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NONSEPARABLE WALSH-TYPE FUNCTIONS ON Rd
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Abstract. We study wavelet packets in the setting of a multires-
olution analysis of L2(Rd) generated by an arbitrary dilation matrix A
satisfying |detA| = 2. In particular, we consider the wavelet packets as-
sociated with a multiresolution analysis with a scaling function given by
the characteristic function of some set (called a tile) in Rd. The functions
in this class of wavelet packets are called generalized Walsh functions, and
it is proved that the new functions share two major convergence proper-
ties with the Walsh system defined on [0, 1). The functions constitute a
Schauder basis for Lp(Rd), 1 < p < ∞, and the expansion of Lp-functions
converge pointwise almost everywhere. Finally, we introduce a family of
compactly supported wavelet packets in R2 of class Cr(R2), 1 ≤ r < ∞,
modeled after the generalized Walsh function. It is proved that this class
of smooth wavelet packets has the same convergence properties as the gen-
eralized Walsh functions.

Introduction

Wavelet analysis was originally introduced in order to improve seismic
signal processing by switching from short-time Fourier analysis to new al-
gorithms better suited to detect and analyze abrupt changes in signals. It
corresponds to a decomposition of phase space in which the trade-off between
time and frequency localization has been chosen to provide better and better
time localization at high frequencies in return for poor frequency localization.
This makes the analysis well adapted to the study of transient phenomena and
has proven a very successful approach to many problems in signal processing,
numerical analysis, and quantum mechanics. Nevertheless, for stationary sig-
nals wavelet analysis is outperformed by short-time Fourier analysis. Wavelet
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packets were introduced by Coifman et al. [5] to improve the poor frequency
localization of wavelet bases at high frequencies and thereby provide a more
efficient decomposition of signals containing both transient and stationary
components.

So far most work on wavelet packets has been done in one dimension or
using separable wavelet packets in higher dimensions (i.e., tensor products of
one dimensional wavelet packets). However, separable wavelet and wavelet
packet bases both have several drawbacks for the application to fields like
image analysis since they impose an unavoidable line structure on the plane.
For example, the zero set of a separable wavelet packet at high frequencies
will contain a large number (same order of magnitude as the frequency) of
horizontal and vertical lines that may create artifacts in the reconstructed
image. Another potential problem is in the Fourier domain where separable
two-dimensional wavelet packets have four characteristic peaks making it hard
to selectively localize a unique frequency. Coifman and Meyer introduced the
so-called Brushlets in [11] to remove the “uncertainty” in frequency localiza-
tion, however the Brushlets are essentially Fourier transforms of smooth lo-
cal trigonometric bases and are therefore no longer functions associated with
a multiresolution structure. Another example of nonseparable orthonormal
bases with good frequency resolution is Donoho’s Ridgelets [7].

The aim of the present paper is to construct nonseparable wavelet packet
bases for L2(Rd) with nice convergence properties. In section 1 we introduce
wavelet packets associated with the class of multiresolution analyses of L2(Rd)
for which there are associated wavelet bases generated by only one wavelet.
Section 1 is rather brief due to the fact that the construction is similar to the
well known one dimensional theory of wavelet packets. The wavelet packets
constructed provide the same large number of orthonormal bases as wavelet
packets in one-dimension, and they provide a good platform for doing image
analysis using the well known “best basis” algorithm of Coifman and Wicker-
hauser. The paper [3] contains several numerical experiments with the wavelet
packets of Section 1.

In Section 2 we study a special type of multiresolution analysis that gen-
eralizes the well known Haar multiresolution analysis from L2(R). Section 3
contains results on a special wavelet packets construction that can be consid-
ered the multidimensional generalization of the Walsh system on [0, 1). We
prove that this multidimensional generalization share the two most impor-
tant convergence properties of the classical Walsh system: the new system
is a Schauder basis for Lp(Rd), 1 < p < ∞, and the expansion of every
Lp-function in the system converges pointwise a.e.

Section 4 contains the main result of the present paper. There we consider
a class of smooth wavelet packets, called Walsh-type wavelet packets, which
shares a number of properties with the Walsh functions from Section 3. In
Theorem 4.10 (and Corollary 4.11) it is proved that the Walsh-type wavelet
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packet expansion of a function from Lp, 1 < p <∞, converges pointwise a.e.
More restricted results in the one dimensional setting were considered by the
author in [15].

Periodic versions of the smooth wavelet packets of Section 4 are considered
in Section 5, and finally Section 6 contains some explicit examples of filters
that can be used to generate Ck(R2) wavelet packets for any k ≥ 1.

1. Nonstationary Wavelet Packets

We begin by recalling some facts about multiresolution analyses associ-
ated with a general dilation matrix that we will use later in this section to
define the wavelet packets we have in mind. The reader can find a more
extensive discussion of the topic in [21].

Let A be a d×d-matrix such that A : Zd → Zd. If the eigenvalues of A all
have absolute value strictly greater than 1 then we call A a dilation matrix.

Example 1.1. The 2× 2 matrices[
1 −1
1 1

]
and

[
0 2
1 0

]

are examples of dilation matrices with determinant ±2. The first matrix is
known as the quincunx dilation matrix.

We can define a multiresolution analysis associated with a dilation matrix
A.

Definition 1.2. A multiresolution analysis associated with a dilation ma-
trix A is a sequence of closed subspaces (Vj)j∈Z of L2(Rd) satisfying

(i) Vj ⊂ Vj+1, ∀j ∈ Z,
(ii)

⋃
j∈Z

Vj = L2(Rd) and
⋂

j∈Z
Vj = {0},

(iii) f ∈ Vj ⇔ f(Ax) ∈ Vj+1, ∀j ∈ Z,
(iv) there exists a function φ ∈ V0 called a scaling function such that the

system {φ(· − γ)}γ∈Zd is an orthonormal basis for V0.

The wavelet spaces Wj associated with such a multiresolution analysis
are given by Wj = Vj+1 ∩ V ⊥

j , and one can easily check that f ∈ Wj ⇔
f(A·) ∈ Wj+1 and L

2(Rd) =
⊕

j∈Z
Wj . A family of wavelets associated with

the multiresolution analysis is a collection of s functions {Ψr}sr=1 for which
{Ψr(·−γ)|γ ∈ Zd}sr=1 is an orthonormal basis forW0. Suppose |detA| = q. It
turns out that the number of wavelets needed to generate such a basis for W0

is exactly q−1. This makes the case |detA| = 2 especially interesting since the
wavelet basis is generated by only one function just as in the one-dimensional
case. We will use the notation PVj and PWj to denote the orthogonal projec-
tions onto the closed spaces Vj and Wj , respectively. One can show that PVj

and PWj extend to bounded operators on L
p(Rd), 1 < p <∞, provided that

the scaling function has a minimum of decay at infinity, see e.g. [21].
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Let {Vj}j∈Z be a multiresolution analysis of L
2(Rd) associated with a

dilation matrix A satisfying |detA| = 2. Suppose (Φ,Ψ) is an associated
scaling function/wavelet pair. Then there exist 2πZd-periodic functions m0

and m1 such that

Φ̂(ξ) = m0(Dξ)Φ̂(Dξ)

Ψ̂(ξ) = m1(Dξ)Φ̂(Dξ),

with D = (A∗)−1. Since |detA| = 2 we can find Γ ∈ Zd satisfying Zd =
A∗Zd ∪ (Γ +A∗Zd). Then it is easy to check that the matrix

[
m0(ξ) m0(ξ + 2πDΓ)
m1(ξ) m1(ξ + 2πDΓ)

]

is unitary a.e. for ξ ∈ Rd. This observation leads to the following definition.
We let A and Γ be related as above.

Definition 1.3. Let m0 and m1 be 2πZd periodic functions for which
[
m0(ξ) m0(ξ + 2πDΓ)
m1(ξ) m1(ξ + 2πDΓ)

]

is unitary a.e., then we call (m0,m1) a pair of orthogonal quadrature filters
associated with (A,Γ).

We can now define the natural generalization of wavelet packets to the
setting of a multiresolution analysis associated with a dilation matrix A with
|detA| = 2.

