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Abstract. In this paper, new characterizations of the single valued
extension property are given, for a bounded linear operator T acting on
a Banach space and its adjoint T ∗, at λ0 ∈ C in the case that λ0I − T

is quasi-Fredholm. With the help of a classical perturbation result con-
cerning operators with eventual topological uniform descent, we show the
constancy of certain subspace valued mappings on the components of quasi-
Fredholm resolvent set. As a consequence, we obtain a classification of
these components.

1. Introduction

Throughout this paper, B(X) will denote the set of all bounded lin-
ear operators on an infinite-dimensional complex Banach space X . For
an operator T ∈ B(X), let T ∗ denote its adjoint, N(T ) its kernel and
R(T ) its range. Two important subspaces of X are the hyperrange of T
defined by R(T∞) = ∩∞

n=1R(T n), and the hyperkernel of T defined by
N(T∞) = ∪∞

n=1N(T n), respectively. There are another two important sub-
spaces of X , the analytical core K(T ) of T defined by

K(T ) = {x ∈ X : there exist a sequence {xn}
∞

n=0 ⊆ X and a constant δ > 0

such that x0 = x, Txn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n ∈ N},

and the quasi-nilpotent part H0(T ) of T defined by

H0(T ) = {x ∈ X : lim
n→∞

‖T nx‖1/n = 0}.

It is well known that K(T ) ⊆ R(T∞) and N(T∞) ⊆ H0(T ).
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Recall that T ∈ B(X) is called bounded below if T is injective and has
closed range R(T ). An operator T ∈ B(X) is called semi-regular if R(T )
is closed and N(T ) ⊆ R(T∞) (or equivalently, N(T∞) ⊆ R(T )). The con-
cept of semi-regular was originated from Kato’s classical treatment [11] of
perturbation theory, even if originally these operators were not named in this
way. Trivial examples of semi-regular operators are surjective operators and
bounded below operators.

The lattice of invariant subspaces of an operator T ∈ B(X) is denoted
as Lat(T ). A pair of closed subspace (M,N) is said to reduce T (denoted as
(M,N) ∈ Red(T )), if X = M ⊕ N and M,N ∈ Lat(T ). For M ∈ Lat(T ),
T |M denotes the restriction of T to M . An operator T ∈ B(X) is said to be
of Kato type if there exists (M,N) ∈ Red(T ) such that T |M is semi-regular
and T |N is nilpotent. If we assume in the definition above that N is finite-
dimensional, then T is said to be essentially semi-regular. Equivalently,
essentially semi-regular operators can be characterized in such a way that
R(T ) is closed and there exists a finite-dimensional subspace F of X for which
N(T ) ⊆ R(T∞) + F (see [1, Theorem 1.48]]).

For each n ∈ N, we set cn(T ) = dimR(T n)/R(T n+1) and c
′

n(T ) =
dimN(T n+1)/N(T n). It follows from [10, Lemmas 3.1 and 3.2] that, for every
n ∈ N,

cn(T ) = dimX/(R(T ) +N(T n)), c
′

n(T ) = dimN(T ) ∩R(T n).

Hence, it is easy to see that the sequences {cn(T )}∞n=0 and {c
′

n(T )}
∞
n=0 are

decreasing. Recall that the descent and the ascent of T ∈ B(X) are defined as
dsc(T ) = inf{n ∈ N : R(T n) = R(T n+1)} and asc(T ) = inf{n ∈ N : N(T n) =
N(T n+1)}, respectively (the infimum of an empty set is defined to be ∞).
That is,

dsc(T ) = inf{n ∈ N : cn(T ) = 0}

and

asc(T ) = inf{n ∈ N : c
′

n(T ) = 0}.

Recall that an operator T ∈ B(X) is said to be left Drazin invertible if
p := asc(T ) < ∞ and R(T p+1) is closed.

If T ∈ B(X), for each n ∈ N, T induces a linear transformation from
the vector space R(T n)/R(T n+1) to the space R(T n+1)/R(T n+2). Let kn(T )
be the dimension of the kernel of the induced map. From [9, Lemma 2.3] it
follows that, for every n ∈ N,

kn(T ) = dim(N(T ) ∩R(T n))/(N(T ) ∩R(T n+1))

= dim(R(T ) +N(T n+1))/(R(T ) +N(T n)).

