STATISTICAL (T) RATES OF CONVERGENCE

H.I. Miller* and C. Orhan
University of Sarajevo, Bosnia and Herzegovina and Ankara University, Turkey

Abstract

The basis for comparing rates of convergence of two null sequences is that " $x=\left(x_{n}\right)$ converges (stat T) faster than $z=\left(z_{n}\right)$ provided that $\left(x_{n} / z_{n}\right)$ is T-statistically convergent to zero" where $T=$ $\left(t_{m n}\right)$ is a mean. In this paper we extend the previously known results either on the ordinary convergence or statistical rates of convergence of two null sequences. We also consider lacunary statistical rates of convergence.

1. Introduction

Bajraktarevic [1, 2] and Miller [19, 23] studied rates of convergence of families of null sequences. The relationship between rates of convergence and summability methods may be found in $[9,19,20,21,22,23]$. Recently Fridy, Miller and Orhan [16] have considered statistical rates of convergence and extended results from some of the above mentioned papers. In this paper, using a mean $T=\left(t_{m n}\right)$, we study statistical (T) rates of convergence and show that statistical speed of convergence strongly depends on T. We also extend some results in [16]. The final section of the paper concerns lacunary statistical rates of convergence.

If K is a subset of the positive integers \mathbb{N}, K_{n} will denote the set $\{k \in K$: $k \leq n\}$ and $\left|K_{n}\right|$ will denote the cardinality of K_{n}. The natural density of K ([8]) is given by $\delta(K):=\lim _{n} n^{-1}\left|K_{n}\right|$, if it exists. The number sequence $x=$ $\left(x_{k}\right)$ is statistically convergent to L provided that for every $\varepsilon>0$, the set $K:=$ $K(\varepsilon):=\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon\right\}$ has natural density zero $[7,10,11,12,18]$.

[^0]In this case, we write $s t-\lim x=L$. Hence x is statistically convergent to L iff $\left(C_{1} \chi_{K(\varepsilon)}\right)_{n} \rightarrow 0$ (as $n \rightarrow \infty$, for every $\varepsilon>0$), where C_{1} is the Cesàro mean of order one and χ_{K} is the characteristic function of the set K.

Statistical convergence can be generalized by using a regular nonnegative summability matrix T in place of C_{1} (see, e.g., $[3,4,5,6,8,15,17]$). Regular nonnegative summability matrices turn out to be too general for our purposes here, instead we use the concept of a mean.

A matrix $T=\left(t_{m n}\right)$ is called a mean if $t_{m n}>0$ when $n \leq m, t_{m n}=0$ if $n>m, \sum_{n=1}^{\infty} t_{m n}=1$ for all m and $\lim _{m} t_{m n}=0$ for each n.

Recall that the set $K \subseteq \mathbb{N}$ has T-density if $\delta_{T}(K):=\lim _{m} \sum_{n \in K} t_{m n}$ exists ([8]). The sequence $x=\left(x_{n}\right)$ converges (stat $\left.T\right)$ to L means that for each $\varepsilon>0$ we have

$$
\begin{equation*}
\lim _{m} \sum_{n=1}^{m}\left[t_{m n}:\left|x_{n}-L\right| \geq \varepsilon\right]=0 \tag{1.1}
\end{equation*}
$$

So (1.1) is equivalent to the fact that $\delta_{T}\left(\left\{n \in \mathbb{N}:\left|x_{n}-L\right|<\varepsilon\right\}\right)=1$, for every $\varepsilon>0$.

We say that a property holds for T - almost all n if the set $\{k \in \mathbb{N}: P(k)$ is false\} has T-density zero.

2. Statistical (T) Rates of Convergence

If z and x are two nonvanishing null sequences (i.e., $x_{n} \neq 0$ for all n and $\left.\lim x_{n}=0\right)$ then we say that z converges $(\operatorname{stat} T)$ faster than x provided that z / x converges $(\operatorname{stat} T)$ to zero.

The following example shows that statistical (T) speed of convergence strongly depends on T.