Definition 1.4. Let {(m(p)
0 ,m

(p)
1 )}∞p=1 be a sequence of orthogonal quad-

rature filters associated with (A,Γ). We define the basic nonstationary wavelet
packets {wn}∞n=0 by w0 = Φ, w1 = Ψ, and for 2k ≤ n < 2k+1 with binary

expansion n =
∑k+1

j=1 εj2
j−1, we let

ŵn(ξ) =

[ k+1∏

j=1

m(k−j+2)
εj

(Djξ)

]
Φ̂(Dk+1ξ).

Remark 1.5. The stationary (or classical) wavelet packets consist of the

special case of Definition 1.4, where the filters {(m(p)
0 ,m

(p)
1 )}∞p=1 do not de-

pend on p, and m
(1)
0 and m

(1)
1 are the low- and high-pass filter, respectively,

associated with the underlying multiresolution analysis.

Let us state two most important facts about the wavelet packets from the
above definition. The two propositions below show how to extract orthonor-
mal bases from the wavelet packet construction above, and thus give us some
new (and hopefully useful) tools to signal and image processing. We have
included a sketch of the proofs for convenience. However, the reader should
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notice that everything works exactly as in the one-dimensional case, only the
multiresolution structure matters.

Proposition 1.6. The basic wavelet packets

{wn(x− k)|0 ≤ n < 2j , k ∈ Zd}
form a basis for Vj . Furthermore,

{wn(x − k)|n ∈ N0, k ∈ Zd}
form an orthonormal basis for L2(Rd).

Proof. Let Ωn = Span{wn(· − k)}k∈Zd , and define δf(x) =
√
2f(Ax).

Using the QMF-condition it is not hard to verify that δΩn = Ω2n ⊕ Ω2n+1

(see e.g. [21, p. 112]). Thus,

δΩ0 	 Ω0 = Ω1

δ2Ω0 	 δΩ0 = δΩ1 = Ω2 ⊕ Ω3

δ3Ω0 	 δ2Ω0 = δΩ2 ⊕ δΩ3 = Ω4 ⊕ Ω5 ⊕ Ω6 ⊕ Ω7

...

δkΩ0 	 δk−1Ω0 = Ω2k−1 ⊕ Ω2k−1+1 ⊕ · · · ⊕ Ω2k−1.

By telescoping the above equalities we finally get the wanted result

δkΩ0 ≡ δkV0 = Vk = Ω0 ⊕ Ω1 ⊕ · · · ⊕ Ω2k−1,

and ∪k≥0Vk is dense in L
2(Rd) by the definition of a multiresolution analysis.

The results mentioned above can be generalized considerably. The fol-
lowing construction gives us a whole library of orthonormal bases each with
different time-frequency properties.

Proposition 1.7. Let {wn} be a family of non-stationary wavelet packets
associated with the dilation matrix A. For every partition P of N0 into sets
of the form Inj = {n2j , . . . , (n+ 1)2j − 1} with n, j ∈ N0, the family

{2j/2wn(A
j · −k)}k∈Zd,Inj∈P

is an orthonormal basis for L2(Rd).

Proof. An argument similar to the one in the proof of Proposition 1.6
shows that

δkΩn = Ω2kn ⊕ Ω2kn+1 ⊕ · · · ⊕ Ω2k(n+1)−1.

Moreover, the functions {2j/2wn(A
j · −q)}q∈Zd span the space δjΩn and

∑

Inj∈P

δjΩn =
⊕

q≥0

Ωq = L2(Rd),

which proves the claim.
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Our focus in the remainder of this paper will be on a special case of the
above construction that can be considered the natural generalization of the
Walsh system on [0, 1) and on an associated class of smooth non-stationary
wavelet packets. The Walsh functions will be associated with dilation matrices
that admit a Haar type multiresolution analysis and thus a generalization of
the Haar wavelet. We derive some properties of generalized Haar wavelets in
Lp below.

2. Generalized Haar Functions

Let A be a d × d-dilation matrix with |detA| = 2. We are interested in
the case where there is an associated multiresolution analysis generated by a
scaling function given by the characteristic function of a set Q ⊂ Rd, called a
tile. For general A and d > 3 there is no guarantee that such a set Q exists,
see [10, 9], so we have to restrict our construction to dilation matrices A which
admit such a tile. The situation is better for 1 ≤ d ≤ 3 since it can be proved
that a tile always exists [10, 9]. For the remainder of this paper we assume
that A is such that an associated tile Q exists.

The set Q has many nice properties under the action of A. One can in
fact show that AQ = Q ∪ (Q + ΓQ) for some ΓQ ∈ Zd and we always have
|Q| = 1, see [21]. Hence Q = A−1Q ∪A−1(Q+ ΓQ) and

(2.1) χ̂Q(ξ) = m0(Dξ)χ̂Q(Dξ),

where m0(ξ) =
1
2 +

1
2e

−i〈ΓQ,ξ〉. Also, note that |A−1Q| = 1
2 , so A

−1 splits Q
into two sub-tiles of equal measure. We let

(2.2) D0 = {Ω : Ω = A−j(Q+ γ), γ ∈ Zd, j ≥ 0, and Ω ⊂ Q}

denote the collection of Q-dyadic sets. Note that two Q-dyadic sets Q1 and
Q2 with |Q1| ≤ |Q2| share the following important property of the dyadic
sets on [0, 1), namely either Q1 ∩ Q2 = ∅ or Q1 ⊂ Q2. We also need the
unrestricted collection of Q-dyadic sets given by

D = {Ω : Ω = A−j(Q+ γ), γ ∈ Zd, j ∈ Z}.

With this setup we can define the natural generalization of the Haar
function on [0, 1).

Definition 2.1. With Q and ΓQ as above, we define the generalized Haar
function by

H(x) = χA−1Q(x) − χA−1(Q+ΓQ)(x).

The Haar system on Q is given by

{χQ} ∪ {2j/2H(Ajx− k)|j ≥ 0, k ∈ Zd, and supp(H(Ajx− k)) ⊂ Q}.
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Example 2.2. Let us consider an example to illustrate the rather tech-
nical Definition 2.1. Figure 1 shows the twin-dragon tile Q generated by the
quincunx dilation matrix

A =

[
1 −1
1 1

]
,

where we have chosen the coset representative ΓQ = (1, 0). The differently
shaded areas show the regions (sub-tiles) A−1Q and A−1(Q+ ΓQ) that gen-
erate the Haar function of Definition 2.1.
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Figure 1. The twin-dragon tile Q for the quincunx dilation
matrix with the coloring indicating the two sub-tiles that
form the associated Haar function H(x).

There is a unique way to index the Haar functions by D0. For Ω ∈ D0

we simply let HΩ denote the generalized Haar function (normalized in L
2(Q))

with support equal to Ω.
One would suspect that the generalized Walsh functions form an uncon-

ditional basis for Lp(Q), 1 < p <∞, and this is exactly the conclusion of the
following proposition.

Proposition 2.3. Let {HΩ}Ω∈D0 be the generalized Haar system associ-
ated with the tile Q. Then {HΩ}Ω∈D0 constitutes an unconditional basis for
Lp(Q), 1 < p <∞.
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Proof. Let us first verify that the system is dense in Lp(Q), 1 < p <∞.
Let

Kn(x, y) =
∑

Ω∈D0:|Ω|=2−n

HΩ(x)HΩ(y)

be the kernel of the projection onto Vn. We have, for y ∈ Ω, |Ω| = 2−n,
∫

Q

|Kn(x, y)| dx = |HΩ(y)|
∫

Q

2n/2χQ(A
nx) dx = |HΩ(y)|2n/22−n = 1,

and similarly, for x ∈ Ω,
∫

Q

|Kn(x, y)| dy = |HΩ(x)|2n/22−n = 1.

Hence, by standard estimates, the projection onto Vn is bounded on L
p(Q),

1 < p < ∞. Now, each Vn is spanned by a finite number of Haar functions
and χQ so it suffices to show that Pnf → f in Lp(Q)-norm as n → ∞ for
every f ∈ L∞(Q) since such functions are dense in Lp(Q), 1 < p < ∞. Let
f ∈ L∞(Q), and suppose 2 < p <∞. We have, for p−1 = α/2+(1−α)/(p+1),
using the generalized Hölder inequality,

‖f − Pnf‖p ≤ ‖f − Pnf‖α2 ‖f − Pnf‖1−α
p+1 .

