section 4; these results are then employed in Section 5 to
complete the proof of Theorem 1.1.

2. PRELIMINARIES
The following semigroups are required in the present article, especially in
giving a simple generating set for the variety My:

e the cyclic group C,, = (a|a™ = 1) of order n;
e the nilpotent semigroup N,, = (a|a™! = a™) of order n;
e the semigroup T2 = {a, 3,7, €} of transformations of {1,2}, where

la=2a=1, 18=28=2, 1y=2, 2y=1, and le=1, 2¢=2;

e the semigroup 7’ anti-isomorphic to 7s.

For any semigroup S, let S denote the monoid obtained by adjoining a unit
element to S.
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2.1. Identities and bases. Let 7 and ¥* respectively denote the free
semigroup and free monoid over a countably infinite alphabet Y. Elements
of ¥ are called letters and elements of ¥* are called words. An identity is
written as U ~ V where U,V € X*. A semigroup S satisfies an identity
U =~ V if, for any substitution ¢ : ¥ — &, the elements Uy and Vi of S
coincide. A set © of identities satisfied by a semigroup S is a basis for S
if © implies every identity satisfied by S. A semigroup is finitely based if it
possesses a finite basis.

2.2. Content and occurrence. The content of a word U, denoted by
con(U), is the set of letters occurring in U. The number of occurrences of
a letter = in a word U is denoted by occ(x,U). The length of a word U is thus

|U| = Z{occ(m, U)|z € con(U)}.

For example, if U = z2zxy?ztza3t?, then con(U) = {x,y, 2, t}, occ(x,U) = 7,
occ(y,U) = occ(z,U) =2, occ(t,U) =5, and |U| =7+2+24+5=16.

LEmMMA 2.1 ([1, Lemma 6.1.4]). Let U = V be any identity satisfied by
the monoid N3. Then for each x € X, precisely one of the following holds:
(i) occ(z,U) = occ(x, V) < 2;
(ii) occ(z,U),occ(z, V) > 3.
Consequently, con(U) = con(V).

LEMMA 2.2. Let U = V be any identity satisfied by both the groups Cs
and C4. Then occ(x,U) = occ(x,V) (mod 12) for all x € 3. Consequently,
occ(x,U) = occ(x, V) (mod 2) for all x € 3.

PRrROOF. It is well known and easily verified that if U ~ V is any identity
satisfied by the group C,, then occ(z,U) = occ(z, V) (mod n) for all x € 3.
The result then follows because C19 = C3 X Cy4. O

2.3. Initial part, final part, and precedence. The initial part of a word U,
denoted by ini(U), is the word obtained by retaining the first occurrence of
each letter in U. The final part of a word U, denoted by fin(U), is the word
obtained by retaining the last occurrence of each letter in U. For example, if
U = 2?zzy?wtza3t?, then ini(U) = zzyt and fin(U) = yzat.

For any distinct letters = and y of a word U, let occ(z,y,U) denote
the number of occurrences of = preceding the first occurrence of y, and let
occ(y, &, U) denote the number of occurrences of z following the last occur-
rence of y. In particular,

e if m = occ(z,y,U), then
U= ApxA1xAs---zAyB
for some Ag, A1, ..., A, B € ¥* such that z,y ¢ con(4g41 -+ An);
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e if m = occ(z,y,U), then
U = AxByyB1yBs -+ yBm,
for some A, By, B1,...,B,, € ¥* such that x,y ¢ con(ByB1 - - - By,).

LEMMA 2.3. Let U =V be any identity satisfied by both the monoids Tz
and T;Y. Then
(i) ini(U) = ini(V);
(i) fin(U) = fin(V);
(iil) occ(&,y,U) = occ(d,y, V) (mod 2) for all z,y € %;
(iv) occ(y, @, U) = occ(y, &, V) (mod 2) for all z,y € X.

PRrROOF. Parts (i) and (iii) follow from Edmunds [4, Lemma 4.5], while
parts (ii) and (iv) hold by symmetry. O

3. A SMALL SET OF GENERATORS FOR My
In this section, let
M = {C3,Cs, N3, T2, T3 }.
For any class € of semigroups, let var € denote the variety generated by €.
ProPOSITION 3.1. My = var M.
COROLLARY 3.2. The variety My satisfies the identities (0).

PROOF. It is routinely checked that the monoids in 9t satisfy the identi-
ties (0). The result then follows from Proposition 3.1. O

LEMMA 3.3. Any semigroup that satisfies any of the following identity
systems belongs to the variety varM:

(3.1) Pl ay oy
(3.2) 3~ ryr =~ 2y,
(3.3) 2~ a2, zyr ~yz?;
(3.4) 2z, ayr? oy, ryry ~ xylc
(3.5) 2z, 2yr~yr, zyzy ~ yzly.

PROOF. It suffices to show that each of the five identity systems defines
a subvariety of var 91.

The identities (3.1) define the variety var{D'}, where D = (a|a'® = a®);
see Almeida [1, Corollary 6.1.5]. Since the monoid D! is isomorphic to the
submonoid of C3 x C4 x N3 generated by the element (a,a,a), the inclusion
var{D'} C var 90 holds.

The identities (3.2) define the variety var{N3, L1}, where Ly is the
left-zero semigroup of order two; see Lee [10, Lemma 3.3(iv)]. Since the
monoids V3 and £} are isomorphic to submonoids of N3 and T, respectively,
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the inclusion var{N}, £} C var901 holds. By symmetry, the identities (3.3)
also define a subvariety of var 91.