Example 2.1. Let $x=(1 / n)$ and $y=\left(y_{n}\right)$ where

$$
y_{n}= \begin{cases}\frac{1}{n^{2}}, & \text { if } n \text { is odd } \\ \frac{1}{\sqrt{n}}, & \text { if } n \text { is even }\end{cases}
$$

Define the means T_{1} and T_{2} as follows:
$T_{1}=\left(t_{m n}^{(1)}\right)$ satisfies $\sum_{n=1}^{m}\left[t_{m n}^{(1)}: n\right.$ even $]=1-\frac{1}{m}$, for all m, and all of the non-zero terms in the last summand are equal. Also $\sum_{n=1}^{m}\left[t_{m n}^{(1)}: n\right.$ odd $]=\frac{1}{m}$, for all m, and all of the non-zero terms in the last summand are equal. $T_{2}=\left(t_{m n}^{(2)}\right)$ is the same as T_{1} with the roles of even and odd reversed. Then x converges $\left(\operatorname{stat} T_{1}\right)$ faster than y, but y converges $\left(\operatorname{stat} T_{2}\right)$ faster than x.

The last example suggests the following theorem.

Theorem 2.2. If x and y are nonvanishing null sequences and P_{1} and P_{2} are disjoint infinite subsets of \mathbb{N} satisfying $\lim _{n \in P_{1}}\left(x_{n} / y_{n}\right)=0$ and $\lim _{n \in P_{2}}\left(y_{n} / x_{n}\right)=0$, then there exist means T_{1} and T_{2} such that x converges $\left(\right.$ stat $\left.T_{1}\right)$ faster than y and y converges $\left(\right.$ stat $\left.T_{2}\right)$ faster than x.

Proof. There exists an $m_{0} \in \mathbb{N}$ such that both P_{1} and P_{2} contain elements smaller than m_{0}. Set $T_{1}=\left(t_{m n}^{(1)}\right), T_{2}=\left(t_{m n}^{(2)}\right)$; two means, defined as follows.

For $m \geq m_{0}, \sum_{n=1}^{\infty}\left[t_{m n}^{(1)}: n \in P_{1}, n \leq m\right]=1-\frac{1}{m}$ with all the terms in this summand taken to be equal and $\sum_{n=1}^{\infty}\left[t_{m n}^{(1)}: n \in P_{2}, n \leq m\right]=\frac{1}{m}$ with all terms equal. Let $t_{n m}^{(1)}=\frac{1}{m}$ if $n \leq m$.

Define $T_{2}=\left(t_{m n}^{(2)}\right)$ as we defined T_{1} with the roles of P_{1} and P_{2} reversed. Then x converges $\left(\right.$ stat $\left.T_{1}\right)$ faster than y and y converges $\left(\right.$ stat $\left.T_{2}\right)$ faster than x.

From the last result we see that if $P \subseteq \mathbb{N}$ is infinite and $\lim _{n \in P}\left(x_{n} / y_{n}\right)=0$ where $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ are two nonvanishing null sequences then there exists a mean T such that x converges $(\operatorname{stat} T)$ faster than y.

We now consider the converse.
Theorem 2.3. If x and y are nonvanishing null sequence and T is a mean and x converges (stat T) faster than y then there exists an infinite set $P, P \subseteq \mathbb{N}$ such that $\lim _{n \in P}\left(x_{n} / y_{n}\right)=0$.

Proof. By Theorem 1 in [17], there exists an infinite set $P, P \subseteq \mathbb{N}$, such that $\delta_{T}(P)=1$ and $\lim _{n \in P}\left(x_{n} / y_{n}\right)=0$.

The following theorem is an analog of Theorem 1 in [16].
Theorem 2.4. Let \mathcal{A} be a collection of nonvanishing null sequences and let T be a mean. There exists a nonvanishing null sequence z that converges (stat T) faster than each x in \mathcal{A} if and only if there exists a sequence $\left\{\mathcal{A}_{n}\right\}_{n=1}^{\infty}$ of subcollections of \mathcal{A} such that
(i) each x in \mathcal{A} is in $T-$ almost all \mathcal{A}_{n}, i.e.,