Hence, ‖f − Pnf‖p → 0 since 0 < α < 1 and ‖f − Pnf‖p+1 is bounded by a
multiple of ‖f‖p+1. The case 1 < p < 2 can be handled the same way. To prove
that the system is unconditional, we build the following regular martingale
on the probability space (Q, dx). Write D0 = {Ω0,Ω1, . . .} in such a way that
|Ωn| ≥ |Ωn+1|, n ≥ 0. Let B0 be the σ-algebra generated by Ω0 = Q and
∅. Suppose Bn has been defined, then we let Bn+1 be the smallest σ-algebra
generated by Bn and Ωn+1. Let f ∈ Lp(Q). It is easy to check that the
expectation EBnf is given by the projection onto span{χΩ0 , χΩ1 , . . . , χΩn},
so fn = EBnf is indeed a regular martingale w.r.t. {Bn}∞n=0 and it follows
from Burkholder’s theorem [4] that the martingale difference sequence {fn+1−
fn}∞n=0 converges unconditionally in L

p(Q), 1 < p < ∞. However, {f2n −
f2n−1} are just the partial sums of the expansion of f in the generalized Haar
system and the result follows.

3. Generalized Walsh Functions

The Walsh system on [0, 1) is the system of basic wavelet packets associ-
ated with the Haar multiresolution analysis, and using the setup introduced
in the previous section we can use the same scheme to obtain a natural gen-
eralization of the Walsh system to higher dimensional domains.

Let m0(ξ) =
1
2+

1
2e

−i〈ΓQ, ξ〉 be the low-pass for a generalized Haar wavelet
as defined by (2.1). We define the associated high-pass Haar filter by m1(ξ) =
1
2 − 1

2e
−i〈ΓQ, ξ〉. We have the following definition of the generalized Walsh

functions.
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Definition 3.1. The generalized Walsh functions {Wn}∞n=0 are the basic
wavelet packets generated by the Haar low-pass and high-pass filters starting
from the Haar scaling function and wavelet.

Remark 3.2. The generalized Walsh functions can also be defined recur-
sively by letting W0(x) = χQ(x) and then we define {Wn}∞n=1 by

W2n+ε(x) =Wn(Ax) + (−1)εWn(Ax− ΓQ), ε = 0, 1.

The third possible definition is to view the generalized Walsh system as the
product system on the probability space (Q, dx) defined by the generalized
Rademacher functions. The generalized Rademacher functions are obtained
by letting

r0(x) =
∑

k∈Zd

H(x− k) ∈ L∞(Rd),

whereH is the Haar function of Definition 2.1, and we define rn(x) = r0(A
nx).

Then for n ∈ N0 with binary expansion n =
∑∞

j=0 εj2
j we have

Wn(x) = χQ(x)

∞∏

j=0

rj(x)
εj ,

which can be proved easily by induction. Notice that an easy consequence of
this definition is that

(3.1) Wn(x)Wm(x) =Wn⊕m(x),

where ⊕ is the bitwise “exclusive or” operator.
The first thing we want to check is that the generalized Walsh system

constitutes a Schauder basis for Lp(Q), for 1 < p < ∞. This will be the
content of Proposition 3.5. But first, let us recall some important facts about
the classical Walsh system on [0, 1). The system is defined recursively on [0, 1)
by letting W0 = χ[0,1) and

W2n+ε(x) =Wn(2x) + (−1)εWn(2x− 1), ε = 0, 1.

Clearly, this is a special case of our new construction with d = 1. One
important fact we need is that, for 2J ≤ n < 2J+1, we have

Wn(x) =

2J−1∑

s=0

Wn−2J (s2−J)W1(2
Jx− s).

The proof of this fact can be found in [15], and we will in fact prove a more
general statement in Section 4. The 2J × 2J matrix defined by (HJ )i+1,j+1 =

2−J/2Wi(j2
−J), i, j = 0, 1, . . . 2J − 1, is called the Hadamard matrix of order

2J , and it will be used in Lemma 3.4 below.
The following lemma about the generalized Haar functions is elementary

and we leave the proof to the reader.
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Lemma 3.3. Suppose F ⊂ D0 is a finite subset for which f =∑
Ω∈F cΩHΩ ∈Wj . Then

‖f‖p = 2j(1/2−1/p)

(∑

Ω∈F

|cΩ|p
)1/p

.

From this simple Lemma, and from the fact that the classical Walsh
system is a Schauder basic for Lp[0, 1), 1 < p < ∞, we can deduce the
following property of the Hadamard matrix

Lemma 3.4. Let Hn be the 2n × 2n Hadamard matrix of order n, and let
Dn

m be the 2n × 2n diagonal matrix with m ones in the upper left corner and
zeros everywhere else. Then there exits a constant C, independent of m and
n, such that

‖HnD
n
mH?

n‖`p→`p ≤ C.

Proof. Given {cj}2
n

j=1 ⊂ C we form f =
∑2n+1

j=2n cj−2n+1Wj and fm =
∑2n+m

j=2n cj−2n+1Wj , where {Wj}n the Walsh system on [0, 1). We have, by
the Schauder basis properties of the Walsh system,

‖fm‖p ≤ C‖f‖p,
with C independent of m and n. Recall that the Hadamard matrix Hn is the
change of basis matrix between the Walsh basis for Wn and the Haar basis
for the same space. Hence, by Lemma 3.3,

‖f‖p = 2n(1/2−j/p)‖Hn[(cj)]‖`p

and

‖fm‖p = 2n(1/2−1/p)‖HnD
n
mH?

n[Hn(cj)]‖`p ,

and we conclude that

‖HnD
n
mH?

n‖`p→`p ≤ C.

We notice that for 2J ≤ n < 2J+1 the wavelet packet Wn is given as a
sum of exactly 2J wavelets in WJ with the expansion coefficients given by
the procedure outlined in Definition 1.4. The coefficients of the generalized
Haar low-pass and high-pass filters are the same as in the one-dimensional
case, so we deduce that there is an ordering of the generalized Haar functions

{HΩ}Ω∈D0,|Ω|=2−J such that the wavelet packets {Wn}2
J+1−1

n=2J is given by the
Hadamard transform of the Haar functions w.r.t. this ordering. We can now
state and prove the following result.

Proposition 3.5. Let {Wn}∞n=0 be a generalized Walsh system. Then
{Wn}∞n=0 constitutes a Schauder basis for Lp(Q), 1 < p <∞.
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Proof. The generalized Walsh system is dense in Lp(Q) since it is possi-
ble to write every Haar waveletHI as a finite linear combination of generalized
Walsh functions, and the Haar system is dense in Lp(Q) by Proposition 2.3.

So, given fn =
∑n−1

j=0 cnWj for some sequence {cj} ⊂ C, it suffices to prove
that there exists a constant C such that ‖fm‖p ≤ C‖fn‖p whenever m ≤ n.
Define s, k ≥ 0 by m = 2s + k, k < 2s, and write fm = f2s + (fm − f2s).
Clearly, f2s = PVsfn so ‖f2s‖p ≤ C‖fn‖p by Proposition 2.3. All that re-
mains is to bound fm − f2s ∈ Ws. Let Ms = [〈Wj , HI〉]2

s+1

j=2s,HI∈Ws
be the

change of basis matrix from the generalized Walsh basis for Ws to the Haar
basis for Ws. There exists an ordering of the Haar functions {HΩ}|Ω|=2−j

such that the change of basis matrix is given by the Hadamard Transform,
and the coefficients of fm − f2s in the Haar basis are thus given by,

MsD
s
mM

?
s [Ms(cj)

2s+1−1
j=2s ],

where Ds
m is the 2s× 2s diagonal matrix with m ones in the upper left corner

and zeros everywhere else. By Lemma 3.4,

‖MsD
s
mM

?
s [Ms(cj)

2s+1−1
j=2s ]‖`p ≤ C‖MsD

s
2sM?

s [Ms(cj)
2s+1−1
j=2s ]‖`p ,

with C a constant independent ofm and s. Hence, from Lemma 3.3 we deduce
that

‖fm − f2s‖p ≤ C‖PWsfn‖p ≤ C1‖fn‖p,
and we are done.

For technical reasons we will need the following special class of dilation
matrices.

Definition 3.6. Let A be a d × d-dilation matrix with |detA| = 2. We
say that A is almost isotropic if there exists an integer t such that Atd = 2tId,
where Id is the d× d identity matrix.

Remark 3.7. One example of an almost isotropic dilation matrix is the
quincunx dilation

A =

[
1 −1
1 1

]
,

which satisfies A8 = 16I2.