The identities (3.4) define the variety var{7y"} ([5, part 9 of the first
proposition]), which is obviously a subvariety of var . By symmetry, the
identities (3.5) also define a subvariety of var 9. O

Up to isomorphism, there exist 35 monoids of order four ([21]). Multipli-
cation tables of these 35 monoids are lexicographically listed below; the un-
derlying set of each monoid is {1,2,3,4}, and each table is given by a 4 x 4
array where the (4, j)-entry denotes the product of the elements i and j:

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

1112 1112 1112 1112 1112 1122 1122 1122 1212 1212

1113 1123 1133 1233 3333 1133 1233 1234 1133 3333
1234 1234 1234 1234 1234 1234 1234 1243 1234 1234
31) (31) (3.1) (3.3) (3.2) (3.2) (3.1) (3.1) (3.1) (3.2)
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
1222 1222 1222 1222 1224 1224 1224 1234 1234 1234
1223 1233 1234 1234 1234 1234 1234 1324 1342 3333
1234 1234 1243 1444 1244 1442 4444 4444 1423 3412
(3.1) (3.1) (3.1) (32) (3.3) (3.1) (3.2) (3.4) (3.1) (3.4)

1111 1114 1114 1114 1114 1114 1114 1114 1133 1133
1234 1124 1124 1224 1224 1224 1234 1234 1234 1234
3333 1234 1234 1234 1234 1234 1324 1324 1331 3311
4444 1144 4441 1144 1444 4441 1444 4441 1432 3411

(32) (3.3) (3.1) (3.3) (3.3) (3.1) (3.5) (3.1) (3.5) (3.1)

1133 1134 1134 1234 1234
1234 1234 1234 2143 2143
3311 1334 3341 3412 3421
3412 1434 4413 4321 4312
(3.1) (3.3) (3.1) (3.1) (3.1)

Below each table is listed an identity system from Lemma 3.3 that is satisfied
by the monoid. Therefore the inclusion My C var 9% holds. The inclusion
var 9t C My is obvious because each monoid in 9t is of order at most four.
In particular, if A,, denotes the n-th monoid from above, then the monoids

~ Afl ~ TV o~ ~ ol ~
AQ =N3, .A20=7-2 5 A29=7-2, A33:C3, and .A35:C4
generate the variety My.
4. IDENTITIES FORMED BY WORDS IN CANONICAL FORM

4.1. Identities satisfied by M. The following lemma, the proof of which
is routine, contains some useful identities deducible from the identities (0).

LEMMA 4.1. The identities (0) imply the identities

(4.1a) chakate ~ zhkate, zhaka'*te ~ chaktz,

(4.1b) zhi’ke ~ 2°hkz, 2°ha ~ zha,
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(4.1c) zhy’z’ky ~ zha?y?ky,

(4.1d) shykzytady ~ zhykyatady, shykzytyds ~ shykystydz.
LEMMA 4.2. The identities (4.1) imply the following identities:

(4.2) AzB - y*"Cx®™ - DyE ~ AzB - Cz*™C*'y*"C - DyE

for anym,n >1 and A,B,C, D, E € ¥* with con(C) C con(AB) Ncon(DE).

PROOF. There are two cases depending on the values of m and n.
CASE 1: m = n = 1. The following is established by induction on k& > 0:
(tx) If |C| = k, then the identities (4.1) imply the identity (4.2).

If & = 0, then the identity (4.1c) clearly implies the identity (4.2). Hence (1)
holds. Suppose that (f;) holds for some k& > 0. Let |C| = k + 1, so that
C = zZ for some z € ¥ and Z € " with |Z| = k. Then (f;,,) holds because

AzB - y*Cz® - DyE = AzB-vy*2Zz*- DyE

(4.1d) )
~ AxB-yzyZz®- DyFE

Méa) AzB - 2z ?yzyZa®z'? - DyE
~ AxB-2Y2yzyZa?zy'?2't . DyE
= AzB- 2" (2y)2Z2%(2y)y'tzt - DyE
~ AxB- 2" Z227" (29)?Z(zy)y't 2t - DyE
~ AzB-z"Z2*27'? 2 Zy'%2'2 . DyE
~ AxB-z"Zz?271227 - DyE
~ AxB-zZ2?:"17"%*27 . DyFE
~ AxB-z2Z2*(22)''y*2Z - DyE
= AzB-Cz?>C''?C - DyE.
CASE 2: m,n > 1. Then

4.1b
( ~ ) Az®™ 1B . y2C2® - Dy*"'E

(4.2)

AzB - y*"Cz*™ - DyE
Ame—lB . CI’QCllyQC . Dan—lE
4.1b

U AxB . Ca?m My 0 . DyE,

where the second deduction holds by Case 1. O
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4.2. Stacks. Suppose that a word U can be written in the form

m
(4.3) U=0Uo [[(2°U) = Upa® Uy -+ 2" Up,
i=1
where z € %, e1,€a,...,em > 1, Uy, Uy, € X%, and Uy, Us, ..., Uy € 27T are
such that x ¢ con(UgU; - - - Uy,). Then
e the factors x¢,z°2, ...,z are called x-stacks, or simply stacks, of U;
e the first x-stack x¢' and the last x-stack z°m™ are collectively called
exterior x-stacks of U;
e the non-exterior z-stacks £, 2%, ..., x°"—1 are called interior x-stacks
of U;
e ¢; is the exponent of the stack x%.
Note that if m € {1,2} in (4.3), then U has no interior a-stacks. If m =1
in (4.3), then U = Upz* Us, so that the first a-stack coincides with the last
z-stack; in this case, £ is also called a lone stack of U.

4.3. Eaxterior vectors. The exterior vector of a word U, denoted by ext(U),
is the vector with the exterior stacks of U as its components. For instance, if

U:I3y$225yty4xy222y
T

(44) =A-B-C-D-E-F-G-H K,

then

ext(U) = (A,B,D,F,H,J,K) = (2,y,2° t,x, 2% y).
Note that since each entry of ext(U) is an exterior stack of U, no more than
two entries in ext(U) share the same letter.