$$
\lim _{n} \sum_{k=1}^{\infty}\left[t_{n k}: x \in \mathcal{A}_{k}\right]=1
$$

(ii) for each n,

$$
y_{n}=\inf \left\{\left|x_{n}\right|: x \in \mathcal{A}_{n}\right\}>0 .
$$

Proof. (i) Necessity. Suppose \mathcal{A} is a collection of nonvanishing null sequences and z is nonvanishing null sequence that converges (stat T) faster than each x in \mathcal{A}. Define $\mathcal{A}_{n}:=\left\{x \in \mathcal{A}:\left|x_{n}\right|>\left|z_{n}\right|\right\}$. Then $\mathcal{A}_{n} \subseteq \mathcal{A}$, for each n and each x in \mathcal{A} is in T - almost all \mathcal{A}_{n} since z converging (stat
$T)$ faster than x implies $\delta_{T}\left(\left\{n \in \mathbb{N}:\left|\frac{z_{n}}{x_{n}}-0\right|<1\right\}\right)=1$ or $\delta_{T}(\{n \in \mathbb{N}$: $\left.\left.\left|z_{n}\right|<\left|x_{n}\right|\right\}\right)=1$, which says $\delta_{T}\left(\left\{k: x \in \mathcal{A}_{k}\right\}\right)=1$. Also, if $\mathcal{A}_{n} \neq \varnothing$ then $y_{n}=\inf \left\{\left|x_{n}\right|: x \in \mathcal{A}_{n}\right\} \geq\left|z_{n}\right|>0$, and if $\mathcal{A}_{n}=\varnothing$ then

$$
y_{n}=\inf \varnothing=\infty>0
$$

(ii) Sufficiency. Suppose \mathcal{A} is a collection of nonvanishing null sequences and $\left\{\mathcal{A}_{n}\right\}_{n=1}^{\infty}$ is a sequence of subcollections of \mathcal{A} that satisfies (i) and (ii). Define

$$
z_{n}= \begin{cases}\min \left(y_{n} t_{n}, t_{n}\right), & \text { if } \mathcal{A}_{n} \neq \varnothing \\ t_{n}, & \text { if } \mathcal{A}_{n}=\varnothing\end{cases}
$$

where $t_{n}=\min \left(t_{n 1}, t_{n 2}, \ldots, t_{n n}\right)$. Notice that $0<t_{n} \leq \frac{1}{n}$. Clearly z is a nonvanishing null sequence. If x is a sequence in \mathcal{A}, then $x \in \mathcal{A}_{n}$ for T - almost all n, i.e., $0<y_{n} \leq\left|x_{n}\right|$ for $T-$ almost all n. Hence $\frac{z_{n}}{\left|x_{n}\right|} \leq \frac{y_{n} t_{n}}{\left|x_{n}\right|} \leq t_{n} \leq \frac{1}{n}$ for T - almost all n, whence z converges $(\operatorname{stat} T)$ faster than x.

The next result is a generalization of Theorem 2 of [16].
Theorem 2.5. Suppose \mathcal{A} is a collection of nonvanishing null sequences. There exists a nonvanishing null sequence z which converges (stat T) slower than each x in \mathcal{A} if and only if there exists a sequence $\left\{\mathcal{A}_{n}\right\}_{n=1}^{\infty}$ of subcollections of \mathcal{A}, a null sequence $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ of positive numbers, and a strictly increasing sequence $\left\{N_{n}\right\}_{n=1}^{\infty}$ of nonnegative integers such that
(I) $\sup \left\{\left|x_{k}\right|: x \in \mathcal{A}_{n}, N_{n-1}<k \leq N_{n}\right\} \leq \varepsilon^{2}$ for every n;
(II) for each $x \in \mathcal{A}, \delta_{T}\left(\mathfrak{n}_{x}\right)=1$, where $\mathfrak{n}_{x}=\cup\left\{\left(N_{n-1}, N_{n}\right]: x \in \mathcal{A}_{n}\right\}$.

Proof. (i) Necessity. Suppose z is a nonvanishing null sequence that converges (stat T) slower than each x in \mathcal{A}. Set $N_{n}=n$ for $n=0,1,2, \ldots$; and $\varepsilon_{n}^{2}=\left|z_{n}\right|$ for each $n \geq 1$. Define

$$
\begin{aligned}
\mathcal{A}_{n} & =\left\{x \in \mathcal{A}:\left|x_{n}\right|<\left|z_{n}\right|\right\} \\
& =\left\{x \in \mathcal{A}:\left|x_{k}\right|<\left|z_{k}\right|, N_{n-1}<k \leq N_{n}\right\}
\end{aligned}
$$