Fix a Haar multiresolution analysis associated with a d×d-dilation matrix
A with |detA| = 2. Let Q be a tile associate with this matrix, and let {Wn}n
be the associatedWalsh functions. The following operator will be fundamental
in our study of the metric properties of the Walsh wavelet packet library.
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Definition 3.8. The Carleson operator G for the wavelet packet system
{wn}n is defined by

(Gf)(x) = sup
N≥0

∣∣∣∣
N∑

n=0

∑

k∈Zd:|k|≤N

〈f, wn(· − k)〉wn(x − k)
∣∣∣∣,

for f ∈ Lp(Q), 1 < p <∞.
The Carleson operator picks out the partial sum with the worst pointwise

behavior at each point x ∈ Q. It is clearly not a priori obvious that the
operator for a given system is finite at any point for general functions f , but
Theorem 3.9 stated below will be proved in Appendix A. We remind the reader
that an operator T mapping Lp(Rd) into the set of measurable functions is
of strong type (p, p) if T is sub-linear and satisfies ‖Tf‖p ≤ Cp‖f‖p for some
finite constant Cp.

Theorem 3.9. The Carleson operator associated with any generalized
Walsh system generated by an almost isotropic dilation matrix is of strong
type (p, p), 1 < p <∞.

Remark 3.10. There are several proofs of this fact for the one dimen-
sional Walsh system, see e.g. [2, 16]. The proof we outline in the appendix is
based on a technique introduced by Thiele in [20].

The corollary below follows by standard arguments from Theorem 3.9.

Corollary 3.11. Consider any generalized Walsh system generated by
an almost isotropic dilation matrix. The associated Walsh wavelet packet
expansion of any f ∈ Lp(Q), 1 < p <∞, converges a.e.

4. Smooth Walsh-type Functions

The expansion of Lp functions in the generalized Walsh system is well
behaved as we have seen in the previous section, however, the basis functions
are not continuous which can be a problem for certain applications. The aim of
this section is to introduce a smooth analogue of the generalized Walsh system
with the same nice Lp-properties. We call such functions Walsh-type wavelet
packets, see Definition 4.1 below. The main result of the section, and indeed
of the present paper, is Theorem 4.10, where we prove that smooth Walsh-
type wavelet packet expansions converge pointwise a.e. for Lp-functions, 1 <
p <∞.

Let us define the class of functions we have in mind.

Definition 4.1. Let {WS
n }n≥0,k∈Z be a family of non-stationary wavelet

packets constructed by using a family {(m(p)
0 ,m

(p)
1 )}∞p=1 of finite filters in Def-

inition 1. If there exists a constant J ∈ N such that (m
(p)
0 ,m

(p)
1 ) is the Haar
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low-pass and high-pass filter, respectively, for every p ≥ J , and w1 has compact
support, then we call {WS

n }n≥0 a family of Walsh-type wavelet packets.

We have to state and prove a few technical lemmas before we can attack
the main result stated in Theorem 4.10 below. The lemmas below are well
known results in the one-dimensional case, and we just have to tweak the
proofs a little bit to make them work for almost isotropic dilation in Rd. The
techniques used should be well know to the reader, so we will only give the
outlines of the proofs. Further details on the techniques can be found in
[12, 13, 21].

Lemma 4.2. Let A be an almost isotropic d × d-dilation matrix, and let
f i ∈ C1(Rd) ∩ L2(Rd), i = 1, 2, be two functions for which

|f i(x)|, |∂/∂xif
j(x)| ≤ C(1 + |x|)−d+ε, i = 1, 2, . . . , d, j = 1, 2,

for some constant C. Suppose {f i
j,k ≡ 2j/2f2(Aj · −k)}j∈Z,k∈Zd is an or-

thonormal system for i = 1, 2, and let ε ∈ `∞(Z× Zd) with ‖ε‖`∞ ≤ 1. Then
the operator T : L2(Rd)→ L2(Rd) defined by

Tg =
∑

j∈Z,k∈Zd

εj,k〈g, f1
j,k〉f2

j,k.

can be extended to a bounded operator on Lp(Rd), 1 < p < ∞, with bound
independent of ε.

Proof. Fix the nonnegative integers s, t such that As = 2tId, and take
any finite sequence ε ∈ Z × Zd with ‖ε‖`∞ ≤ 1. We can write any integer j
as j = us+ r with u ∈ Z and 0 ≤ r < s. Hence

Tg =
∑

j∈Z,k∈Zd

εj,k〈g, f1
j,k〉f2

j,k

=

s−1∑

r=0

∑

u∈Z,k∈Zd

εus+r,k〈g, 2j/2f1(2tuAr · −k)〉2j/2f2(2tuArx− k).

It follows that

‖Tg‖p ≤ C
s−1∑

r=0

∥∥∥∥
∑

u∈Z,k∈Zd

εus+r,k〈g, 2tdu/2f1(2tuAr·−k)〉2tdu/2f2(2tuArx−k)
∥∥∥∥

p

,

where we have used that j = tdu+r. Now, it can be proved that each term on
the right is associated with a Calderón-Zygmund operator using a straight-
forward modification of well known estimates, see e.g. [21, 13], taking into
account the decay of f i and ∂/∂xif

j .

The following Lemma generalizes Lemma 12 in [14].
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Lemma 4.3. Let Ψ be a wavelet associated with an almost isotropic d×d-
dilation matrix A, and let H be a generalized Haar wavelet for the same
dilation. Suppose Ψ ∈ C1(Rd) satisfies

|Ψ(x)|, |∂/∂xiΨ(x)| ≤ C(1 + |x|)−d+ε, i = 1, 2, . . . , d,

for some constant C. Then the wavelet systems generated by Ψ and H, re-
spectively, are equivalent unconditional bases for Lp(Rd), 1 < p <∞.

Proof. We can use the same technique as in proof presented on pages
166-167 of [13]. The kernel for the operator P mapping one system onto the
other is given by

Kε̄(x, y) =
∑

j∈Z,k∈Zd

εj,k2
jH(Ajx− k)Ψ(Ajy − k).

Kε̄(x, y) is smooth in the y-variable and we can use the same argument as in
Lemma 4.2 to show that P is bounded on Lp(Rd), 1 < p ≤ 2. All that remains
is to prove that P ∗ is bounded from L1(Rd) into L1

weak(R
d). To do this, we

take f ∈ L1(Rd) ∩ L2(Rd) and make a Calderon-Zygmund decomposition of
f at level α > 0 with the twist that the decomposition is based on the Q-
dyadic sets in D, and not on the dyadic d-cubes. There is no problem making
this type of decomposition following the outline in e.g. [6, Chap. 9] since for
a.a. x ∈ Rd there is a sequence {Qj}∞j=1 ⊂ D with |Qj | = 2−j for which
the Lebesgue theorem of differentiation holds. This is due to the fact that A
is almost isotropic (the eccentricity of the sets in D is uniformly bounded).
With this slightly modified Calderón-Zygmund decomposition in hand, we
can complete the proof of the lemma by following [13, p. 167].

We now use the lemmas presented above to obtain the first interesting
conclusion about the Walsh-type wavelet packets, the generalized Walsh-type
wavelet packets are equivalent to the Walsh functions in Lp(Rd), 1 < p <∞.

Proposition 4.4. Let {Wn}∞n=0 be a generalized Walsh systems and
{WS

n }∞n=0 a Walsh-type system associated with the same almost isotropic d×d-
dilation matrix. Suppose WS

0 ∈ C1(Rd) and

|WS
0 (x)|, |∂/∂xiWS

0 (x)| ≤ C(1 + |x|)−d+ε, i = 1, 2, . . . , d,

for some constants C, ε > 0. Then there exists an isomorphism P : Lp(Rd)→
Lp(Rd), 1 < p <∞, for which PWn(· − k) =WS

n (· − k).
Proof. Let K be the scale from which only the Haar filters are used

to generate the Walsh-type wavelet packets. Let {Vj} be the Haar MRA
associated with the generalized Walsh functions. Since PVK is bounded on
Lp(Rd) it suffices to prove that PPVK and P (1−PVK ) are bounded. One can
easily check that PPVK is bounded by brute force estimates on the kernel using
that only 2K different functions (and their integer translates) are involved.
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We turn to P (1 − PVK ). Let T : Lp(Rd) → Lp(Rd) be one of the
isomorphism from Lemma 4.3 mapping the generalized Haar system onto
some C1(Rd) wavelet system generated by the wavelet Ψ. We use the
map T to define an intermediate system {WI

n(x − k)}∞n=1,k∈Zd defined by

WI
n(x− k) = TWn(x− k). The new system is clearly equivalent to the gener-

alized Walsh system. Let vn
j,k = 2

j/2WS
n (A

j ·−k) and gn
j,k = 2

j/2WI
n(A

j ·−k).
Notice that

{gn
j,k}2K≤n<2K+1,(j,k)∈Z×Zd and {vn

j,k}2K≤n<2K+1,(j,k)∈Z×Zd

are both orthonormal bases for L2(Rd). It follows from Lemma 4.2 that there
is an isomorphism U : Lp(Rd)→ Lp(Rd) for which

Ugn
j,k = vn

j,k, 2K ≤ n < 2K+1, (j, k) ∈ Z× Zd.