The separation degree of a letter x in a word U, denoted by sep(z,U), is
the number of exterior stacks of U that occur between two exterior xz-stacks
of U. If z¢ is a lone stack of U, then define sep(x,U) = 0. The separation
degree of a word U is the number

sep(U) = Z{sep(x, U) |z € con(U)}.
EXAMPLE 4.3. For the word U in (4.4),
i) sep(z,U) = |{B,D, F}| =3;

)
('i) Sep(% U)= |{D7F7H7 J}l = 4;
(iil) sep(z,U)=|{F,H}| =2;
:

.~

iv) sep(t,U) = 0;
(v) sep(U) =3+4+2+0=09.

4.4. Canonical form. A word U that contains at least two distinct letters
is said to be in canonical form if
m
(4.5) U=z | |(U;zf),

i=1
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where xg,T1,...,Tm € 2, €9, €1,--.,em > 1, and Uy, Us, ..., U,, € X* satisfy
all of the following:

(CF1) ext(U) = (xg°, z7*,...,x&), so that con(U) = Ui~y {=i};
(CF2) ext(U) is not of the form (...,zP,...,y%,2",... ¥y, ...) with ¢ and r
even;
(CF3) the letters of U; are in strict alphabetical order with z;_1, z; ¢ con(U;);
(CF4) if ;1 = x;, then U; # 0 and ¢;_1 = 1;
(CF5) (a) if 7" is a lone stack of U, then e; < 14;
(b) if 27" is a non-lone first stack of U, then e; < 2;
(c) if x;* is a non-lone last stack of U and occ(x;,U) = e; + 1, then
e; < 13;
(d) if 27" is a non-lone last stack of U and occ(z;,U) > e; + 2, then

1

REMARK 4.4. If U; = 0, then z;_1 # x; because ;"' and z{’ are stacks.
Since Uy = U, = 0 by (CF3), it follows that xy # 71 and Z;—1 # . In
particular,

(i) if m =1, then U = z(’z7" where z(° and z{' are lone stacks;
(ii) if m = 2, then U = z{’z7* x5?* where z(° is a first stack, z{* is a lone
stack, and z5? is a last stack;
e . €m —
(iii) if m > 3, then U = zg°x(* - -2, x5, where zg° and z{' are first

m—1
€Em —
stacks and =z, and x& are last stacks.

LEMMA 4.5. Let U be any word. Then there exists some w_ordU in canon-
ical form such that the identities (0) imply the identity U ~ U.

PRrROOF. By Lemmas 4.1 and 4.2, it suffices to convert the word U, using
the identities (4.1) and (4.2), into a word in canonical form. It is clear that the
word U can be written in the form (4.5) that satisfies (CF1) with each U; being
a product of interior stacks of U. Then the letters of U; can be permutated
within U; by the identities (4.1d) in any manner. In particular, any occurrence
of x;_1 in U; can be moved to the left and combined with the z;_1-stack that
immediately precedes U;, and any occurrence of x; in U; can be moved to the
right and combined with the z;-stack that immediately follows U;, that is,

U=---ay Uiz% - Méd) . ..xfjfifl Ul zdte. .
where p = occ(x;-1,U;), ¢ = occ(z;,U;), and U/ is obtained by removing
all occurrences of z;_1 and xz; from U;. Therefore generality is not lost by
assuming that x;_1,x; ¢ con(U;) to begin with.

Suppose that 2" and y? are adjacent entries in ext(U) that violate (CF2),
that is,

ext(U) = (...,2", ...,y 2", ...,y° ...)



382 E. W. H. LEE AND J. R. LI

where = # y and ¢ and r are even. Then
U:"'Zp"'Uifl'quizT'UiJrl"'ys"'
—_——— ~—_———

H K

with 27" = y? and 2" = 2". The factors U;_1, U;, and U;;; are products

of interior stacks of U. In particular, con(U;) C con(H) Ncon(K). Hence

(4.2) rrrll s
U =~ I’pszlelL' Ui qui'UiJrl"'y cee

Uity

that is, the word U is converted by the identities (4.2) into the word U1},
where ext(U{1}) is obtained from ext(U) by interchanging the entries y9
and z". Note that the entries z" and y? in ext(U{l}) no longer vio-
late (CF2). Further, it is clear that sep(U{'}) < sep(U) or, more precisely,
sep(UT1}) = sep(U) — 2.

For any k > 1, if two adjacent entries in ext(U{*}) violate (CF2), then
following the interchanging procedure described in the previous paragraph,
the identities (4.2) can be used to convert U} into a word Ut} where
ext(UF+1}) is obtained from ext(U{*}) by interchanging two adjacent entries
and sep(UF+1}) = sep(U#}) — 2. Since this interchanging procedure de-
creases the separation degree of a word by two, it can only be repeated on U
at most t < |sep(U)/2] times. The word U} then satisfies (CF2). Therefore
generality is not lost by assuming that the word U satisfies (CF1) and (CF2)
to begin with.

Since the factor U; of U is a product of interior stacks of U, its letters can
be ordered alphabetically by the identities (4.1d), resulting in a word of the
form U} = yl'yl? -yl 1 y? is a factor of U/, then the identities (4.1b) can
be used to gather y]2 with the last y;-stack of U. This can be repeated until
no letter occurs more than once in U/. Hence (CF3) is satisfied.