We remark that the sequence {kn(T )}∞n=0 is not always decreasing. For this,
see the following simple example.
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Example 1.1. An operator T ∈ B(l
(1)
2 ⊕ l

(2)
2 ) is defined as follows:

T =

(

0 S
0 0

)

: l
(1)
2 ⊕ l

(2)
2 → l

(1)
2 ⊕ l

(2)
2 ,

where S : l
(2)
2 → l

(1)
2 is an isomorphism. It is easy to know that N(T ) =

l
(1)
2 ⊕ {0}, R(T ) = l

(1)
2 ⊕ {0}, and R(T n) = {0} ⊕ {0} for all n ≥ 2. Then we

have that

k0(T ) = dim
N(T )

N(T ) ∩R(T )
= 0, k1(T ) = dim

N(T ) ∩R(T )

N(T ) ∩R(T 2)
= ∞,

kn(T ) = dim
N(T ) ∩R(T n)

N(T ) ∩R(T n+1)
= 0, for all n ≥ 2.

J. P. Labrousse in [13] introduced and studied quasi-Fredholm operators
on Hilbert spaces. M. Mbekhta and V. Müller in [15] extended them to Banach
spaces.

Definition 1.2. Let d ∈ N. An operator T ∈ B(X) is said to be quasi-
Fredholm of degree d if kn(T ) = 0 for n ≥ d, and the subspaces N(T d) +
R(T ) and N(T ) ∩R(T d) are closed.

An operator T ∈ B(X) is said to be quasi-Fredholm if it is quasi-
Fredholm of some degree d.

Discussions of quasi-Fredholm operators may be found in [2,4,13,15,18].
The following lemma describes some equivalent conditions of the assumption
that the subspaces N(T d) +R(T ) and N(T ) ∩R(T d) are closed.

Lemma 1.3 ([18, Proposition 3]). Let T ∈ B(X), d ∈ N and let kn(T ) = 0
for all n ≥ d. The following statements are equivalent:

(1) T is quasi-Fredholm, i.e. N(T d)+R(T ) and N(T )∩R(T d) are closed.
(2) R(T d+1) is closed.
(3) R(T n) is closed for all n ≥ d.
(4) R(T i) +N(T j) is closed for all i, j with i+ j ≥ d.

The next definition, which was introduced by S. Grabiner ([9]), is closely
related to that of quasi-Fredholm operators.

Definition 1.4. Let d ∈ N. An operator T ∈ B(X) is said to be have
topological uniform descent for n ≥ d if kn(T ) = 0 for n ≥ d, and the
subspace N(T d) +R(T ) is closed.

An operator T ∈ B(X) is said to be have eventual topological uniform
descent if there exists d ∈ N such that it has topological uniform descent for
n ≥ d.

From Definition 1.4 we see easily that T ∈ B(X) is semi-regular if and
only if T has topological uniform descent for n ≥ 0. By Lemma 1.3, we
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know that quasi-Fredholm operators of degree d are precisely all operators
T ∈ B(X) that have topological uniform descent for n ≥ d and closed range
R(T d+1).

The single valued extension property was introduced by N. Dunford in
[6,7] and plays an important role in local spectral theory and Fredholm theory,
see the recent monographs [1] by P. Aiena and [14] by K. B. Laursen and M.
M. Neumann.

Definition 1.5. An operator T ∈ B(X) is said to have the single valued
extension property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc
U of λ0, the only analytic function f : U −→ X which satisfies the equation
(λI − T )f(λ) = 0 is the constant function f ≡ 0.

An operator T ∈ B(X) is said to have the SVEP if T has the SVEP at
every point λ ∈ C.

The notion of localized SVEP at a point dates back to J. Finch ([8]).
Some characterizations of the SVEP were given by P. Aiena ([2]), for an
operator T ∈ B(X) and its adjoint T ∗, at λ0 ∈ C in the case that λ0I − T is
quasi-Fredholm.