Let n ≥ 2N+1. We expand WS
n (x− k) to get

(4.1) WS
n (x− k) =

∑

s∈F

cn,sv
ñ
K,s(x − k),

with 2K ≤ ñ < 2K+1 and F ⊂ Zd a finite set (depending on n). The
coefficients cn,s depend only on n and the Haar filter. Thus, WI

n(x − k) has
the same expansion:

(4.2) WI
n(x− k) =

∑

s∈F

cn,sg
ñ
K,s(x− k).

We conclude that UWI
n(x − k) = WS

n (x − k) for n ≥ 2K+1 and k ∈ Zd, i.e.,
the isomorphism UT : Lp(Rd) → Lp(Rd), 1 < p < ∞, maps Wn(x − k) onto
WS

n (x− k) for n ≥ 2K+1. This completes the proof of the claim.

Remark 4.5. The previous proposition shows that the generalizedWalsh-
type system constitutes a Schauder basis for Lp(Rd), 1 < p < ∞. However,
the system is bound to fail as a basis for L1(Rd) since the functions are
uniformly bounded.

Lemma 4.6. Let A be an almost isotropic d×d-dilation matrix associated
with an MRA {Vj} with scaling function Φ satisfying

|Φ(x)| ≤ C(1 + |x|)−n−ε,

for some ε > 0. Then the Carleson operator, f → supj |PVjf(x)|, associated
with the projections onto Vj is of strong type (p, p), 1 < p <∞.

Proof. By assumption, As = 2tId for some s, t ∈ N, and for j ∈ Z we
write j = su + r with 0 ≤ r < s. Then the kernel of the projection onto Vj
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can be written as

Kj(x, y) =
∑

k∈Zd

2jΦ(Ajx− k)Φ(Ajy − k)

= 2r
∑

k∈Zd

2tduΦ(2tuArx− k)Φ(2tuAry − k),

where we have used that s = td. From this and standard estimates we deduce
that

|Kj(x, y)| ≤ C2tdu(1 + 2tu|x− y|)−d−ε,

with C is a constant independent of j. But then it follows from [17, p. 62]
that, for f ∈ Lp(Rd),

|Pjf(x)| =
∣∣∣∣
∫

Rd

Kj(x, y)f(y) dy

∣∣∣∣ ≤ CMf(x),

whereM is the Hardy-Littlewood maximal operator. Hence, supj |PVjf(x)| ≤
CMf(x) and we are done.

Remark 4.7. The idea of using the maximal function to bound the scaling
space projections is due to Tao [19].

Note that there are exactly 2J values of k ∈ Zd for which the function
χQ(A

Jx−k) has support contained in Q. Let FJ ⊂ Zd denote the set of such
k’s. We let QJ

k = supp{χQ(A
Jx− k)}, k ∈ FJ .

Lemma 4.8. Let f1 ∈ L2(Rd), and define {fn}n≥2 recursively by

f2n+ε(x) = fn(Ax) + (−1)εfn(Ax − Γ), ε = 0, 1.

Then for n, J ∈ N, 2J ≤ n < 2J+1, we have

fn(x) =
∑

k∈FJ

(
|QJ

k |−1

∫

QJ
k

Wn−2J (ω) dω

)
f1(A

Jx− k).

Proof. Clearly, it suffices to prove that

Wn(x) =
∑

k∈FJ

(
|QJ

k |−1

∫

QJ
k

Wn−2J (ω) dω

)
W1(A

Jx− k).

However, since 2J ≤ n < 2J+1, it follows from (3.1) that Wn(x) =
Wn−2J (x)W2J (x). Then the result follows from the fact that each Wn−2J (x),
2J ≤ n < 2J+1, is constant on each set QJ

k and supp{W1(A
Jx− k)} = QJ

k .

Remark 4.9. We will use the notation f(QJ
k ) to denote the average

|QJ
k |−1

∫

QJ
k

f(ω) dω.

We can state the main result about generalized Walsh-type wavelet pack-
ets.
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Theorem 4.10. Let L be the Carleson operator for a basic Walsh-type
wavelet packet system {WS

n }n associated with an almost isotropic dilation
matrix. Suppose W0 ∈ C1(Rd). Then L is of strong type (p, p), 1 < p <∞.

Proof. Let us begin by reducing the problem. Choose N ∈ N such that
supp(WS

n ) ⊂ [−N,N ]d for n ≥ 0. Fix p ∈ (1,∞) and take any

f(x) =
∑

n≥0,k∈Zd

cn,kWS
n (x − k) ∈ Lp(Rd).

Define

fk(x) =
∑

n≥0

cn,kWS
n (x− k), gk(x) =

∑

n≥0

cn,kWn(x− k).

We have ‖fk‖p ' ‖gk‖p, with bounds independent of k, by Proposition 4.4.
Note that for q ∈ Zd,

|{x ∈ q + [0, 1)d : |Lf(x)| > α}| ≤ C

αp

∑

|k−q|≤(N+1)d

∫
|Lfk(x)|p dx,

so (using the Marcinkiewicz interpolation theorem) it suffices to prove that
‖Lfk‖p ≤ C‖fk‖p, where C is a constant independent of k, since

∑

q∈Zd

∑

|k−q|≤(N+1)d

‖fk‖pp ≤ 2d(N + 1)d
∑

k∈Zd

‖fk‖pp

≤ C2d(N + 1)d
∑

k∈Zd

‖gk‖pp

≤ C̃2d(N + 1)d‖f‖pp.

We can, w.l.o.g., assume that k = 0. Let K ∈ N be the scale from which
only the Haar filter is used to generate the wavelet packets {WS

n }n≥2K+1 . Let

m ∈ N and suppose 2J ≤ m < 2J+1 for some J > K + 1. Clearly, for each
x ∈ Rd,

m∑

n=0

cn,0WS
n (x) =

2K+1−1∑

n=0

cn,0WS
n (x) +

2J−1∑

n=2K+1

cn,0WS
n (x) +

m∑

n=2J

cn,0WS
n (x),

so we have

sup
m≥1

∣∣∣∣
m∑

n=0

cn,0WS
n (x)

∣∣∣∣ ≤ sup
1≤m<2K+1

∣∣∣∣
m∑

n=0

cn,0WS
n (x)

∣∣∣∣

+ sup
J>K+1

∣∣∣∣
2J +1∑

n=2K+1

cn,0WS
n (x)

∣∣∣∣+ sup
J>K+1

(MJf0)(x),(4.3)
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where

(MJf0)(x) = sup
2J≤m<2J+1

∣∣∣∣
m∑

n=2J

cn,0WS
n (x)

∣∣∣∣.

We use brute force to estimated the first term of (4.3)

sup
0<m<2K+1

∣∣∣∣
m∑

n=0

cn,0WS
n (x)

∣∣∣∣ ≤
2K+1−1∑

n=0

|cn,0|‖WS
n (x)‖∞χ[−N,N ]d(x)

≤ ‖f0‖p
2K+1−1∑

n=0

‖WS
n ‖p′‖WS

n (x)‖∞χ[−N,N ]d(x).

The second term of (4.3) satisfies

∥∥∥∥ sup
J>K+1

∣∣∣∣
2J+1∑

n=2K+1

cn,0WS
n (x)

∣∣∣∣
∥∥∥∥

p

≤ C‖f0‖p

by Lemma 4.6, since

2J+1∑

n=2K+1

cn,0WS
n (x) = PVKf0(x)− PVJ f0(x)

so

sup
J>K+1

∣∣∣∣
2J+1∑

n=2K+1

cn,0WS
n (x)

∣∣∣∣ ≤ 2 sup
J
|PVJ f0(x)|.

