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A Module for Automated Generation
of Planar Object Descriptions

Zoran Kalafati¢ and Slobodan Ribarié

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

The article describes the implementation of a module for
automated generation of descriptions of planar objects.
The module is based on dividing the cbjects in a scene
into parts by using local symmetries, and describing the
relations among detected parts. The relations among
parts are represented by the knowledge representation
scheme based on Petri net theory (KRP). The module
is intended to be a part of a computer vision system
using the KRFP scheme for representing knowledge about
objects in the scene.

Keywords: computer vision, automated description gen-
cration, Jocal symmetrics, object decomposition, scheme
KRP.
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1. Introduction

A module for automated generation of scene
descriptions is a component of a subsystem for
automatic acquisition or learning, which, on the
other hand, is one of the basic components of
knowledge-based vision systems.

The implemented module for automated gen-
eration of planar object descriptions is a part
of a computer vision system shown in Fig. 1.
The module takes input images of the composed
planar objects and generates their descriptions
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Fig. I A computer vision system using the KRP scheme.
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in the KRP (Knowledge representation scheme
based on Petri Nets) notation. This KRP nota-
tion can be used both in the learning phase of
the system, and in the object recognition phase
during the scene interpretation process.

The module enables automated building and up-
dating the knowledge base (learning). In the
scene interpretation process, the KRP notation
representing the structure of the planar objects
in the scene serves as input to a knowledge ma-
nipulation subsystem (Fig. 1), which searches
the KRP knowledge base to determine a possi-
ble scene interpretation.

Our module for automatic description is based
on the assumption that the planar objects in the
scene can be divided into building parts, and
then, by encoding the parts and the relations
among them, a consistent description can be ob-
tained. The above assumption is based on psy-
chological experiments which support the the-
ory that the human recognition process might be
based on recognition by components [1]. Also,
some authors have pointed out that shape rep-
resentations based on components provide rich
descriptions, make “important facts” explicit,
and have good stability with respect to config-
uration [4].

The operations of the module for automated
generation of planar object descriptions can be
viewed as a two-phase process. First, planar
objects in the scene are divided into parts. This
phase is based on local symmetries [2]. In the
second phase, the relations between the detected
parts should be determined and suitably repre-
sented.

The problem of object decomposition can be
treated in different ways. One approach tries
to find the evidences on the contour that sug-
gest the possible subpart joins. Usually some
heuristic criteria are used, but no generally ap-
plicable method has been proposed. Criteria for
finding joins are usually based on curvature dis-
continuities and on finding points of sharp con-
cavity [1], [2], [3]. Several studies have shown
the importance of two very different descrip-
tors for shape: symmetry structure and curva-
ture extrema. Leyton [7] has proved a theorem
which expresses an important relationship be-
tween symmetry and curvature extrema.

Our approach is based on finding the instances
of parts from a set, defined in advance. The pos-

sible parts are defined by using models, and the
instances in a scene are to be found using some
kind of matching. In fact, in this approach the
object decomposition problem could be detined
in terms of pattern recognition. In that rep-
resentation, the input pattern, i.e. a scene, can
be viewed as a composition of unknown parts
which can be overlapped. The module has to
detect such overlapped parts and classity them
into classes of building parts. To deal with over-
lapping, some kind of local information should
be applied. We use Brady’s local symmetries
for shape representation in our object decom-
position module. This representation technique
has this very important feature of being local,
so that it can deal with overlapping. Further-
more, local symmetry axes are found to suggest
plausible parts [4].

When a decomposition of an object into parts
is found, it can be described by expressing the
relations among the detected parts. To repre-
sent the relations, we use the KRP scheme. The
main problem is to choose the appropriate set of
relations which enables a useful description of
a scene or a “natural” description that approxi-
mates a description generated by a human.