Then if $\mathcal{A}_{n} \neq \varnothing$ we have

$$
\sup \left\{\left|x_{k}\right|: x \in \mathcal{A}_{n}, N_{n-1}<k \leq N_{n}\right\}=\sup \left\{\left|x_{k}\right|: x \in \mathcal{A}_{n}\right\} \leq\left|z_{n}\right|=\varepsilon_{n}^{2}
$$

and if $\mathcal{A}_{n}=\varnothing$ then the above supremum is $-\infty<\varepsilon^{2}$. Furthermore, suppose $x \in \mathcal{A}$. Then $\left\{z_{n} / x_{n}\right\}$ is (stat T) convergent to zero. Therefore $\delta_{T}\left\{n \in \mathbb{N}:\left|x_{n}\right|<\left|z_{n}\right|\right\}=1$ or $\delta_{T}\left\{n \in \mathbb{N}: x \in \mathcal{A}_{n}\right\}=1$, or

$$
\delta_{T}\left(\bigcup\left\{\left(N_{n-1}, N_{n}\right]: x \in \mathcal{A}_{n}\right\}\right)=1
$$

Hence, \mathcal{A} satisfies (I) and (II).
(ii) Sufficiency. Suppose $\mathcal{A},\left\{\mathcal{A}_{n}\right\},\left\{\varepsilon_{n}\right\}$, and $\left\{N_{n}\right\}$ satisfy the conditions in the statement of the theorem. Define the sequence z as follows:

$$
\begin{aligned}
z_{1} & =z_{2}=\ldots=z_{N_{1}}=\varepsilon_{1} \\
z_{1+N_{1}} & =z_{2+N_{1}}=\ldots=z_{N_{2}}=\varepsilon_{2} \\
z_{1+N_{2}} & =z_{2+N_{2}}=\ldots=z_{N_{3}}=\varepsilon_{3}
\end{aligned}
$$

Let x be any fixed sequence in \mathcal{A}. If $x \in \mathcal{A}_{n_{o}}$ then $\left|x_{k}\right| \leq \varepsilon_{n_{o}}^{2}$ when $N_{n_{o}-1}<$ $k \leq N_{n_{o}}$. Hence, $N_{n_{o}-1}<k \leq N_{n_{o}}$ implies that

$$
\left|\frac{z_{k}}{x_{k}}\right|=\frac{\varepsilon_{n_{o}}}{\left|x_{k}\right|} \geq \frac{\varepsilon_{n_{o}}}{\varepsilon_{n_{o}}^{2}}=\frac{1}{\varepsilon_{n_{o}}}
$$

It follows that $\lim _{k \in \mathfrak{n}_{x}}\left|z_{k} / x_{k}\right|=+\infty$, and the T - density of \mathfrak{n}_{x} is one by hypothesis. So that z converges $($ stat $T)$ slower than each x in \mathcal{A}.

It is natural to compare rates of convergence and (stat) rates of convergence. If x converges faster [respectively, slower] than y, than x converges (stat) faster [respectively, slower] than y, however, for sequences whose rates of convergence are completely incomparable the inclusion is reversed. We say that x and y converge at completely incomparable rates provided that $\lim _{n} x_{n}=X, \lim _{n} y_{n}=Y$,

$$
\underline{\lim }_{n}\left|\frac{x_{n}-X}{y_{n}-Y}\right|=0 \quad \text { and } \quad \varlimsup_{n}\left|\frac{x_{n}-X}{y_{n}-Y}\right|=+\infty
$$

If, in the preceding situation, there exist subsets $N_{1}, N_{2} \subseteq \mathbb{N}$, neither having T-density zero, such that

$$
\lim _{n \in N_{1}}\left|\frac{x_{n}-X}{y_{n}-Y}\right|=0 \quad \text { and } \quad \lim _{n \in N_{2}}\left|\frac{x_{n}-X}{y_{n}-Y}\right|=+\infty
$$

then we say that x and y converge (stat T) at completely incomparable rates.
We now present an analogue of Theorem 3 of [16].
Theorem 2.6. Let A be a collection of nonvanishing null sequences. There exists a nonvanishing null sequence z such that for every x in \mathcal{A}, z and x converge (stat T) at completely incomparable rates if there exist two sequences α and β of positive integers such that