The challenge is to prove that the third term is of strong type (p, p). Note
that

(MJf0)(x) ≤
2K−1∑

j=0

(M j
Jf0)(x),

where

(M j
Jf0)(x) = sup

2J+j2J−K≤m<2J+(j+1)2J−K

∣∣∣∣
m∑

n=2J+j2J−K

cn,0WS
n (x)

∣∣∣∣,

so it suffices to prove that

‖ sup
J>K+1

(M j
Jf0)‖p ≤ C‖f0‖p,
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for j = 0, 1, . . . 2K − 1. Fix J > K + 1, 0 ≤ j < 2K − 1, and 2J + j2J−K ≤
m < 2J + (j + 1)2J−K . We have, using Lemma 4.8,
∣∣∣∣

m∑

n=2J+j2J−K

cn,0WS
n (x)

∣∣∣∣

=

∣∣∣∣
∑

s∈FJ−K

{ m∑

n=2J+j2J−K

cn,0Wn−2J−j2J−K (QJ−K
s )

}
WS

2K+j(A
J−Kx− s)

∣∣∣∣.

Define

Fm(t) =

m∑

n=2J+j2J−K

cn,0Wn−2J−j2J−K (t)

and
F (t) = sup

m<2J+(j+1)2J−K

|Fm(t)|.

From this we easily derive the following estimate
∣∣∣∣

m∑

n=2J +j2J−K

cn,0WS
n (x)

∣∣∣∣ ≤
∑

s∈FJ−K

F (QJ−K
s )|WS

2K+j(A
J−Kx− s)|.

Then, using the fact that supp(WS
2K+j) ⊂ [−N,N ]d, we obtain the following

estimate
∣∣∣∣

m∑

n=2J +j2J−K

cn,0WS
n (x)

∣∣∣∣ ≤ ‖WS
2K+j‖∞

∑

s∈FJ−K∩SJ−K(x)

F (QJ−K
s ),

where SJ−K(x) = AJ−Kx + [−N − 1, N + 1]d ⊂ Rd. Notice that SJ−K(x) ∩
FJ−K contains at most 2d(N + 1)d points. We need an estimate of F that
does not depend on J . Note that for 0 ≤ k < 2J−K , using (3.1),

W2J+j2J−K (ω)Wk(ω) =W2J+j2J−K+k(ω),

since the binary expansions of 2J + j2J−K and of k have no ones in common.
Hence,

|Fm(ω)| = |W2J +j2J−K (ω)Fm(ω)| =
∣∣∣∣

m∑

n=2J+j2J−K

cn,0Wn(ω)

∣∣∣∣,

so F (ω) ≤ 2(Gg0)(ω), with G the Carleson operator for the generalized Walsh
system. Thus,
∣∣∣∣

m∑

n=2J +j2J−K

cn,0WS
n (x)

∣∣∣∣ ≤

≤ 2‖WS
2K+j‖∞

∑

s∈FJ−K∩SJ−K(x)

|QJ−K
s |−1

∫

QJ−K
s

Gg0(ω) dω.



130 M. NIELSEN

We let Q?
s be the smallest dyadic d-cube centered at x containing Q

J−K
s . Note

that |Q?
s | ≤ C2d(N + 1)d|QJ−K

s |. We have
∣∣∣∣

m∑

n=2J+j2J−K

cn,0WS
n (x)

∣∣∣∣ ≤ 2‖WS
2K+j‖∞

∑

s∈FJ−K∩SJ−K(x)

|QJ−K
s |−1

∫

Q?
s

(Gg0)(t) dt

≤ C‖WS
2K+j‖∞22d(N + 1)2d(MGg0)(x),(4.4)

where M is the maximal operator of Hardy and Littlewood. The righthand
side of (4.4) does not depend on m nor J so we may conclude that

sup
J>K+1

(M j
Jf0)(x) ≤ C‖WS

2K+j‖∞22d(N + 1)2d(MGg0)(x), a.e.,

and thus, since M and G are both of strong type (p, p) (see Theorem 3.9),

‖ sup
J>K+1

(M j
Jf0)‖p ≤ C‖g0‖p ≤ C1‖f0‖p, j = 0, 1, . . . 2K − 1,

and we are done.

The pointwise convergence result now follows by a standard argument (see,
e.g., [8]).

Corollary 4.11. Let {WS
n }n be a Walsh-type wavelet packet system as-

sociated with an almost isotropic dilation matrix. The Fourier expansion of
any f ∈ Lp(Rd), 1 < p <∞, w.r.t. {WS

n }n converges a.e.

The basic Walsh-type wavelet packets is only one out of an infinite number
of the possible Walsh-type wavelet packet bases given by Proposition 1.7, and
it is interesting to know if we have the same convergence properties for other
bases in the library. Fortunately, it turns out that we can generalize the above
corollary to any basis in the library, and the key to this result is the possibility
of decomposing the partial sum operator for a given wavelet packet system
in the basic wavelet packets. In fact, the proof below shows that the basis
wavelet packets always have the worst metric properties of all the bases in the
library.

Corollary 4.12. Let P = {In,j} be a partition of N0 as in Proposition
1.7. Let f ∈ Lp(Rd), 1 < p < ∞. Define the partial sum operator for the
Walsh-type wavelet packet system associated with P by

SNf(x) =
∑

In,j∈P:n·j≤N,k∈Zd

〈f, 2j/2WS
n (A

j · −k)〉2j/2WS
n (A

jx− k).

We have SNf(x)→ f in Lp(Rd)-norm and pointwise a.e.

Proof. Consider SNf(x). By the proof of Proposition 1.7 there is an

Ñ ≤ N such that

SNf(x) =

Ñ∑

n=0

∑

k∈Zd

〈f,WS
n ( · − k)〉WS

n (x− k).
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From this we obtain the pointwise bound |SNf(x)| ≤ Lf(x), where L is the
Carleson operator for the Walsh-type system. Thus, the Carleson operator for
the wavelet packet system given by P , supN |SN (f)(x)|, is bounded pointwise
by Lf(x) and is thus of strong type (p, p), 1 < p < ∞. Both claims of the
corollary follow easily from this fact.

Remark 4.13. In one dimension, the above corollary generalizes the re-
sults obtained by the author in [15].

5. Periodic Wavelet Packets

The process of 1-periodization works well for one-dimensional wavelet
and wavelet packets due to the fact that the one-dimensional multiresolution
structure is based on integer shifts. The same is true for the general multires-
olution structure in Definition 1.2 so it should be no surprise to the reader
that we can periodize the nonseparable wavelet packets and obtain the same
useful results as in the one dimensional case. We should note that the pe-
riodic version of the one-dimensional Walsh system is the system itself, so
this case is not that interesting. However, for higher dimensional Walsh sys-
tems, periodization has the advantage that it can transform the fundamental
domain from the potentially complicated fractal tile Q to a less complicated
fundamental domain such as [0, 1)d.

Let us state the results. We leave the easy details of the proofs to the
reader. Let {Wn}n be a wavelet packet system in Rd for which each Wn ∈
L1(Rd). For the wavelet packetWn,j,k(x) := 2

j/2Wn(A
j(x−k)) we can define

the associated periodized wavelet packet by

Wper
n,j,k(x) = χΣ(x)2

j/2
∑

γ∈Zd

Wn(A
j(x− γ)− k),

where Σ is any tile of Rd such as Q itself or the fundamental domain [0, 1)d.
One can easily verify that Proposition 1.7 is still true with the obvious mod-
ification that the space Ωn be defined as the closed span of {Wper

n,0,k|k ∈ Zd}.
Also, notice that the dimension of span{Wper

n,j,k|k ∈ Zd} is exactly 2j . For pe-
riodic Walsh-type wavelet packets we obtain the periodic analog of Theorem
4.10.

Corollary 5.1. Consider a system of periodic Walsh-type wavelet pack-
ets {Wper

n,0,0}n for which W0 ∈ C1(Rd). Let f ∈ Lp(Σ), 1 < p <∞. Then

N∑

n=0

〈f,Wper
n,0,0〉Wper

n,0,0(x) −→ f, as N →∞,

in Lp(Σ)-norm and pointwise a.e.
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Remark 5.2. The result can be proved by using the compact support of
the aperiodic Walsh-type wavelet packets to bound the Carleson operator for
the periodic system by the Carleson operator for the aperiodic system.