The next section reviews the definition of local
symmetry and points out some of its properties
which can be used for shape decomposition.
The third section shortly sketches our object
decomposition algorithm. In the fourth sec-
tion the definition of the KRP scheme is given,
and its applicability to scene description is illus-
trated. Finally, Section 5 deals with automated
generation of KRP scene descriptions, which is
illustrated on a simple example.

2. Local symmetries

We accepted the definition of local symmetry
introduced by Brady and Asada [2]. Its ge-
ometry was given as a part of the definition of
Smoothed Local Symmetry (SLS). Alocal sym-
metry describes a special relation between two
points lying on a contour. A symmetry appears
if an axis can be constructed so that the small
pieces of contour around the two points can be
reflected into each other through the constructed
axis, as illustrated in Fig. 2a.

The local symmetries of an object can be found
point-by-point, by testing every point on the



A Module for Automated Generation of Planar Object Descriptions 55

(a) (b)

()

Fig. 2. (a) The geometry of a local symmetry. (b) A point on the contour can form several local symmetries.
(¢) Local symmetries of a rectangle.

contour against all others. The algorithm is sim-
ple, but the time complexity is O(n?), where n
is the number of contour points. Another short-
coming is substantial sensitivity to the noise.
Brady and Asada developed a program that
computes the SLSs of a shape by approximat-
ing the contour by a series of straight lines and
circular arcs. This method reduces the cost of
computation and also significantly reduces the
noise. Our program for finding the symmetry
axes also approximates the contour, but we use
the polygonal approximation. It is simpler than
curvilinear, yet gives satisfying results. The
bounding contours of objects in the scene are
represented by sequences of linear segments, so
the local symmetries are computed by analyti-
cally comparing each segment to all others.

Brady proposed that local symmetries could be
used for object decomposition [2]. He proposed
two heuristic rules to be applied to find subpart
joins. The first rule is in fact a generalization
of “matched concavities” heuristic, and the sec-
ond covers some cases where the first one can-
not be used. But, still these heuristics could
be used only for a restricted set of configura-
tions. Connell [4] built an object decomposi-
tion and description system which relies upon
Brady’s smoothed local symmetries, assuming
that they suggest plausible axes for the parts
of the object. His system uses some heuristic
criteria to reduce the set of symmetries and to
connect symmetries which are (possibly) parts
of the same original symmetry. The segmenta-
tion program computes parameters for each of
the symmetries found, joins symmetries which
are different sections of the same primitive re-
gion, and finally it chunks the image into a col-
lection of non-overlapping pieces based on the

extended symmetries found. The description
module computes symbolic descriptors for the
shapes of each of the pieces. It also determines
which pieces are joined together and how. Fi-
nally, a semantic network describing parts and
relations among the parts is generated. Rom and
Medioni [10] presented their object decomposi-
tion system based on symmetry. Their system,
like the Connel’s [4], chunks the objects in the
scene into “intuitive” parts. Our system, on the
contrary, uses models of possible building parts.

It turned out that smoothed local symmetries
work well only if the object is composed of
elongated parts [4, 5]. On approximately round
regions an axis-based representation is unsta-
ble and, moreover, it doesn’t provide an intu-
itively acceptable analysis. Fleck developed a
companion technique called Local Rotational
Symmetries (LRS). This technique is based on
finding the regions which are approximately cir-
cular and describing them in terms of center
and radius of curvature. However, she uses the
combination of the two representations (SLS +
LRS) to provide complete descriptions of object
shapes [5]. Our system uses a similar technique
for dealing with round regions [6].

3. Object decomposition

For our experiments, we chose a set of build-
ing parts and composed them to form planar
objects. The parts can be overlapped. The
decomposition procedure is the most complex
part of our module, using many heuristics. The
space restrictions prevent us from going into
detail, so only a rough sketch will be given.
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Fig. 3. Decomposition of an object into parts.