$$
1<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\ldots
$$

a positive null sequence $\left\{\varepsilon_{n}\right\}$, and two sequences $\left\{\mathcal{A}_{n}\right\}$ and $\left\{\mathfrak{B}_{n}\right\}$ of subcollections of \mathcal{A} that satisfy
a) $y_{n}=\inf \left\{\left|x_{k}\right|: x \in \mathcal{A}_{n}, k \in I_{n}^{\alpha}\right\}>0$ for all n;
b) for every $x \in \mathcal{A}, \mathfrak{n}_{x}^{\alpha}=\bigcup\left[I_{n}^{\alpha}: x \in \mathcal{A}_{n}\right]$ does not have T-density zero;
c) $\sup \left\{\left|x_{k}\right|: x \in \mathfrak{B}_{n}, k \in I_{n}^{\beta}\right\} \leq \varepsilon_{n}^{2}$ for all n;
d) for every $x \in \mathcal{A}, \mathfrak{n}_{x}^{\beta}=\bigcup\left[I_{n}^{\beta}: x \in \mathfrak{B}_{n}\right]$ does not have T - density zero, where

$$
\begin{array}{ll}
I_{1}^{\alpha}=\left\{1,2, \ldots, \alpha_{1}\right\}, & I_{1}^{\beta}=\left\{1+\alpha_{1}, 2+\alpha_{1}, \ldots, \beta_{1}\right\} \\
I_{2}^{\alpha}=\left\{1+\beta_{1}, 2+\beta_{1}, \ldots, \alpha_{2}\right\}, & I_{2}^{\beta}=\left\{1+\alpha_{2}, 2+\alpha_{2}, \ldots, \beta_{2}\right\} \\
I_{3}^{\alpha}=\left\{1+\beta_{2}, 2+\beta_{2}, \ldots, \alpha_{3}\right\}, & \text { and so on. }
\end{array}
$$

Proof. Define the sequence z by

$$
z_{k}=\left\{\begin{array}{l}
\min \left\{\frac{y_{n}}{n}, \frac{1}{n}\right\}, \quad \text { if } k \in I_{n}^{\alpha} \\
\varepsilon_{n}, \text { if } k \in I_{n}^{\beta}
\end{array}\right.
$$

Let x be a fixed element of \mathcal{A}. If $x \in \mathcal{A}_{n}$ and $k \in I_{n}^{\alpha}$ then

$$
\left|\frac{z_{k}}{x_{k}}\right| \leq \frac{\left|z_{k}\right|}{\left|y_{n}\right|} \leq \frac{1}{n}
$$

if $x \in \mathfrak{B}_{n}$ and $k \in I_{n}^{\beta}$, then

$$
\left|\frac{z_{k}}{x_{k}}\right| \geq \frac{\varepsilon_{n}}{\varepsilon_{n}^{2}}=\frac{1}{\varepsilon_{n}} .
$$

Consequently,

$$
\lim _{k \in \mathfrak{n}_{x}^{\alpha}}\left|\frac{z_{k}}{x_{k}}\right|=0 \quad \text { and } \quad \lim _{k \in \mathfrak{n}_{x}^{\beta}}\left|\frac{z_{k}}{x_{k}}\right|=+\infty
$$

and since neither $\mathfrak{n}_{x}^{\alpha}$ nor \mathfrak{n}_{x}^{β} has density zero, it follows that z and x converge (stat) at completely incomparable rates for each x in \mathcal{A}.

For countable collections of nonvanishing null sequences there always exits a nonvanishing null sequence z that converges (stat T) at a rate completely incomparable with every x in \mathcal{A}. Namely the following holds.

Corollary 2.7. If \mathcal{A} is a countable collection of nonvanishing null sequences and T is a mean, then there exists a nonvanishing null sequence z that converges (stat T) at completely incomparable rates with every x in \mathcal{A}.