This paper is organized as follows. In section 2, as a continuation of [2],
we give new characterizations of the SVEP, for T and T ∗, at λ0 ∈ C in the
case that λ0I − T is quasi-Fredholm. In section 3, with the help of a classical
perturbation result concerning operators with eventual topological uniform
descent, we show the constancy of certain subspace valued mappings on the
components of quasi-Fredholm resolvent set. As a consequence, a classification
of these components is obtained. This generalizes the corresponding results
of P. Aiena and F. Villafañe ([3]).

2. New characterizations of the localized SVEP

V. Müller in [18] proved that if T ∈ B(X) is quasi-Fredholm of degree d
then T ∗ ∈ B(X∗) is also quasi-Fredholm of the same degree d. The following
result shows that the reverse is also true.

For a subspace M of X , let M⊥ ⊆ X∗ denote the annihilator of M . For
a subspace N of X∗, let ⊥N ⊆ X denote the pre-annihilator of N .

Theorem 2.1. Let d ∈ N. Then T ∈ B(X) is quasi-Fredholm of degree d
if and only if T ∗ ∈ B(X∗) is quasi-Fredholm of degree d.

Proof. For the “only if” part, see [18, Lemma 4].
For the “if” part, suppose that T ∗ is quasi-Fredholm of degree d. From

Lemma 1.3, R(T ∗j) is closed for all j ≥ d. By the closed range theorem we
know that R(T j) is closed for all j ≥ d and, we can get the following equation

(2.1) R(T ∗j) ∩N(T ∗) = N(T j)⊥ ∩R(T )⊥ = (N(T j) +R(T ))⊥
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for all j ≥ d. Since T (−j)(R(T (j+1))) = N(T j) +R(T ) for all j ≥ d, N(T j) +
R(T ) is closed for all j ≥ d. From the fact that kj(T

∗) = 0 for all j ≥ d and
by equation (2.1), we can obtain that

N(T j)+R(T ) = ⊥((N(T j)+R(T ))⊥) = ⊥((N(T d)+R(T ))⊥) = N(T d)+R(T )

for all j ≥ d. Therefore kj(T ) = 0 for all j ≥ d. By Lemma 1.3 again, it
follows that T is quasi-Fredholm of degree d.

P. Aiena in [2] gave some characterizations of the SVEP, for T , at λ0 ∈ C

in the case that λ0I − T is quasi-Fredholm.

Proposition 2.2 ([2, Theorem 2.7]). Let T ∈ B(X) be quasi-Fredholm
of degree d. Then the following statements are equivalent:

(i) T has SVEP at 0;
(ii) asc(T ) < ∞;
(iii) σap(T ) does not cluster at 0;
(iv) there exists n ∈ N such that R(T n) is closed and T |R(Tn) is bounded

below;
(v) T is left Drazin invertible;
(vi) there exists m ∈ N such that H0(T ) = N(Tm);
(vii) H0(T ) is closed;
(viii) H0(T ) ∩K(T ) = {0}.

Dually, P. Aiena ([2]) gave some characterizations of the SVEP, for T ∗,
at λ0 ∈ C in the case that λ0I − T is quasi-Fredholm.

Proposition 2.3 ([2, Theorem 2.11]). Let T ∈ B(X) be quasi-Fredholm
of degree d. Then the following statements are equivalent:

(i) T ∗ has SVEP at 0;
(ii) dsc(T ) < ∞;
(iii) σsu(T ) does not cluster at 0;
(iv) there exists n ∈ N such that R(T n) is closed and T |R(Tn) is onto;
(v) X = H0(T ) +K(T );
(vi) there exists m ∈ N such that K(T ) = R(Tm);

We give new characterizations of the SVEP, for T , at λ0 ∈ C in the case
that λ0I − T is quasi-Fredholm.