Suppose that z;_1 = z;. Then U; # 0 because z;' " and ' are stacks
of U. Further, if e;_1 > 2, then

p— Ci—1 G — L €i—1 G
U= -2,7Uzx = z, Uz
(4.1d) eitei_1—1 . . . .
~ oz U -+ since U; is a product of interior stacks of U
eite;i—1—1
= "'xiflUixil B cee

that is, the identities (4.1d) can be used to reduce the exponent of the
stack z;"}' to 1. Hence (CF4) is satisfied. Finally, it is easily shown that
(CF5a)—(CF5d) are satisfied by applying the identities (4.1a) and (4.1b). 0O

5. PROOF OF THEOREM 1.1

By Corollary 3.2, the variety My satisfies the identities (0). Therefore to
show that the variety My is defined by the identities (0), it suffices to show
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that any identity U = V satisfied by My is implied by the identities (0). Note
that con(U) = con(V') by Lemma 2.1.

First suppose that con(U) = con(V) = {z}. If the identity U ~ V is
trivial, then it is clearly implied by the identities (0). Therefore assume that
U # V, whence by Lemma 2.1, there exist some p,q > 0 such that U = 23+?
and V = 2%t Further, it follows from Lemma 2.2 that p = ¢ (mod 12).
Hence the identity U ~ V is implied by the identity z'® ~ 2 from (0).

Therefore it remains to consider the case in which | con(U)|, | con(V')| > 2.
Then by Lemma 4.5, the words U and V' can be assumed to be in canonical

form, say
m n

U=z | [(Uizf") and V:y{;‘) H(szl)
i=1 i=1
where m,n > 1. The results in the remainder of this section gradually prove
that U = V. The proof of Theorem 1.1 is then complete.

LEMMA 5.1. Suppose that (zo,z1,...,2k) = (Yo,Y1,.-.,Yk). Then the
exterior stack xi* of U is lone if and only if the exterior stack y{:" of V is
lone.

PROOF. By symmetry, it suffices to assume that the exterior stack x}*
of U is lone, and then show that the exterior stack y,];" of V is also lone.
Seeking a contradiction, suppose that the exterior stack y,];" of V is not lone.
Since the exterior stack x* of U is lone, the letter x; does not appear in
the list xg,x1,...,2x_1. Therefore the letter yx = xr does not appear in
(Yo, Y1s---sYk—1) = (®o,®1,...,25—1), whence y;" is a non-lone first stack
of V, say yr = y¢ for some ¢ > k. For convenience, write © = xr = yr = yo.
Then by assumption,

U o ('ﬁ@ s)veas (] wiap)

i=1 i=k+1

A B
where z = zj, ¢ con(AB), and

V:xéﬂ(lﬁ(%x{i))vk PR ( ﬁ (Viyi“)) V- alt ( f[ (Viyi“))

i=1 i=k+1 i=0+1
| —
A’ B’ c’
where the letter £ = y; = y¢ does not appear in the list yg+1,...,y,—1 and

x ¢ con(A'C").
First suppose that k +1 = £, so that B’ = (). Then V; # () by (CF4).
Choose any letter z € con(V;), so that z # = by (CF3). Then

occ(z,U) = occ(z, A) + occ(z, B)
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and occ(z,V) = occ(z, A") + occ(z, Vi) + occ(z, C7).

Since occ(z,U) = occ(z, V) (mod 2) by Lemma 2.2, it follows that

(A) occ(z, A) 4+ occ(z, B) = occ(z, A') + occ(z, Vy) + occ(z,C’) (mod 2).
But Lemma 2.3 implies that

(B) occ(z, A) = occ(z,x,U) = occ(2,z,V) = occ(z, A") (mod 2),

(C) occ(z, B) = occ(x, 2,U) = occ(x, 2,V) = occ(z,C") (mod 2).
Therefore occ(z,Vy) = 0 (mod 2) by (A)-(C), whence occ(z, Vp) is positive
and even. But this contradicts (CF3), so the assumption that k +1 = ¢ is
impossible.

It thus remains to assume that k 4+ 1 < £. Then B’ contains the exterior

stack y,{’fll of V. It is shown that each of the following collectively exhaustive

cases leads to a contradiction. Hence the assumption that the stack y{:’“ is
non-lone is impossible.

CASE 1: y,{’fﬁl is a last non-lone stack of V. Then

(D) ygr+1 is precisely one of xg,z1,...,T—1,
(E) occ(yr+1,C") =0,

and since yi4+1 ¢ con(Vi41) by (CF3),
(F) occ(yg+1, B') = frt1-
By Lemma 2.3(ii),
fin(U) =fin(V) =+ ypq1---x-,
so that yr11 ¢ con(B). Therefore by (D), the yri1-stack of U is lone and
occurs in A, whence occ(yg41,U) = occ(yk+1, A). Further,
occ(yg+1,V) = occ(ygs1, A") + occ(yr+1, B') + occ(yr+1,C")
= occ(Yrt1, A") + frt1 by (E) and (F).

Therefore, as occ(yg+1,U) = occ(yr+1, V) (mod 2) by Lemma 2.2,
(G) occ(yk+t1, A) = occ(ygt1, A') + fr+1 (mod 2).
But Lemma 2.3(iii) implies that
(H) occ(ygpt1, 4) = occ(Prt1,2,U) = occ(Ppt1,2,V) = occ(ygt1, A7)
(mod 2).

Thus fr41 =0 (mod 2) by (G) and (H), whence fry1 = 2p for some p > 1.
Now clearly occ(z,U) = occ(yk+t1, %, U). On the other hand, x ¢ con(Vi41)
by (CF3), so that occ(z, V) = fi + occ(yk+1,%, V). Hence, by Lemma 2.2,

occ(Yg+1, 4, U) = fr +occ(yr41, 2, V)  (mod 2).