Proof. Let $\left\{\varepsilon_{n}\right\}$ be a strictly decreasing null sequence and write $\mathcal{A}=$ $\left\{x^{(n)}: n \in \mathbb{N}\right\}$, where $x^{(n)}=\left\{x_{n k}\right\}_{k=1}^{\infty}$. Let $\mathcal{A}_{n}=\mathfrak{B}_{n}=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$, and define $I_{1}^{\alpha}, I_{1}^{\beta}, I_{2}^{\alpha}, I_{2}^{\beta}, \ldots$ in such a way that the number of elements in each of these sets is greater than the sum of the number of elements in the proceeding sets. Clearly

$$
y_{n}=\inf \left\{\left|x_{i k}\right|: i \leq n, k \in I_{n}^{\alpha}\right\}>0
$$

since the infimum of a finite set of positive numbers is the smallest element. By the condition on the number of elements in the sets $I_{i}^{\alpha, \beta}$, we have

$$
\bigcup_{n=m}^{\infty} I_{n}^{\alpha}=\mathfrak{n}_{x}^{\alpha}=\bigcup\left[I_{n}^{\alpha}: x \in \mathcal{A}_{n}\right]
$$

does not have T - density zero if $x=x_{m}$, for each m. Furthermore, since each x is a null sequence, the I_{n}^{α} 's can be chosen large enough to guarantee that

$$
\sup \left\{\left|x_{i k}\right|: x^{(i)} \in \mathfrak{B}_{n}, k \in I_{n}^{\beta}\right\} \leq \varepsilon_{n}^{2} \quad \text { for each } n
$$

Finally, it is clear that

$$
\mathfrak{n}_{x}^{\beta}=\bigcup\left[I_{n}^{\beta}: x \in \mathfrak{B}_{n}\right]=\bigcup_{n=m}^{\infty} I_{n}^{\beta}
$$

does not have T-density zero if $x=x_{m}$, for each m.
Notice that Theorem 4 in [16] shows that the converse of our last theorem is false.

3. Lacunary Statistical Rates of Convergence

By a lacunary sequence we mean an increasing sequence of positive integers $\theta=\left\{k_{r}\right\}$ such that $h_{r}:=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Write $I_{r}:=\left(k_{r-1}, k_{r}\right], k_{0}=0$.

The sequence $s=\left\{s_{n}\right\}$ is said to be lacunary statistically convergent to L provided that for every $\varepsilon>0$

$$
\lim _{r} \frac{1}{h_{r}}\left|\left\{k \in I_{r}:\left|s_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

In this case we write $s_{\theta}-\lim s=L$ or $s_{n} \rightarrow L\left(s_{\theta}\right)([13,14])$.
A subset K of \mathbb{N} has θ-density if $\delta_{\theta}(K):=\lim _{r}\left|K \cap I_{r}\right| h_{r}^{-1}$ exists.
Definition 3.1. We say that z converges (lacunary stat.) faster than x provided the sequence $\left(z_{n} / x_{n}\right)$ is lacunary statistically convergent to zero.

We now present some examples. The first one shows that there exist sequences z and x such that z converges (stat) faster than x but z does not converge (lacunary stat.) faster than x for some θ. The other example considers the converse of the first example.

Example 3.2. Suppose $\theta=\left\{k_{r}\right\}_{r=0}^{\infty}$ is a lacunary satisfying: $\delta\left(\bigcup_{r=1}^{\infty} I_{2 r}\right)=0$. Clearly such a θ exists. Define z and x as follows: $z_{n}=\frac{1}{n^{2}}$ for all n,

$$
x_{n}= \begin{cases}\frac{1}{n}, & \text { if } n \in \bigcup_{r=0}^{\infty} I_{2 r+1} \\ \frac{1}{n^{2}}, & \text { if } n \in \bigcup_{r=1}^{\infty} I_{2 r}\end{cases}
$$

Then $\frac{z_{n}}{x_{n}}=\frac{1}{n}$ if $n \in \bigcup_{r=0}^{\infty} I_{2 r+1}$ and $\delta\left(\bigcup_{r=1}^{\infty} I_{2 r}\right)=0$, so by a result of Fridy [10],$\left\{z_{n} / x_{n}\right\}_{n=1}^{\infty}$ converges (stat) to 0 , or z converges faster (stat)
than x. However $\frac{z_{n}}{x_{n}}=1$ if $n \in \bigcup_{r=1}^{\infty} I_{2 r}$ so that if $0<\varepsilon<1$, for each $r, \frac{1}{h_{2 r}}\left|\left\{n \in I_{2 r}:\left|\frac{z_{n}}{x_{n}}\right| \geq \varepsilon\right\}\right|=1$ and hence z does not converge (lacunary stat.) faster than x for the given θ.