Theorem 2.4. Let T ∈ B(X) be quasi-Fredholm of degree d. Then the
conditions (i)-(viii) of Proposition 2.2 are equivalent to the following asser-
tions:

(1) N(T∞) ∩R(T∞) = {0};
(2) N(T∞)⊥ +R(T∞)⊥ = X∗;
(3) N((T ∗)∞) +R((T ∗)∞) is weak*-dense in X∗;
(4) H0(T

∗) +K(T ∗) is weak*-dense in X∗;
(5) H0(T

∗) +R(T ∗) is weak*-dense in X∗.
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Proof. (viii) ⇒ (1) Since T is quasi-Fredholm, by [2, Lemma 2.6],
R(T∞) = K(T ). Therefore, N(T∞) ∩ R(T∞) ⊆ H0(T ) ∩ R(T∞) =
H0(T ) ∩K(T ) = {0}. Thus, N(T∞) ∩R(T∞) = {0}.

(1) ⇒ (2) Since T is quasi-Fredholm of degree d, T has topological uniform
descent for n ≥ d. By part (a) of [9, Lemma 3.6] and part (e) of [9, Theorem
3.2], we conclude thatN(T∞)+R(T∞) = N(T d)+R(T∞) is closed. Hence, by
a classical theorem of T. Kato, N(T∞)⊥+R(T∞)⊥ = (N(T∞)∩R(T∞))⊥ =
X∗ (see [12, Chapter Four, Theorem 4.8]).

(2) ⇒ (3) Since T is quasi-Fredholm of degree d, by Theorem 2.1, T ∗ is
quasi-Fredholm of degree d. Hence, by Lemma 1.3, R((T ∗)n) is closed for all
n ≥ d. Therefore

N(T∞)⊥ ⊆ N(T n)⊥ = R((T ∗)n) for all n ≥ d.

Thus

N(T∞)⊥ ⊆
∞
⋂

n=d

R((T ∗)n) =

∞
⋂

n=1

R((T ∗)n) = R((T ∗)∞).

Since T is quasi-Fredholm of degree d, by Lemma 1.3 again, R(T n) is closed
for all n ≥ d. Hence

⊥N((T ∗)∞) ⊆ ⊥N((T ∗)n) = R(T n) for all n ≥ d.

Thus

⊥N((T ∗)∞) ⊆
∞
⋂

n=d

R(T n) =

∞
⋂

n=1

R(T n) = R(T∞).

So

R(T∞)⊥ ⊆ (⊥N((T ∗)∞))⊥ = N((T ∗)∞)
w∗

.

By the assumption of (2), we have X∗ = N(T∞)⊥ +R(T∞)⊥ ⊆ R((T ∗)∞) +

N((T ∗)∞)
w∗

⊆ N((T ∗)∞) +R((T ∗)∞)
w∗

⊆ X∗. Therefore, N((T ∗)∞) +
R((T ∗)∞) is weak*-dense in X∗.

(3) ⇒ (4) Since T is quasi-Fredholm of degree d, by Theorem 2.1, T ∗ is
quasi-Fredholm of degree d. Hence, by [2, Lemma2.6], R((T ∗)∞) = K(T ∗)
and the desired conclusion follows.

(4) ⇒ (5) Since K(T ∗) ⊆ R(T ∗), the desired conclusion follows.
(5) ⇒ (i) See [1, Theorem 2.36].

The next result, which is dual to Theorem 2.4, give new characterizations
of the SVEP, for T ∗, at λ0 ∈ C in the case that λ0I − T is quasi-Fredholm.

Theorem 2.5. Let T ∈ B(X) be quasi-Fredholm of degree d. Then the
conditions (i)-(viii) of Proposition 2.3 are equivalent to the following asser-
tions:

(1) N(T∞) +R(T∞) = X;
(2) N(T∞)⊥ ∩R(T∞)⊥ = {0};
(3) N((T ∗)∞) ∩R((T ∗)∞) = {0};
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(4) N(T ∗) ∩R((T ∗)∞) = {0}.

Proof. (ii) ⇒ (1) Let dsc(T ) = q < ∞. Then R(T∞) = R(T q) and, by
[1, Lemma 3.2], N(T∞) +R(T∞) = N(T∞) +R(T q) ⊇ N(T q) +R(T q) = X .
Therefore, N(T∞) +R(T∞) = X .