It then follows from Lemma 2.3(iv) that fr = 0 (mod 2), whence fx = 2 by

CF5)(b). Therefore the stacks 2+ = 22 and yf’““ = 2P of V violate (CF2),
k41 k+1

contradicting the assumption that the word V' is in canonical form.
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CASE 2: y,{’fll is a first stack of V. Then by Lemma 2.3(i),

ni(U)=imi(V)=-+-2- yp1---,

so that every yg41-stack of U occurs in B, that is,
(I) occ(yxt1,U) = occ(Yr+1, B).
Hence by Lemma 2.3(ii),

fin(V)=fin(U) =" yrq1-" " -

It follows that the factor C” of V must contain the letter yi1. Therefore

(J) the stack yl{’fll of V' is a non-lone first stack, while the last yj1-stack

of V occurs in C".

SUBCASE 2.1: k+1=/¢—1. Then

k—1 .
V= Igo(H(Vixzfi))Vk Nk 'Vk+1y]£i+11 V-2l ( H (Vlyzl))
=1 T =

A’ (el

Since yr4+1 = ye—1 ¢ con(Ve) by (CF3),
(K) occ(yk+1,V) = frt1 +occ(yr+1,C).

Further, since occ(ygt1,U) = occ(yg+1, V) (mod 2), by Lemma 2.2, it follows
from (I) and (K) that

(L) occ(ygt1,B) = frt1 + occ(yr+1,C’) (mod 2).
But Lemma 2.3(iv) implies that

occ(yr+1, B) = occ(x, Yry1,U) = occ(x, Yry1, V) = occ(yr41,C’)  (mod 2),

whence fr4+1 =0 (mod 2) by (L). Thus fi+1 = 2p for some p > 1. Now
M) occ(x,U) = occ(&, Yr+1,U)
by (I). On the other hand, x ¢ con(Vi41 V) by (CF3), so that
(N) occ(x, V) = occ(d, yp+1, V) + fe.
Since occ(z,U) = occ(z,V) (mod 2), by Lemma 2.2, it follows from (M)
and (N) that
occ(&, yry1,U) = occ(, Yr+1, V) + fe  (mod 2),

whence f; = 0 (mod 2) by Lemma 2.3(iii). Thus f; = 2¢ for some ¢ > 1.
Consequently, the stacks y,{’fﬁl = yiﬂl and zf¢ = 227 of V violate (CF2),
contradicting the assumption that the word V' is in canonical form.
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SUBCASE 2.2: k+ 1< ¢ —1. Then

A
B’

k—1
V= aff ( [Tv: wf*))Vk Vi gl Vi gl - Ve ot

(11 v

i=0+1

o
and Yiy1 # Yr12 by (J). Seeking a contradiction, suppose that
(1) yl{’f&? is a non-lone last stack of V.
Then the first yxo-stack of V occurs in A’, so that
(0) yg+2 coincides with precisely one of g, x1,..., 2k—1.
Since yi42 ¢ con(Viy2) by (CF3), it follows from (1) that
(P) occ(yr+2, B') = occ(ypt2, V1) + frto-
It is clear that occ(yky2,C’) = 0 by (f). Therefore
occ(yk42, V) = occ(yp2, A') + occ(ykt2, B') + occ(yr42, C")
= occ(Yr+2, A') + occ(Yr+2, Vi) + fiz +0
by (P), whence
(@ occ(yr+2,V) = occ(r+2, Yr+1, V) + frsa.
Now
fin(U) = fin(V) by Lemma 2.3(ii)
Y T Yppl by (3) and (0).
Therefore, as z°* is a lone stack of U,

(R) every occurrence of yi4o in U precedes x while every occurrence of
Yr+1 in U follows x°.

Hence

(8) occ(yrt2,U) = occ(Yrt2; Yr+1,U).
Since occ(yp+2,U) = occ(ygr2, V) (mod 2) by Lemma 2.2, it follows from (Q)
and (S) that

occ(Yk+2, Yk+1,U) = occ(Yk+2, Yr+1, V) + frrz  (mod 2).
It then follows from Lemma 2.3(iii) that fxyo =0 (mod 2), whence fri2 = 2¢
for some ¢ > 1.
It is clear that (R) implies that

(T) occ(yk+1,U) = occ(Yr+2, Yr+1,U)-

Further, yr+1 ¢ con(Viy2) by (CF3), so that (J) and (f) imply that

(U occ(yrt1,V) = frr1 +occ(Yri2, Yrs1, V).
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Therefore Lemma 2.2, (T), and (U) imply that

ocC(Yrt2, Yr+1, U) = frr1 + 0cC(Yrt2, Y41, V)  (mod 2).
It then follows from Lemma 2.3(iv) that fx41 =0 (mod 2), whence fry1 =2
by (CF5)(b). Now the stacks y,]:’_‘:ll =y, and af+1 = 220 of V violate
(CF2), contradicting the assumption that the word V is in canonical form.

The assumption (1) thus cannot hold, whence y,{’fj is a first stack of V. Note
that if all yp1o-stacks of V' occur in B’, then
ini(V)=--2- yppo--- and fin(V) = yppo---a---
But since ini(U) = ini(V) and fin(U) = fin(V) by Lemma 2.3, every occur-
rence of yiyo in U is sandwiched by two occurrences of x; this is impossible
because z¢* is a lone stack of U. Consequently,
\n y}:’f; is a first stack of V' and the last ygio-stack of V occurs in C’.