The details can be found in [6]. Our object de-
composition procedure begins with finding lo-
cal symmetries among contour segments. The
set of symmetries computed for a compound
object can contain much more local symmetry
axes than it would be obtained by computing
symmetries for all parts separately. Some of
the original symmetry axes are broken due to
the loss of a piece of the contour, which oc-
curs when two parts are connected, and many
symmeltries appear between contour segments
of different building parts. This is illustrated
in Fig. 3a (note the difference with the symme-
tries of individual building parts in Fig. 4). The
set of symmetries is then reduced using several
heuristic criteria, e.g. short symmetries, sym-
metries relating distant contour segments and
non-intrinsic symmetries [3] are rejected. We
try to extend symmetries which can be joined
together, assuming that they might be the parts
of one symmetry, broken due to subpart joins.
In order to be joined, the symmetries must sat-
isfy several heuristic criteria. The regions they
describe have to be joined smoothly and should
not extend the bounding contour. The outer
symmetries are not used for model matching,
but they suggest probable subpart joins (simi-
larly as the matched concavities heuristic [2]).
These points are used as a valuable assistance in
some of the subsequent algorithms. Figure 3b
shows such points found by the implemented
algorithm. The next step is finding the ap-
proximately round regions, i.e. the sequences
of linear segments that can be approximated by
circular arcs. The local symmetries are unstable
in such regions, so it is much more appropriate
to represent these regions in terms of center and

radius. We use that information in the model
matching procedure. The approximation arcs
for a simple scene are shown in Fig. 3c.

The decomposition algorithm uses models of
possible building parts, which are built in the
learning phase. Some of the used building parts
are shown in Fig. 4, together with the com-
puted symmetries. The learning phase is one-
shot process. That means that each building
part is presented only once, in referent posi-
tion. The system determines the outer contour
of the presented part, approximates it linearly,
and computes the local symmetries. Then it
searches for approximately round regions and
describes them in terms of center and radius.
All that information is then stored in a model.

The program matches the symmetries and arcs
found for a compound object against the models
of possible parts. The procedure is invariant to
scale, position and orientation of building ele-
ments, but we use the fact that the relative size
of parts is fixed. So, when the first part is identi-
fied, the scale for the whole scene is determined
and that parameter is used to ease the subse-
quent processing. The strategy is simple: the
program tries to find the easiest match, i.e. the
most emphasized features are used first. When
some feature becomes explained (an interpre-
tation is found), the program marks it as used,
thus reducing the information to be resolved and
easing the subsequent processing. When most
of the object contour is explained with detected
parts and no more interpretations can be found,
the procedure ends.
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Fig. 4. Some of the used building parts - contour approximations and the computed local symmetries.

We consider the longest symmetries to be the
most significant, assuming that they preserved
most of their original information. So the pro-
gram tries to explain the longest symmetries
first. The symmetry matching is based on sev-
eral heuristic parameters describing the region
which the symmetry subtends. The main pa-
rameters are the angle between contour seg-
ments that form the symmetry and the aspect
ratio (average width of a region divided by its
length) of the subtended region. When a match
is obtained, i.e. a possible part is detected, the
interpretation is tested for feasibility. The de-
tected part is then substituted with the appro-
priately transformed model, and the matching
between the transformed model and the scene is
examined. The system chooses the best inter-
pretation. An example of object decomposition
is shown in Fig. 3d. The figure shows the trans-
formed models of the detected parts.

The decomposition subsystem has been tested
on series of scenes, composed of a known set
of parts. It is difficult to estimate the reliability
of the system, but we tried to do so by a sim-
ple experiment. A person, not familiar with the
system, composed a series of scenes, and we
counted the successfully decomposed objects.
The subsystem successfully decomposed 69 %
of composed objects, i.e. all building parts were
detected. In the other 31 % , usually only one
of the parts was not detected or was misrec-
ognized. The ratio of successfully recognized
parts in the scenes was about 90 %.