(1) ⇒ (2) Since N(T∞) + R(T∞) = X , it follows that N(T∞)⊥ ∩
R(T∞)⊥ = (N(T∞) +R(T∞))⊥ = {0}.

(2) ⇒ (3) Since T is quasi-Fredholm of degree d, by Lemma 1.3, R(T n)
is closed for all n ≥ d. Hence

R((T ∗)∞) =
∞
⋂

n=d

R((T ∗)n) =
∞
⋂

n=d

N(T n)⊥

= (

∞
⋃

n=d

N(T n))⊥ = N(T∞)⊥.

(2.2)

Since N(T∞)⊥ ∩ R(T∞)⊥ = {0}, it follows that (N(T∞) + R(T∞))⊥ =
N(T∞)⊥ ∩ R(T∞)⊥ = {0}, hence N(T∞) + R(T∞) = X . Since T is quasi-
Fredholm, by [2, Lemma 2.6], R(T∞) = K(T ). Therefore X = N(T∞) +
R(T∞) ⊆ H0(T ) +K(T ) ⊆ X , so H0(T ) +K(T ) = X . By Proposition 2.3,
dsc(T ) < ∞. Hence asc(T ∗) ≤ dsc(T ) < ∞. Let dsc(T ) = q < ∞. It is easy
to see that

N((T ∗)∞) = N((T ∗)q) = R(T q)⊥ = R(T∞)⊥.

Thus N((T ∗)∞) ∩R((T ∗)∞) = N(T∞)⊥ ∩R(T∞)⊥ = {0}.
(3) ⇒ (4) Since N(T ∗) ⊆ N((T ∗)∞), the desired conclusion follows.
(4) ⇒ (i) See [1, Theorem 2.22].

3. Components of quasi-Fredholm resolvent set

The following proposition, which was due to S. Grabiner, is a classical
perturbation result concerning operators with eventual topological uniform
descent.

Proposition 3.1 ([9, Theorem 4.7]). Suppose that T ∈ B(X) has topo-
logical uniform descent for n ≥ d, and that S ∈ B(X) commutes with T . If S
is sufficiently small and invertible, then

(a) T + S is semi-regular;
(b) R((T + S)∞) = N(T∞) +R(T∞);

(c) N((T + S)∞) = N(T∞) ∩R(T∞).

For T ∈ B(X), the Kato type spectrum and the quasi-Fredholm
spectrum are defined as σkt(T ) = {λ ∈ C : λI − T is not of Kato type}
and σqf (T ) = {λ ∈ C : λI − T is not quasi-Fredholm}, respectively. From
[1, Theorem 1.42] it follows that σqf (T ) ⊆ σkt(T ). It is known that σkt(T ) is
closed, see [1, Corollary 1.45]. According to Proposition 3.1, it follows easily
that σqf (T ) is also closed.
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The Kato type resolvent set and the quasi-Fredholm resolvent set are
defined as ρkt(T ) = C\σkt(T ) and ρqf (T ) = C\σqf (T ), respectively. The
sets ρkt(T ) and ρqf (T ) are open subsets of C, so they can be decomposed in
connected disjoint open non-empty components.

M. Mbekhta and A. Ouahab ([16]) showed that the mappings

(3.1) λ −→ H0(λI − T ) +K(λI − T ), λ −→ H0(λI − T ) ∩K(λI − T )

are constant on the components of ρkt(T ). P. Aiena and F. Villafañe ([3])
proved that the mappings (3.1) and the mappings
(3.2)

λ −→ N((λI−T )∞)+R((λI−T )∞), λ −→ N((λI − T )∞)∩R((λI −T )∞)

coincide, respectively, on the components of ρkt(T ).
We generalize these results to the components of ρqf (T ). We first show

the constancy of the mappings (3.2) on the components of ρqf (T ).

Lemma 3.2. Let T ∈ B(X) be quasi-Fredholm of degree d. Then there
exists an ε > 0 such that:

(1) N((λI −T )∞)+R((λI −T )∞) = N(T∞)+R(T∞) for all 0 < |λ| < ε;

(2) N((λI − T )∞)∩R((λI −T )∞) = N(T∞)∩R(T∞) for all 0 < |λ| < ε.