By repeating the arguments that deduced (V), it can be shown that for
each i € {k+2,k+3,...,£ — 1}, the exterior stack yzf of V is a first stack,
while the last y;-stack of V' occurs in C’. By repeating the same argument on

the stacks ygf’ll and 2ft = ygé, both f,—1 and f; can be shown to be positive
even integers; these stacks then violate (CF2). 0

LEMMA 5.2. Suppose that (xzo,x1,...,2k-1) = (Yo,Y1,.--,Yk—1). Then
Tk = Yk-

PROOF. It is notationally less cumbersome to write x = xx and y = ys.
Suppose that = # y. Then
k—1 m

v s (TIwst) oo (T wiat)
i=1 i=k+1
A B
and
k—1 n
i=1 i=k+1
A, B/

It is shown that each of the following collectively exhaustive cases leads to a
contradiction. Hence the assumption that x # y is impossible.
CASE 1: 2 is a first stack of U and y/* is a first stack of V. Then x ¢ con(A)
and y ¢ con(A’), so that

4) ini(U) = ini(A)z--- and ini(V) = ini(4")y---.
But ini(U) = ini(V) by Lemma 2.3(i) and ini(A) = ini(zox1 - - - xx—1) = ini(A4").
Therefore the contradiction x = y follows from (A).
CASE 2: z° is a last stack of U and y/* is a last stack of V. By Case 1, it is
not possible for z° to be lone in U and y’* to be lone in V simultaneously.
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Therefore by symmetry, it suffices to assume that the stack z° is not lone
in U, whence

(B) =z appears precisely once in the list g, x1,..., %51,

say © = z; for some j € {0,1,...,k — 1}. Hence

i=1 i=j+1 i=k+1
Al Ag B
and
Jj—1 k—1 n
Vx§°<H(v;x{i)>v3.mfj : ( 11 (Vix{i)>Vk cylk ( 1T (Viyi")> :
i=1 i=j+1 i=k+1
A Al B’

where A = A12% Ay and A’ = Ajx/i A,. By Lemma 5.1, the stack 27 of V
cannot be lone. Thus by (B), the last x-stack of V occurs in B’, so that

fin(V) = ---y---x---. Therefore fin(U) = ---y---x--- by Lemma 2.3(ii),
whence the last y-stack of U occurs in A; or As. If this last y-stack of U is
not lone, then precisely two of xg,...,2;-1,2j41,...,2x—1 coincide with y,

whence there are three exterior y-stacks in V', which is clearly impossible.
Therefore the y-stack in U is lone; in this case, Lemma 5.1 is violated.

CASE 3: z° is a first stack of U and y/* is a last stack of V. By Cases 1
and 2, neither the stack 2 of U nor the stack y* of V can be lone, thus

(C) z ¢ con(A) and z € con(B);
(D) the first y-stack of V occurs in A’ (so that y appears precisely once in
the list zg, z1,...,2k—1) and y ¢ con(B’).

Since
ini(V) = ini(U) by Lemma 2.3(i)
the first a-stack of V follows the first y-stack of V. If 2 € con(A’), so that

the first z-stack of V occurs in A’, then x is precisely one of zg,z1,...,Tr_1,
violating (C). Therefore

(E) z ¢ con(A’) and z € con(B’).

It follows from (D) and (E) that fin(V) =---y---2z---. But fin(U) = fin(V)
by Lemma 2.3(ii), so that fin(U) =---y---2---. Therefore

(F) the last y-stack of U precedes the last x-stack of U, say y = z, for
some ¢ > k.
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Hence
k-1 -1 m
U=y < H(Ui :cf)) Uy - x* ( H (Ui 93?’)>Ue Yy ( ]._.[ (U; :cf))
i=1 i=k+1 i1
A B pe
and
k—1 "
V=af ( H(Viff’))Vk cyle ( II v yﬁ) :
i=1 i=k+1
AI B/

where B = By By with the last x-stack of U occurring in Bs. Since x®*
is the first z-stack of U, none of the exterior stacks in By can be an z-stack,
whence
(G) x does not appear in the list zg11,...,T¢—1.

SUBCASE 3.1: k < {—1. Then xz‘_’f is an exterior stack of U that occurs in By
and xy_1 # x by (G). Further, xy_1 # y by (D). Suppose that :Ezé_’f is a last
stack of U, so that fin(U) =---xp_1---y---. Then fin(V) =---mp_y---y---
by Lemma 2.3(ii), whence the last z,_;-stack of V occurs in A’, say x¢—1 = x4

for some ¢ < k — 1. If there are two exterior xy_;-stacks in V, say x¢—1 =z,

with p < ¢, then x;;”, xg", and xzé_’f are three distinct exterior x,_i-stacks

of U, which is impossible. Hence the z,_1-stack acf;q of V is lone. But now the
x¢_1-stack qu of U is not lone, and this violates Lemma 5.1. Therefore x?‘:ll
is a non-lone first stack of U, whence

(H) zy_1 does not appear in the list xg,x1,...,Tr_1,

(I) the last xp_q-stack of U occurs in Bs.
Now Lemma 2.3(i) implies that ini(V) = ini(U) = ---x---x¢_1---, whence
the first zy_1-stack of V follows the first x-stack of V. It then follows from (I)
that

(J) the first xy_1-stack of V occurs in B’,

whence occ(y,V) = occ(y,x¢—1,V). Further, (D) implies that the first y-
stack of U occurs in A, so (F) implies that occ(y,U) = occ(y, xe—1,U) + e4.
Therefore

occ(y, xo—1,V) = occ(y,xp—1,U) +e¢  (mod 2)
by Lemma 2.2. But
occ(y,xe—1,V) = occ(y,x¢—1,U) (mod 2)
by Lemma 2.3(iii), so that ey is even. On the other hand,
occ(zo—1,U) = ep—1 + occ(y, 4o—1,U) by (F) and (I)
and occ(zi—1,V) = occly, L¢—1,V) by (J).
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Therefore
er—1 +occ(y, 4¢—1,U) = occ(y, 4¢—1,V) (mod 2)
by Lemma 2.2. But
occ(y, ¢—1,U) = occ(y, d¢—1,V) (mod 2)

by Lemma 2.3(iv), so that ey;_; is even. Now since y € con(A) by (D) and
x¢—1 € con(Bz) by (I), the stacks acze:ll and y* of U violate (CF2), contra-
dicting the assumption that the word U is in canonical form.