4. KRP scheme

The knowledge representation scheme KRP [9]
is based on Petri net theory[8]. Petri nets are
a formal model originally used for modeling a
large class of systems. Formally, a Petri net

is defined as a 5-tuple: PN = (P,T,1,0,u),
where P is a finite set of places, T is a finite
set of transitions, input function / and output
function O map transitions to bags of places.
The marking w is used to define the dynamic
behaviour of a Petri net. It is very important
for inference mechanisms of the KRP scheme,
but not for describing objects, so it will not be
discussed here.

A Petri net can be represented as a bipartite
directed multigraph containing two types of
nodes: places and transitions. Places are graph-
ically represented by circles, while transitions
are represented by bars.

The KRP scheme is defined by adding two func-
tions to the definition of Petri nets, so it forms
a 7-tuple [9]: PN = (P, T,1,0,u, a, 3), where
a : P — D is a one-to-one and onto function
associating a fact or object to every place, and
p : T — Zis an onto function associating a
description of a relationship among facts or.ob-
jects to every transition. D is the set of concepts
used to represent objects and facts from the real
world. X is the set of concepts used to describe
relationships among objects and facts.

In this way, a Petri net (KRP net) can represent
objects and the relationships among them. To
illustrate the terms used in the definition of the
KRP scheme and to show how a KRP net can
be used to describe a scene, a simple example
is given in Fig. 5.

5. Generating KRP descriptions

As shown in the previous section, the KRP
scheme can be used to describe relationships
among objects. Having a decomposition of a
compound object, the KRP scheme can be used
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Fig. 5. A simple scene and the corresponding KRP net.

to describe the relationships between parts and
to obtain the object description.

To obtain a description based on such a decom-
position, the relationships among the detected
parts have to be computed and represented by
the KRP scheme. Each of the detected parts is
represented by a place. Each class of parts is
also represented by a place. The type of a par-
ticular part is expressed by a hierarchical link,
connecting the place representing the part and
the place representing the class, through a tran-
sition representing the is_a relation (e.g. ‘d_002
is_a building part 3"). The models contain all
attributes used to describe the parts. The main
problem is to define the set of relations used to
describe the relationships among the detected
parts.

The positions and orientations of the detected
parts are known, so various descriptors can be
computed to represent the relationships among
them. The generated descriptions should be
used as inputs to the KRP knowledge base, and
they should appropriately represent the structure
of objects in the scene. Similar objects should
produce similar descriptions, invariant to posi-
tion, orientation and scale. We tend to obtain
a “natural” description i.e. to approximate the
description generated by a human. The choice
of relations to be used is quite subjective, but
we feel that they should express whether two
objects touch each other, overlap or cross. The
relative positions can be expressed by relations
left, right, up, down, about middle etc. Such a
description would not contain numerical values,
but symbolic descriptors representing ranges of
values.

In the implemented description subsystem, we

cylinder ball

green

is_right_of colour |ty

express only the relationships between the parts
which are connected. Because every object is
composed of a connected set of parts, the rela-
tionship among two distant parts can be deter-
mined indirectly. To simplify the computation
of the relationships between parts, we define a
local coordinate system for each model of build-
ing parts. Itis defined for the building partin the
base position, i.e. in the position in the model.
When a part is detected in the scene, the linear
transformation is computed which transforms
the model into the scene. The same transfor-
mation is used to transform the local coordi-
nate system. The local coordinate system is in
fact the bounding rectangle, which defines the
terms left, right, up, down. It also determines
the characteristic axis, used to express the angle
between parts.

Finding the relationship between two objects
is simplified by computing the relative posi-
tions of the respective transformed rectangles.
If the parts don’t intersect or touch each other,
the relationship is not determined. Otherwise,
the position of the join is computed and ex-
pressed in both local coordinate frames, us-
ing symbolic descriptors. Each side of a local
coordinate frame is divided into five regions.
For example, the left side regions are: left up,
left_up_around _quarter, left around middle,