Proof. Since T is quasi-Fredholm of degree d, T has topological uniform
descent for n ≥ d. By Proposition 3.1, there exists an ε > 0 such that

λI − T is semi-regular,

R((λI − T )∞) = N(T∞) +R(T∞)

and

N((λI − T )∞) = N(T∞) ∩R(T∞)

for all 0 < |λ| < ε. By [17, Theorem 1.2], N((λI − T )∞) ⊆ R((λI − T )∞).
Moreover, by [1, Theorem 1.24] R((λI − T )∞) is closed, consequently,

N((λI − T )∞) ⊆ R((λI − T )∞). Hence

N((λI − T )∞) +R((λI − T )∞) = R((λI − T )∞) = N(T∞) +R(T∞)

and

N((λI − T )∞) ∩R((λI − T )∞) = N((λI − T )∞) = N(T∞) ∩R(T∞)

[9, Lemma 3.6(d)]
================ N(T∞) ∩R(T∞)

[2, Lemma 2.6]
============= N(T∞) ∩R(T∞)

for all 0 < |λ| < ε.

By using the classical Heine-Borel theorem, we obtain the following result.
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Corollary 3.3. Let T ∈ B(X). If Ω is a component of ρqf (T ) and
λ0 ∈ Ω, then

N((λI − T )∞) +R((λI − T )∞) = N((λ0I − T )∞) +R((λ0I − T )∞)

and

N((λI − T )∞) ∩R((λI − T )∞) = N((λ0I − T )∞) ∩R((λ0I − T )∞)

for all λ ∈ Ω.
Therefore, the mappings

λ −→ N((λI − T )∞) +R((λI − T )∞)

and

λ −→ N((λI − T )∞) ∩R((λI − T )∞)

are constant on the components of ρqf (T ).

The following theorem extends [3, Theorem 2.1].

Theorem 3.4. Let λI − T be quasi-Fredholm. Then

(1) N((λI − T )∞) +R((λI − T )∞) = H0(λI − T ) +K(λI − T ).

(2) N((λI − T )∞) ∩R((λI − T )∞) = H0(λI − T ) ∩K(λI − T ).

Proof. Without loss of generality, we may assume that λ = 0.
Since T is quasi-Fredholm of degree d, by Theorem 2.1, T ∗ is also quasi-

Fredholm of degree d. Then by [2, Lemma 2.6], R(T∞) = K(T ) and R((T ∗)∞)

= K(T ∗). By [1, Theorem 1.70], N(T∞) ⊆ H0(T ) ⊆ ⊥K(T ∗). By equation

(2.2), N(T∞)
⊥

= R((T ∗)∞) = K(T ∗). So, N(T∞) = ⊥K(T ∗). Hence,

N(T∞) = H0(T ). Consequently, N(T∞) ∩ R(T∞) = H0(T ) ∩ K(T ). This
shows (2).

On one hand, N(T∞) +R(T∞) ⊆ H0(T )+R(T∞) = H0(T )+K(T ). On
the other hand,

H0(T ) +K(T ) ⊆ H0(T ) +K(T ) = N(T∞) +R(T∞)

[9, Lemma 3.6(a)]
================ N(T∞) +R(T∞)

Therefore, N(T∞) +R(T∞) = H0(T ) +K(T ). This shows (1).

By Corollary 3.3 and Theorem 3.4, we obtain the next result which gen-
eralizes the corresponding result of M. Mbekhta and A. Ouahab ([16]).

Corollary 3.5. The mappings

λ −→ H0(λI − T ) +K(λI − T )

and

λ −→ H0(λI − T ) ∩K(λI − T )

are constant on the components of ρqf (T ).
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Combining Theorem 2.4 with Corollary 3.3, the following classification is
obtained.

Theorem 3.6. Let T ∈ B(X) and Ω a component of ρqf (T ). Then the
following alternative holds:

(1) T has the SVEP at every point of Ω. In this case, asc(λI − T ) < ∞
for all λ ∈ Ω. Moreover, σap(T ) does not have limit points in Ω; every
point of Ω, except possibly for at most countably many isolated points,
is not an eigenvalue of T .