SUBCASE 3.2: k =/ —1. Then

k-1 .
U =2y < H(Ui :cf)) Up -2 - Up-y* - ( H (Ui :cf))

i=1 i=0+1
A B
and
k—1 n
V=gl ( H(mﬁ))vk cyfr ( II v y)) :
i=1 i=k+1
A/ BI

where B = U,y By. By (CF3),
(X) z,y ¢ con(Up).
Then (C) and (XK) imply that occ(x,U) = e + occ(y, &, U), and (D) and (E)
imply that occ(z, V) = occ(y, &, V). Therefore
er, +occ(y,,U) = occ(y, &, V) (mod 2)
by Lemma 2.2. But
occ(y, &, V) = occ(y, &, U) (mod 2)
by Lemma 2.3(iv), so that e, is even. On the other hand,
occ(y,U) = occ(y,z,U) + e by (K)
and occ(y,V) = occ(y,x, V) by (C).
Therefore
occ(y,z,U) + e, = occ(y,z, V) (mod 2)
by Lemma 2.2. But
occ(y,x,U) = occ(y,z, V) (mod 2)
by Lemma 2.3(iii), so that e, is even. Now since y € con(A4) by (D) and

x € con(By) by (C) and (K), the stacks z® and y* of U violate (CF2),
contradicting the assumption that the word U is in canonical form. O
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LEMMA 5.3. m =n and xy = yg for all k.

PROOF. Suppose that m < n. Since ini(U) = ini(V') by Lemma 2.3(i), it
follows that zg = yo. Thus (zo,21,...,Zm) = (Yo,Y1,---,Ym) by Lemma 5.2,
whence

U s [[0est) and v = ([Tl ) ((IT 050).
i=1 Py o

Now fin(U) = fin(V') by Lemma 2.3(ii), so that z,, = y,. Therefore there are
two x,,-stacks in V; the first x,,-stack is xf;lj’ while the last x,,-stack is y,{”
It follows that the letter x,, in V does not appear in the list zg, 1, ..., Tm-1,
whence the x,,-stack of U is lone. Lemma 5.1 is thus violated.

Therefore the assumption m < n is impossible. By symmetry, it is also
impossible for m > n. Consequently, m = n and the lemma holds. O

LEMMA 5.4. e = fr (mod 2) for all k.

PROOF. Since x¢ # x1 and U; = V; = (§, by Remark 4.4, it follows from
Lemma 2.3(iii) that

e = occ(Zg, 1, U) = occ(dp, 21, V) = fo  (mod 2).

Symmetrically, e, = fm, (mod 2) by Lemma 2.3(iv). Therefore assume that
0 < k < m, whence

k—1 m
v =it ([Twa) - vt Ot ( I] @)

i=1 i=k+2
A
and
k—1 m
V= :cgo ( ]:[(VZ :E{)) - Vi :ci’“ Va1 ~:L'£Z_+11 ( H (Vi :E{)) .
i=1 i=k+2
A B

If x;_1 = xy, then as xx_1 = xi, ¢ con(Ui Vi) by (CF3) and ex—1 =1 = fr_1
by (CF4), it follows from Lemma 2.2 that

1+ e = ex—1 + e = occ(zg, Ug) = occ(zk, Vi)
=fee1+ fr =1+ fr (mod 2),

whence e, = fi (mod 2). If 2y = xp41, then e, = 1 = fi by (CF4). Therefore
it remains to assume that 51 # o # Tr+1. Then xp & con(UgUgy1ViViy1)
by (CF3), so that

occ(xy, Uy) = occ(xy, Ug1) = occ(xy, Vi) = occ(xg, V1) = 0.

There are four cases to consider.
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CASE 1: xZ’i ’11 and xi’i ’11 are first stacks of U and V respectively, while x

and :Ei’ff are first stacks of U and V respectively. Then

€k+1
k+1

occ(dg, X1, U) = occ(xy, A) + occ(zy, Ug) + e, + occ(xk, Ukt1)
= OCC(.ﬁk,xk_l, U)+0+ex+0.

Similarly, occ(dy, xxt1,V) = occ(ik, xx—1,V) + fr. Hence e = fi (mod 2)
by Lemma 2.3(iii).
CASE 2: z;*7" and xi’i’f are last stacks of U and V respectively, while 27"+

k+1
and :ci’rll are last stacks of U and V respectively. Then e; = fi (mod 2) by

an argument symmetrical to Case 1.

fr—1
1

. €r—1 €k41
CASE 3: z."' and "

are first stacks of U and V' respectively, while x; 7"

and :Ei’ff are last stacks of U and V respectively. Then
occ(zy, U) = occ(zg, A) + occ(xy, Uy) + ex + occ(xy, Ug41) + occ(z, B)
= occ(dk, Tk—1,U) + 0+ er + 0 + occ(zpy1, Tk, U).

Similarly, occ(zg, V) = occ(dy, xk—1,V) + fr + occ(xgt1, Tk, V). It then fol-
lows from Lemmas 2.2, 2.3(iii) and 2.3(iv) that e; = fr (mod 2).