6. Some Examples of Ck(R2) Walsh Type Wavelet Packets

We have all the machinery to obtain nice nonseparable Ck(Rd) wavelet
packets with good Lp and pointwise properties provided that we can find
appropriate low-pass filters yielding compactly supported Ck(Rd), k ≥ 1,
scaling functions associated with the given dilation matrix A. Unfortunately,
such constructions are difficult in general mainly due to the fact that not
every nonnegative trigonometric polynomial of two variables admits a spectral
factorization. We remind the reader that it is still an open problem whether
the quincunx dilation admits a C1(R2) compactly supported scaling function.
However, a construction of Ck-wavelets, k ≥ 1, is carried out in [1] for the
special case of a 2× 2-dilation matrix A satisfying A2 = 2I2 such as

(6.1) A =

[
0 2
1 0

]
.

We can obviously use these compactly supported scaling function/wavelet
pairs and the associated filters in Definition 4.1 to construct examples of
nonseparable Walsh-type wavelet packets of type Ck(R2), for k ≥ 1.

Appendix A. A Proof of Theorem 3.9

We give a proof of Theorem 3.9 based on an elegant technique intro-
duced by Thiele in [20], which he used to prove the same result for the one-
dimensional Walsh system. We have made some adjustments to adapted
the proof to the present multidimensional setting, but a large part of com-
binatorics involved in the proof of Theorem 3.9 is virtually identical to the
combinatorics presented in [20] so we will only state those results and refer
the reader to [20] for the details.

First, some notation. Fix a generalized Walsh system {Wn}n associated
with the tile Q generated by an almost isotropic dilation matrix A (the only
place where this hypothesis is used is in (A.2) below). The set F = Q× N0

is called the generalized Walsh phase plane. Let Ω ∈ D0 (see (2.2) for the
definition of D0) and j, n ≥ 0. Consider sets of the form

Ω× {n2j , n2j + 1, . . . , n2j+1 − 1} ⊂ Q× N0.

We call such a set a tile if 2j |Ω| = 1 and a bitile if 2j |Ω| = 2. We let T and
B denote the collection of all tiles and bitiles, respectively. Let P be a tile or
bitile. We use the notation P = ΩP ×ωP to separate the time and frequency
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sets of P . For E ⊂ F we define the following projection operator
ΠEf(x) =

∑

n:(x,n)∈E

〈f,Wn〉Wn(x).

The Carleson operator associated with the function b : Q → N ∩ [0, 2N ] is
defined by ΠEb

where Eb = {(x, n) ⊂ Q × N0 : n < b(x)}. It is clear that
Theorem 3.9 will follow if we can prove that ΠEb

is of strong type (p, p) on
Lp(Q), 1 < p < ∞, with bound independent of b and N (the bound will
depend on p).

We define a partial ordering on B by saying that P ≺ P ′ if P ∩ P ′ 6= ∅
and ΩP ⊂ ΩP ′ (or equivalently ωP ′ ⊂ ωP ).

We fix f ∈ Lp(Q), 1 < p < ∞. For each P ∈ B we define the associated
density

dP =

[
log2 sup

P≺P ′

‖ΠP ′f‖∞
]
.

Using the ordering of the bitiles we split B according to their density as follows
• Tk = {P ∈ B : dP = k}
• T max

k = {maximal bitiles in Tk w.r.t. the given partial ordering of B}
• Tk,i = {P ∈ Tk : 2

i ≤ |P ′ ∈ T max
k : P ≺ P ′}| < 2i+1}

• T max
k,i = {maximal bitiles in Tk,i w.r.t. the given partial ordering of B}.

Each set Tk,i is called a forest, and for R ∈ T max
k,i we define the tree Tk,i,R =

{P ∈ Tk,i|P ≺ R} and call R the tree top. One can easily check using the
definition of the density d that if P1, P2 ∈ Tk,i,R and P ∈ B is such that
P1 ≺ P ≺ P2 then P ∈ Tk,i,R. We call a set of bitiles with this property
convex.

Let P = Q × {n, . . . , n′ − 1} be a bitile. We split P in to a lower tile
lP = Q×{n, . . . , (n+n′)/2−1} and an upper tile uP = Q×{(n+n′)/2, . . . , n′},
and let EP be the set of all points (x, n) contained in the lower tile of P , such
that (x, b(x)) is contained in the upper tile of P .

Then we have the following combinatorial type lemma.

Lemma A.1 ([20]). 1. The union
⋃

P∈B EP is a partition of Eb.
2. Let E be a disjoint union of tiles, and let p be the collection of all tiles

that are subsets of E. Then E is the disjoint union of the minimal
(maximal) tiles in p.

3. The union of a finite convex collection of bitiles can be written as a
disjoint union of tiles.

4. Let p be a tile and E a subset of the phase plane such that p ⊂ E. If E
can be written as a union of tiles, then E\p can be written as a union
of tiles.

We let TP = ΠEP , and from Lemma A.1.1 we obtain the finite decom-
position ΠEb

=
∑

P∈B TP (the sum is finite since b is bounded). For finite
subsets Ξ ⊂ B we use the notation TΞ to denote the operator

∑
P∈Ξ TP .
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We note that any bitile in Tk is dominated by at least one maximal
bitile or else we could obtain an infinite sequence of associated time inter-
vals {ΩPk

}∞k=1 ⊂ Q with |ΩPk
| = 2k which is impossible since |Q| = 1. The

same argument shows that each bitile in Tk,i is dominated by at least one
bitile in T max

k,i . Thus, Tk is partitioned by the forests contained in it, and each
forest is the union of its trees. The trees actually form a partition of of the
forest, which can be deduced as follows. Suppose a bitile P ∈ Tk,i is smaller
than the two distinct tree tops R1 and R2. Then ΩP ⊂ ΩR1 ∩ ΩR2 6= ∅.
Notice that by the definition of Tk,i there are less than 2

i+1 bitiles of T max
k

greater than P , but at least 2i of them greater than each of the tree tops, so
that there must be a bitile M greater than both tree tops, which means that
ωM ⊂ ωR1 ∩ωR2 6= ∅ so R1 and R2 are comparable and thus equal since they
are maximal. Hence the partition Tk,i = ∪R∈T max

k,i
Tk,i,R and we obtain the

corresponding decomposition of the Carleson operator

ΠEb
=

∑

i≥0,k∈Z,R∈T max
k,i

TTk,i,R
.

The following two Lemmas will provide the estimates on “tree operators” we
need to prove Theorem 3.9.

Lemma A.2. For q ∈ (1,∞) there is a constant Cq such that for every
tree Tk,i,R we have

‖TTk,i,R
‖q ≤ Cq .

Proof. Define Tl = {P ∈ Tk,i,R| lP ∩ lR = ∅} and Tu = Tk,i,R\Tl.
Clearly, TTk,i,R

= TTl
+ TTu and we will handle each of the terms separately.

First we consider TTu . Take P, P
′ ∈ Tu with P 6= P ′. We claim that

uP ∩ uP ′ = ∅. The only nontrivial case of the claim is when P and P ′

are comparable, say P ≺ P ′ ≺ R. But then P, P ′, and R have a common
nonempty intersection necessarily contained in lP ∩ lP ′ by the definition of
Tu. It follows that ωP ′ ⊂ ωP and the inclusion is strict since P 6= P ′. Thus
ωP ′ ⊂ ωlP so uP and uP ′ are disjoint as claimed. It follows that TP f and TP ′

are supported on disjoint sets. Recall that for any tile p there is exactly one
generalized Walsh wavelet packet Wp with time-frequency support equal to
p. Hence,
(A.1)

Πpf(x) = χQp(x)
∑

Q:|Q||ωp|=1

〈f,WQ×ωp〉WQ×ωp = 〈f,WQp×ωp〉WQp×ωp ,

from which we get
(A.2)

|TP f(x)| ≤ |Πlpf(x)| = |〈f,Wlp〉Wlp(x)| ≤
1

|Qlp |

∫

Qlp

|f(y)| dy ≤ CMf(x),
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where we have used that A is almost isotropic which implies that the sets
Qlp have bounded eccentricity so there exists an d-ball B centered at x such
that Qlp ⊂ B and |Qlp | ≥ c|B| with c independent of p. We conclude that∑

P∈Pu
TP f(x) can be bounded pointwise by a constant times Mf(x).