Example 3.3. Let $\left\{K_{n}\right\}_{1}^{\infty}$ be a strictly increasing sequence of positive integers with the property that the sequence $\left\{\frac{K_{n}}{K_{1}+\ldots+K_{n}}\right\}_{n=1}^{\infty}$ is strictly increasing and converges to 1 . Let $B_{1}=\left(0, K_{1}\right], B_{2}=\left(K_{1}, K_{1}+K_{2}\right]$, $B_{3}=\left(K_{1}+K_{2}, K_{1}+K_{2}+K_{3}\right], \ldots$, etc.

Define z and x as follows: $z_{n}=\frac{1}{n^{2}}$ for all n,

$$
x_{n}= \begin{cases}\frac{1}{n^{2}}, & \text { if } n \in \bigcup_{r=0}^{\infty} B_{2 r+1} \\ \frac{1}{n}, & \text { if } n \in \bigcup_{r=1}^{\infty} B_{2 r}\end{cases}
$$

Now set

$$
\begin{aligned}
\theta & =\left\{k_{r}\right\} \\
& =\left\{0, K_{1}+K_{2}, K_{1}+K_{2}+K_{3}+K_{4}, K_{1}+K_{2}+K_{3}+K_{4}+K_{5}+K_{6}, \ldots\right\} .
\end{aligned}
$$

First notice that z does not converge (stat) faster than x since $\frac{z_{n}}{x_{n}}=1$ if $n \in \bigcup_{r=0}^{\infty} B_{2 r+1}$ and $\delta\left(\bigcup_{r=0}^{\infty} B_{2 r+1}\right) \neq 0$ since $\frac{K_{1}+K_{3}+\ldots+K_{2 n+1}}{K_{1}+K_{2}+\ldots+K_{2 n+1}} \rightarrow 1$ as $n \rightarrow \infty$. Finally z does converge (lacunary stat.) faster than x for the above θ since

$$
\begin{aligned}
\left.\frac{1}{h_{r}} \right\rvert\, & \left.\left\{k \in\left(K_{1}+\ldots+K_{2 r-2}, K_{1}+\ldots+K_{2 r}\right]: \frac{z_{k}}{x_{k}}=\frac{1}{k}\right\} \right\rvert\,= \\
& =\frac{K_{2 r}}{K_{2 r-1}+K_{2 r}} \rightarrow 1 \text { as } r \rightarrow \infty
\end{aligned}
$$

The following result is an analog of Theorem 2.4.
Theorem 3.4. Let $\theta=\left(k_{n}\right)$ be lacunary sequence and let \mathcal{A} be a collection of nonvanishing null sequences. Then there exists a non vanishing null sequence z that lacunary stat. converges faster than each x in \mathcal{A} if and only if there exists a sequence $\{\mathcal{A}\}_{n=1}^{\infty}$ of subcollections of \mathcal{A} such that
(i) $\lim _{n} \frac{1}{h_{n}}\left|\left\{k \in I_{n}: x \in \mathcal{A}_{k}\right\}\right|=1$ (i.e., each x in \mathcal{A} is in θ-almost all \mathcal{A}_{k})
(ii) for each $n, y_{n}:=\inf \left\{\left|x_{n}\right|: x \in \mathcal{A}_{n}\right\}>0$.

Proof. Necessity may be proved, by replacing T-density by θ-density, in Theorem 2.4. So we just consider sufficiency. Assume that \mathcal{A} is a collection of nonvanishing null sequences and $\left\{\mathcal{A}_{n}\right\}_{n=1}^{\infty}$ is a sequence of subcollections
of \mathcal{A} that satisfies (i) and (ii). Now define a sequence $z=\left\{z_{n}\right\}$ by

$$
z_{n}= \begin{cases}\min \left(\frac{y_{n}}{h_{n}}, \frac{1}{h_{n}}\right), & \text { if } \mathcal{A}_{n} \neq \varnothing \\ \frac{1}{h_{n}}, & \text { if } \mathcal{A}_{n}=\varnothing\end{cases}
$$

By (ii) and the fact that $h_{n} \rightarrow \infty$ as $n \rightarrow \infty z$ is a null sequence of positive numbers. If x is a sequence in \mathcal{A}, then $\delta_{\theta}\left(\left\{k \in \mathbb{N}: x \in \mathcal{A}_{k}\right\}\right)=1$. Therefore $0<y_{n} \leq\left|x_{n}\right|$ for θ - almost all n. Hence $\frac{z_{n}}{\left|x_{n}\right|} \leq \frac{y_{n}}{\left|x_{n}\right| h_{n}} \leq \frac{1}{h_{n}}$ for θ-almost all n, whence z lacunary statistically converges faster than x.