left_ down_around _quarter and left_down. These
descriptors embody the symbolic coordinates,
which determine positions in a local coordi-
nate frame. Besides the relative position of
the parts, the relative orientation is computed.
The angle is also discretized into regions with
symbolic descriptors. The step is 15°, so the
symbolic descriptor angle_about 30 covers the
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angles from 22.5° to 37.5°. Another descrip-
tor represents the relative size of the overlap-
ping area. Its values are overlap very_small,
overlap_small, overlap_average, overlap_large,
overlap very_large. To describe the relation-
ship between two rectangles, we use descriptors
crossing and join, and specify the position in lo-
cal coordinate frames. For each pair of parts,
two sets of symbolic descriptors are computed,
regarding each part as a reference. Such a de-
scription preserves information, i.e. the scene
can be reconstructed. Of course, the quanti-
zation introduces some error. To illustrate the
procedure, a simple example is given.

In Fig. 6a a simple object consisting of 3 parts
is shown. The local coordinate frames are also
shown. The arrows point the direction left-right.
The system detected the parts 4001 and 4002 as
being of type m1, and the part 4000 of type m0.
The system determined the relations between
the detected parts and formed the corresponding
KRP scheme, shown in Fig. 6¢. The relations
are associated with the transitions, e.g. f; de-
scribes the position of the part 4000 relatively
to d001: crossing_up_down; left; overlapping-
very small; angle_about 315. The other tran-
sitions have the following meanings: #; = join-
-down; around_middle; overlapping_average;
angle _about 45, t3 = crossing_up_down; right;
overlapping very _small; angle about 225,t4 =
join_up; left_around_quarter, overlapping_ave-
rage, angle_about_135. Fig. 7 shows another
example of KRP description generation.

(a) (b)

angle_about_45

6. Concluding remarks

The implemented module for generating the ob-
ject descriptions is intended to be a component
of a subsystem for automatic knowledge acqui-
sition or learning of a knowledge-based com-
puter vision system. The generated KRP struc-
tures describe the objects in the scene and serve
as inputs to a knowledge manipulation module.
In this way the automated building and updating
of KRP knowledge base is enabled. In the scene
interpretation procedure, the implemented mod-
ule provides the automated generation of the
KRP structures describing the planar objects in
the scene which are to be recognized.

The description subsystem consists of two mod-
ules. The first module divides the objects in
the scene into parts and the second determines
the relationships between the detected parts and
builds the corresponding KRP structures. This
article also shows how the KRP scheme can be
used to describe the decomposed objects. The
components of the KRP scheme are identified,
and a set of relations used to describe the object
structure is proposed. The procedure is illus-
trated on a simple example.

Future work should include integration of the
implemented description module with the knowl-
edge manipulation module and extensive testing
of its suitability to the tasks in a real computer
vision system. It is to be expected that some
adjustments will have to be made to tune the
modules for working together.

Other directions for future work should be ad-
vancing the object decomposition subsystem to

ml m2

donz

d000
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Fig. 6. An cxample for representing the relationship between parts and the generated KRP scheme.
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tl: join_up; left_around_quarter; overlap_small; angle_about_225
t2: crossing-up_down; left; overlap_small; angle_about_135
t3: join_down; left; overlap_small; angle_about_60
t4: join_up; left; overlap_small; angle_about_300
t5: join.down; lefti_around_quarter; overlap_average; angle_about_255
t6: join_down; right; overlap_average; angle_about_105
{7: crossing_up_down; right_around_quarter; overlap_small; angle_about_60
t8: join_down; around_middle; overlap_average; angle_about_300
19: join_down; right; overlap_small; angle_about_315
t10: join_up; around_middle; overlap_small; angle_about_45

Fig. 7. An example of KRP object description. (a) Grey-scale input image. (b) Object contour. (¢) Decomposition

into parts. (d) Analyzing the relationships among the detected parts. (e) Generated KRP net. (f) Transitions

representing the determined relations.

increase its flexibility and robustness, aiming at
the ability to deal with the “natural” scenes, and
exploring the possibilities of using some similar
techniques in three-dimensional scene analysis.
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