CASE 4: 2" and :ci’“_’ll are last stacks of U and V respectively, while :EZ’rf
and xi’:’f are first stacks of U and V respectively. Then

occ(Zk, Tgp4+1,U) = occ(ay, A) + occ(ay, Uk) + e + occ(ag, Ukt1)
= occ(zg, A) +0+e; +0
and occ(zk_1,%, U) = occ(xy, Ux) + e + occ(xk, Uky1) + occ(zg, B)
=0+ ex + 0+ occ(xy, B),
so that

occ(zg, A) cc(Zg, Trt1,U) — ek

=o0
and occ(zk, B) = occ(xp—_1, Tk, U) — ek.
Hence
occ(zy, U) = occ(zg, A) + occ(xy, Uk) + ex + occ(xy, Ug41) + occ(z, B)
= occ(@g, Trt1,U) — e + 0+ ex + 0 + occ(ap—1, 2k, U) — ek
= occ(dg, Tpt1,U) + occ(zp—1, Tk, U) — ek.
Similarly, occ(zg, V) = occ(dk, xt1, V) + occ(xk—1, 2k, V) — fr. It then fol-
lows from Lemmas 2.2, 2.3(iii), and 2.3(iv) that e; = fr (mod 2). 0
LEMMA 5.5. Uy = Vi, for all k.

ProoF. By Lemmas 5.3 and 5.4,

m m
U=z H(Ul z') and V= xg" H(W xfl)

i=1 i=1
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where m > 1 and
() e; = f; (mod 2) for all i.
It is clear that U; = ) = V; by (CF3). Suppose that

(Ulv U27 R kal) = (Vlv‘/2a LR kal)
where k > 1. Then it follows from (A) that

(B) occ (y, z° H;:ll(Ui z$')) = occ (y,:ﬂ{;‘) Hf;f(m— :E{)) (mod 2) for all
Yy € 2.

The present lemma is thus established by induction once it is shown that
U = Vi. Now by (CF3), the letters of Uy and of Vi are in strict alphabetical
order, so that occ(y, Ug),occ(y, Vi) < 1 for all y € X. Therefore it suffices
to show that occ(y, Uy) = occ(y, Vi) (mod 2) for any y € 3. There are two
cases to consider.
CASE 1: z7* and xi" are first stacks of U and V respectively. Then

k—1
occ(y, z,U) = occ <y, z® || (Us :c?)) + occ(y, Uk)
i=1
k—1
and occ(y,z, V) = occ <y, :E(J;‘) ]:[(VZ :c{)) + occ(y, Vi).
i=1

It follows from (B) and Lemma 2.3 (iii) that occ(y, Ux) = occ(y, Vi) (mod 2).
CASE 2: z7* and xi" are last stacks of U and V respectively. Then

k—1 m

occ(y,U) = occ <y, xg H(UZ x?)) + occ(y, Ug) + occ <y, xpt H (U; x?))
i=1 i=k+1
k—1
= occ <y, xg’ ]:[(Uz :c?)) + occ(y, Uy) + occ(ay, 4, U)
i=1
and similarly,
k—1
occ(y, V) = occ (y, 0 H (Vi :c{)) +occ(y, Vi) + occ(zr, 9, V).
i=1

It follows from (B) and Lemmas 2.2 and 2.3(iv) that occ(y, Ux) = occ(y, Vi)
(mod 2). O

LEMMA 5.6. U =V.

PrOOF. By Lemmas 5.3-5.5,
m m
U=z ||(U;z{") and V = xé" H(Ui xfl)

i=1 i=1
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where m > 1 and e; = f; (mod 2) for all i. Let k € {0,1,...,m}. It is shown
in each of the following collectively exhaustive cases that ey = fr. Therefore
the identity U ~ V is trivial and is vacuously implied by the identities (0).
CASE 1: 27* is a lone stack of U. Then ;" is also a lone stack of V' by
Lemma 5.1. Therefore ey, fr < 14 by (CF5)(a) with ey = occ(zg,U) and
fr = occ(zg, V). If e € {1,2}, then clearly ey = fr by Lemma 2.1(i). If
er € {3,4,...,14}, then f; € {3,4,...,14} by Lemma 2.1(ii), whence e, = fi
by Lemma 2.2.

CASE 2: z7* is a non-lone first stack of U. Then aci’“ is also a non-lone first
stack of V. Therefore eg, fr < 2 by (CF5)(b), whence e, = fi by Lemma 5.4.
CASE 3: z* is a non-lone last stack of U. Then there exists some h < k such
that zj = xp; it is notationally simpler to write x = x;, = z;. Hence

U:xgo(ﬁ(Uixfi))Uh-xe’L( kﬁ (Ui:vfi))kae" ( ﬁ (Uixfi))

i=1 i=h+1 i=k+1

A B

where x ¢ con(AB). It follows that there are two z-stacks in V. By Case 2,
the exponent ey, of the first z-stack of U coincides with the exponent of the
first z-stack of V. Therefore

V:ng(}ﬁ(Uix{i))Uh-xeh( ﬁ (Uix[*))kaf" ( ﬁ (Ui:ci-”))

i=1 i=h+1 i=k+1

A/ BI
where z ¢ con(A'B'). Let p = ey, + occ (z, [\, Us), so that
occ(z,U)=p+er and occ(z,V)=p+ fi.

There are two subcases.

SUBCASE 3.1: p = 1. Then occ(z,U) = e + 1 and occ(x,V) = fr + 1, so
that ey, fr < 13 by (CF5)(c). Hence occ(x,U),occ(z, V) € {2,3,...,14}. If
er = 1, so that occ(x,U) = 2, then occ(z,V) = 2 by Lemma 2.1(i), whence
fr =1 = ex. Therefore it remains to assume that ey € {2,3,...,13}, so that
occ(x,U) € {3,4,...,14}. Now occ(z,V) € {3,4,...,14} by Lemma 2.1(ii),
hence e = fr by Lemma 2.2.

SUBCASE 3.2: p > 2. Then occ(z,U) > e + 2 and occ(x,V) > fi + 2, so
that ey, fr < 12 by (CF5)(d). Since

p+ e =occ(z,U) =occ(z, V) =p+ fr (mod 12)
by Lemma 2.2, it follows that ex = f. 0
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