The following result is an analog of Theorem 2.5 that can be proved by replacing T-density with θ-density.

Theorem 3.5. Assume that \mathcal{A} is a collection of nonvanishing null sequences. Then there exists a nonvanishing null sequence z which lacunary statistically converges slower than each x in \mathcal{A} if and only if there exists a sequence $\{\mathcal{A}\}_{n=1}^{\infty}$ of subcollections of \mathcal{A}, a null sequence $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ of positive numbers, and a strictly increasing sequence $\left\{N_{n}\right\}_{n=1}^{\infty}$ of nonnegative integers such that
a) $\sup \left\{\left|x_{k}\right|: x \in \mathcal{A}_{n}, N_{n-1}<k \leq N_{n}\right\} \leq \varepsilon^{2}$ for every n and
b) for each $x \in \mathcal{A}, \delta_{\theta}\left(\mathfrak{n}_{x}\right)=1$, where

$$
\mathfrak{n}_{x}=\cup\left\{\left(N_{n-1}, N_{n}\right]: x \in \mathcal{A}_{n}\right\} .
$$

References

[1] M. Bajraktarević, Sur quelques problames concernant la vitesse de convergence et la sommabilite des suites, Radovi Akademije nauka i umjetnosti BiH LII/14 (1974), 5-27.
[2] M. Bajraktarević, Sur queleques problemes concernant la vitesse de convergence et la sommabilite des suites II, Publ. Inst. Math. (Belgrade) 16 (1973), 25-30.
[3] R.C Buck, Generalized asymptotic density, Amer J. Math 75 (1953), 335-346.
[4] J. Connor, Two valued measures and summability, Analysis 10 (1990), 373-385.
[5] J. Connor, R-Type summability methods, Cauchy criteria, P-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319-327
[6] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
[7] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[8] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
[9] J.A. Fridy, Minimal rates of summability, Canad. J. Math. XXX (1978), 808-816.
[10] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
[11] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), 1187-1192.
[12] J.A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), 3625-3631.
[13] J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-51.
[14] J.A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), 497-504.
[15] J.A. Fridy and H.I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), 59-66.
[16] J.A. Fridy, H.I. Miller and C. Orhan, Statistical rates of convergence, Acta Sci. Math. (Szeged) 69 (2003), 147-157.
[17] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811-1819.
[18] H.I. Miller and C. Orhan, On almost convergent and statistically convergent subsequences, Acta. Math. Hungarica 93 (2001), 135-151.
[19] H.I. Miller, A note on matrix summability and rates of convergence, Matematički vesnik (Belgrade) 10 (25) (1973), 145-147.
[20] H.I. Miller, Some results on rates of convergence of sequences, Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka LXI/17 (1978), 169-178.
[21] H.I. Miller, Further results about rates of convergence and summability, Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka LXIX/20 (1982), 73-86.
[22] H.I. Miller, Rates of convergence and topics in summability theory, Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka LXXIV/22 (1983), 39-55.
[23] H.I. Miller and V. Zanelli, On a result of Fridy about minimal rates of summability, Rad. Mat. 9 (1999), 71-75.
H.I. Miller

Department of Mathematics
The University of Louisville
Louisville, Kentucky
USA
and
University of Sarajevo
Department of Mathematics
Sarajevo, 33000
Bosnia and Herzegovina
E-mail, H.I. Miller: himiller@hotmail.com
C. Orhan

Department of Mathematics
Faculty of Science
Ankara University
Tandoğan 06100, Ankara
Turkey
E-mail, C. Orhan: orhan@science.ankara.edu.tr
Received: 19.03.2003.

[^0]: 2000 Mathematics Subject Classification. 40A05, 40C05.
 Key words and phrases. Natural density, statistically convergent sequence, rate of convergence.
 *This research was done while the first author was a visiting Professor at Ankara University, and the research was supported by the Scientific and Technical Research Council of Turkey.