Next, we turn to TTl
. Pick a frequency N ∈ lR, and let TN =

Π{(x,n)|n<N}. Notice that ‖TN‖q ≤ Cq by Lemma 3.5. Suppose we can
find two tiles p and p′ such that

(A.3) TTl
f(x) = (ΠpTNf)(x)− (Πp′TNf)(x).

Then, using the same argument as above, we can bound TTl
f(x) by

2CMTNf(x) which will prove the Lemma.
Suppose TTl

f(x) 6= 0, and define Ex = {n|(x, n) ∈ Pl}. We let P be a
minimal bitile in Pl such that (x, b(x)) ∈ uP and let P

′ be a maximal bitile
with the same property, and define p = Ωp×ωP where Ωp is defined such that
p is a tile and x ∈ Ωp, and we let p

′ = uP ′ . The decomposition (A.3) will follow

at once if we can prove that Ẽx = {n|n < N, n ∈ ωp, and n 6∈ ωp′} equals
Ex. Given (x, n) ∈ EU with U ∈ Pl, then (x, b(x)) ∈ uU and (x, n) ∈ lU .
Moreover, U ≺ R so ωR ⊂ ωU which implies that (x,N) ∈ uU (note that
(x,N) 6∈ lU since U ∈ Pl). Hence n < N and ωU ⊂ ωp since ωp = ΩP and
P ≺ U so n ∈ ωp. Also, (x, b(x)) ∈ uU ∩uP ′ 6= ∅ so ωuP ′

⊂ ωuU since U ≺ P ′.

But n ∈ ωlU so n 6∈ ωp′ ⊂ ωuU . Hence Ex ⊂ Ẽx. Conversely, given n ∈ Ẽx,
then n < N and {(x,N), (x, b(x))} ⊂ uP ′ but (x, n) 6∈ uP ′ . Thus, n < b(x)
and we can find a bitile V such that (x, n) ∈ EV satisfying P ≺ V ≺ P ′ so

V ∈ Tk,i,R by convexity. It also follows that V ∈ Pl which implies Ẽx ⊂ Ex

and we are done.

Lemma A.3. For q ∈ (1,∞) there is a constant Cq such that for every
tree Tk,i,R,

‖TTk,i,R
f‖q ≤ C2k|ΩR|1/q ,

where C does not depend on the fixed function f .

Proof. The area E of the tree Tk,i,R is a convex union of bitiles so
it follows from Lemma A.1.3 that E can be written as a disjoint union of
tiles. E\lP is also a disjoint union of tiles, so using (A.1) we obtain that for
P ∈ Tk,i,R the projections ΠE\lP and ΠlP are orthogonal. Hence,

ΠlPΠE = ΠlP (ΠlP +ΠE\lP ) = ΠlPΠlP = ΠlP ,

and we deduce that TP f(x) = TPΠEf(x). Consequently, TTk,i,R
f =

TTk,i,R
ΠEf and ‖TTk,i,R

f‖q ≤ ‖TTk,i,R
‖q‖ΠEf‖q. The support of ΠEf is con-

tained in ΩR. Fix x ∈ ΩR and let P be the minimal bitile in the tree
containing x. Then ωP is exactly the frequencies n such that (x, n) ∈ E.
To see this we suppose (x, n) ∈ E. Then there is a bitile P ′ containing
(x, n). Since P ′ and P are smaller than R, their frequency intervals both
contain a point ñ ∈ ωR. Hence P and P ′ are comparable and P ≺ P ′
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by the definition of P . Thus (x, n) ∈ P . The opposite inclusion is trivial.
Hence, ΠEf(x) = ΠP f(x) so from the densities of the bitiles in Tk,i,R we get
‖ΠEf‖∞ ≤ 2k+1. Using that the support of ΠE is contained in ΩR we get
the estimate ‖ΠEf‖q ≤ 2k+1|ΩR|1/q . Combined with the previous lemma this

gives us ‖TTk,i,R
f‖q ≤ C2k|ΩR|1/q .

Completion of the proof. The area of two distinct trees Tk,i,R1 and
Tk,i,R2 from the same forest are clearly disjoint so we have, for q > 0,

|TTk,i
f(x)|q =

∑

R∈T max
k,i

|TTk,i,R
f(x)|q ,

which combined with Lemma A.3 implies

(A.4) ‖TTk,i
f‖q ≤ C2k

( ∑

R∈T max
k,i

|ΩR|
)1/q

.

For P ∈ T max
k consider the bitiles R in T max

k,i which are smaller than P .
The time intervals of these bitiles are contained in ΩP and must be pairwise
disjoint because otherwise the frequency intervals of two such bitiles with
nonempty intersection would both contain ωP and thus make two of the bitiles
in T max

k,i comparable, which is clearly not the case. This observation gives us
the following estimate

∑

R∈T max
k,i :R≺P

|ΩR| ≤ |ΩP |.

We add this inequality up for all the bitiles P ∈ T max
k , using the fact that

each R ∈ T max
k,i dominates at least 2i bitiles from T max

k , to obtain

(A.5) 2i
∑

R∈T max
k,i

|ΩR| ≤
∑

P∈T max
k

|ΩP |.

Next, we observe that any tile p we have the important property that
‖Πpf‖22 = ‖Πpf‖2∞|Ωp|, which follows from (A.1) Thus for any bitile P ,

2‖ΠP f‖22 = 2(‖ΠuP f‖22 + ‖ΠlP f‖22)
= 2|ΩP |(‖ΠuP f‖2∞ + ‖ΠlP f‖2∞)
≥ ‖ΠP f‖2∞|ΩP |.

From the fact that the time intervals of the bitile in T max
k are pairwise disjoint,

we have
(A.6)

‖f‖22 ≥
∑

P∈T max
k

‖ΠP f‖22 ≥
∑

P∈T max
k

1

2
‖ΠP f‖2∞|ΩP | ≥

1

2
22k

∑

P∈T max
k

|ΩP |,



NONSEPARABLE WALSH-TYPE FUNCTIONS ON R
d 137

where we used the definition of the density of the tiles in T max
k . We use (A.5)

in (A.6) and combine with (A.4) to conclude that

‖TTk,i
f‖q ≤ C2k‖f‖2/q

2 2−(2k+i)/q .

Fix K ∈ Z, and let q > 2. We add all bitiles with density less than or equal
to K to get

∥∥∥∥
∑

P :aP ≤K

TP f

∥∥∥∥
q

≤ C‖f‖2/q
2

∑

k<K,i≥0

2k(1−2/q)

2i/q
≤ C‖f‖2/q

2 2K(1−2/q),(A.7)

from which we obtain the following weak estimate

(A.8)
∣∣{x :

∣∣ ∑

P :aP ≤K

TP f(x)
∣∣ > 2K

}∣∣ ≤ C‖f‖22
2K(q−2)

2Kq
= C
‖f‖22
22K

.

To get the general result we follow R. Hunt and verify that restricted type
inequalities holds for the Carleson operator, and then use interpolation of the
restricted type inequalities (see e.g. [18, Chap. V]) to get the full result. Let
us suppose f = χΩ, Ω ⊂ Q. Then ‖f‖22 = ‖f‖pp for 1 < p < ∞. Notice that
no bitile can have density larger than 1 so taking taking K = 1 in (A.7)
immediately gives us the bound ‖TPf‖p ≤ C‖f‖p, which is the required
restricted inequality. For 1 < p < 2 we put r − p = p(r − s) in (A.8) to
get

∣∣{x :
∣∣ ∑

P :aP ≤pK

TP f(x)
∣∣ > 2pK

}∣∣ ≤ C ‖f‖
2
2

2pK
= C
‖f‖pp
2pK

.

Next, consider g =
∑

P :aP >pK TP f . If x is in the support of g then x is
contained in the time interval of some bitile with density larger than pK, and
it follows from (A.2) that Mf(x) > C2pK . Hence

|{x : |g(x)| > 2pK}| ≤ |{x :Mf(x) > C2pK}| ≤ C ‖f‖1
2pK

=
‖f‖pp
2pK

.

The strong estimate now follows by interpolation.
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