(2) T has the SVEP at no point of Ω. In this case, asc(λI − T ) = ∞ for
all λ ∈ Ω. Every point of Ω is an eigenvalue of T .

Proof. (1) Suppose that T has the SVEP at λ0 ∈ Ω. Then by Propo-
sition 2.2, asc(λ0I − T ) < ∞, so N((λ0I − T )∞) is closed. By Theorem 2.4,

N((λ0I − T )∞) ∩R((λ0I − T )∞) = N((λ0I − T )∞) ∩R((λ0I − T )∞) = {0}.
By Corollary 3.3 the mapping

λ −→ N((λI − T )∞) ∩R((λI − T )∞)

is constant on Ω, so N((λI − T )∞)∩R((λI−T )∞) = {0} for all λ ∈ Ω. Thus,
N((λI −T )∞)∩R((λI − T )∞) = {0} for all λ ∈ Ω. Therefore, again by The-
orem 2.4, T has the SVEP at every λ ∈ Ω. This is equivalent, by Proposition
2.2, to saying that asc(λI − T ) < ∞ for all λ ∈ Ω. Moreover, from Propo-
sition 2.2, σap(T ) does not have limit points in Ω and, consequently, every
point of Ω is not an eigenvalue of T , except possibly for at most countably
many isolated points.

(2) Suppose that T has the SVEP at no point of Ω. Then by Proposition
2.2, asc(λI − T ) = ∞ for all λ ∈ Ω and, consequently, every point of Ω is an
eigenvalue of T .

Recall that λ ∈ C is said to be a deficiency value for if λI − T is
not surjective. Combining Theorem 2.5 with Corollary 3.3, the following
classification is obtained.

Theorem 3.7. Let T ∈ B(X) and Ω a component of ρqf (T ). Then the
following alternative holds:

(1) T ∗ has the SVEP at every point of Ω. In this case, dsc(λI − T ) < ∞
for all λ ∈ Ω. Moreover, σsu(T ) does not have limit points in Ω; every
point of Ω, except possibly for at most countably many isolated points,
is not a deficiency value of T .

(2) T ∗ has the SVEP at no point of Ω. In this case, dsc(λI − T ) = ∞ for
all λ ∈ Ω. Every point of Ω is a deficiency value of T .

Proof. (1) Suppose that T ∗ has the SVEP at λ0 ∈ Ω. Then, by Theorem
2.5, N((λ0I − T )∞) +R((λ0I − T )∞) = X . By Corollary 3.3 the mapping

λ −→ R((λI − T )∞) +N((λI − T )∞)
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is constant on Ω, so R((λI − T )∞) + N((λI − T )∞) = X for all λ ∈ Ω.
Therefore, again by Theorem 2.5, T ∗ has the SVEP at every λ ∈ Ω. This is
equivalent, by Proposition 2.3, to saying that dsc(λI − T ) < ∞ for all λ ∈ Ω.
Moreover, from Proposition 2.3, σsu(T ) does not have limit points in Ω and,
consequently, every point of Ω is not a deficiency value of T , except possibly
for at most countably many isolated points.

(2) Suppose that T ∗ has the SVEP at no point of Ω. Then by Proposition
2.3, dsc(λI − T ) = ∞ for all λ ∈ Ω and, consequently, every point of Ω is a
deficiency value of T .

At last, as an application, we give a characterization of finite-dimensional
Banach spaces.

Corollary 3.8. Let X be a Banach space. The following assertions are
equivalent:

(1) X is finite-dimensional;
(2) σqf (T ) = ∅ for every T ∈ B(X).

Proof. (1) =⇒ (2) Clear.
(2) =⇒ (1) For every T ∈ B(X), since σqf (T ) = ∅, ρqf (T ) has only one

component Ω = C. Then by Theorem 3.7, σdsc(T ) := {λ ∈ C : dsc(T − λ) =
∞} = ∅. Consequently, by [5, Corollary 1.10], X is finite-dimensional.
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