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ON DIRECTLY ADDITIVE SELECTORS FOR CONVEX

AND STAR BODIES

Maria Moszyńska

Warsaw University, Poland

Abstract. The paper deals with direct additivity of selectors, as
well for convex as for star bodies. Sections 3 and 4 concern selectors for
convex bodies. In Section 5 two methods of extending a selector for convex
bodies to a selector for star bodies are considered, both preserving direct
additivity.

1. Introduction

As it was proved by Schneider in 1971 ([10]), among all the selectors
for compact convex subsets of Rn which are continuous with respect to the
Hausdorff metric and equivariant under the isometries, only the Steiner point
map is Minkowski additive.

We are interested in direct additivity of selectors, that is, roughly speak-
ing, additivity with respect to direct sum.

In Sections 3 we give three examples of directly additive selectors for
convex bodies: the Steiner point, the gravity centre, and the Čebyšev point.
Section 4 concerns G-pseudo-centres, which are studied separately because in
this case the situation is more complicated.

In Section 5 we consider two methods of extending selectors for convex
bodies to those for star bodies.

Our motivation for studying selectors for star bodies is the following (com-
pare [7], p.132). Various constructions for star bodies are defined in terms of
radial function, which depends on the position of 0 in a star set considered.
For instance, the intersection body IA, whose radial function is defined by

2000 Mathematics Subject Classification. 52A20, 52A30, 52A99.
Key words and phrases. Convex bodies, star bodies, selectors, direct sum.

145



146 M. MOSZYŃSKA

the formula

%IA(u) := Vn−1(A ∩ u⊥)
for u ∈ Sn−1, (see [3]), depends on the choice of the origin. Let us recall that
the notion of intersection body plays an essential role in geometric tomography
(see [5]).

2. Preliminaries

We follow, in principle, terminology and notation used in [12]. In particu-
lar, bd, int, cl, conv, lin, and aff are, respectively, boundary, interior, closure,
convex hull, linear hull, and affine hull. For v ∈ Rn \ {0},

pos v := {λv | λ ≥ 0}.
The k-dimensional Lebesgue measure in Euclidean k-dimensional space is λk,
the k-dimensional spherical measure in a k-dimensional unit sphere is σk (or
simply σ, if it does not lead to a confusion). The k-dimensional Hausdorff
measure is Hk.

Bn and Sn−1 are the unit ball and the unit sphere in Rn, respectively,
and Kn is the class of compact convex subsets of Rn. However, a convex body
in Rn is assumed to have the non-empty interior, while Schneider in [12] refers
to any compact convex set as a convex body; Kn

0 is the class of convex bodies
in Rn. More generally, for any Euclidean space E, the class of all compact
convex subsets of E and the class of all convex bodies in E are K(E) and
K0(E), respectively.

For any A ∈ Kn, the intrinsic volume of order i of A is Vi(A). Let us
recall that V0(A) = 1 for every A.

Let F ⊂ Kn. A map s : F → Rn is called a selector for F if s(A) ∈ A for
every A ∈ F .

We shall also consider selectors for star sets. Let A ⊂ Rn. The kernel of
A is defined by the formula

kerA := {a ∈ A | ∀x ∈ A ∆(a, x) ⊂ A},
where ∆(a, x) is the segment with endpoints a, x.

A subset A of Rn is called a star set if kerA 6= ∅; a compact star set A in
Rn is called a star body if cl intA = A.

Let Sn be the class of compact star sets in Rn and Sn
0 the class of compact

star bodies in Rn. Similarly as we do for convex bodies, we use the symbols
S(E) and S0(E) for the classes of suitable star sets in any Euclidean space E.

Let F ⊂ Sn. A map s : F → Rn is a selector for F if and only if
s(A) ∈ kerA for every A ∈ F (see [7]).

A selector s : F → Rn is said to be equivariant under an isometry f of
Rn onto itself if for every A ∈ F

s(f(A)) = f(s(A)). (2.1)
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For any m ≤ n, let En
m be the family of m-dimensional affine subspaces

of Rn, and let

En :=
⋃

m≤n

En
m.

Lemma 2.1. Let E ∈ En
m for some m ≤ n and let f1, f2 : E → Rm be

isometries. If A ∈ K0(E) and a selector s : Km
0 → Rm is equivariant under

the isometries of Rm, then

f−1
1 (s(f1(A))) = f−1

2 (s(f2(A))). (2.2)

Proof. Let f := f2 ◦ f−1
1 . Then f is an isometry of Rm mapping f1(A)

on f2(A). Thus, by (2.1),

f(s(f1(A))) = s(f2(A)),

which is equivalent to (2.2).

Let now ⊕ be the direct sum: if Rn = E1 ⊕ E2 for two affine subspaces
E1, E2 of R

n with positive dimensions, then for every Xi ⊂ Ei, i = 1, 2,

X1 ⊕X2 := X1 +X2.

Thus, direct sum operation is a restriction of the Minkowski addition.
For any A ∈ Kn, let ξA : Rn → A be the metric projection (i.e., the

nearest point map) of Rn on A. We shall need the following property of this
map.

Lemma 2.2. If Rn = E1 ⊕ E2 for E1, E2 orthogonal, ai ∈ Ei, and Xi ∈
K(Ei) for i = 1, 2, then

ξX1⊕X2(a1 + a2) = ξX1(a1) + ξX2 (a2).

Proof. Let a = a1 + a2. Then

inf{‖x− a‖ | x ∈ X1 ⊕X2} =
= inf{

√
‖x1 − a1‖2 + ‖x2 − a2‖2 | xi ∈ Xi, i = 1, 2}.

Thus, if xi ∈ Ei and x = x1 + x2, then x = ξX1⊕X2(a1 + a2) if and only if
xi = ξXi(ai) for i = 1, 2. This completes the proof.

3. Directly additive selectors for convex bodies

We begin with selectors for Kn. For our purpose it is reasonable to con-
sider a sequence of selectors,

(
s(m) : Km → Rm

)
m≤n

instead of an individual

selector for a fixed n.
In view of Lemma 2.1, for a given n, every sequence (s(m) : Km →

Rm)m≤n of equivariant selectors determines the family of selectors,

s := (sE : K(E)→ E)E∈En ,
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defined as follows: for every E ∈ En
m and A ∈ K(E),

sE(A) := f−1s(m)f(A), (3.1)

where f : E → Rm is an isometry.
The following is evident.

Proposition 3.1. Let s be the family determined by a sequence of equi-
variant selectors, defined by (3.1). If E,E ′ ∈ En

m for some m ≤ n, then for
every isometry f : E → E ′ and A ∈ K(E)

f(sE(A)) = sE′(f(A)).

In particular, every member of the family s is equivariant under the isometries
of the corresponding affine subspace.

Let us consider three examples:

For A ∈ Kn
0 , let c

(n)(A) be the centroid of A (i.e. the gravity centre with
respect to λn) :

c(n)(A) :=
1

λn(A)

∫

A

xdλn(x). (3.2)

Further, for any A ∈ Kn, let p(n)(A) and č(n)(A) be, respectively, the Steiner
point and the Čebyšev point of A:

p(n)(A) :=
1

κn

∫

Sn−1

uhA(u)dσ(u), (3.3)

and č(n)(A) is the centre of the smallest ball in Rn containing A.
As is well known, all these selectors are equivariant under the isometries.
For E ∈ En the points cE(A), pE(A), and čE(A) are the centroid, the

Steiner point, and the Čebyšev point of A with respect to E.
We now define direct additivity as follows.

Definition 3.2. Let s = (sE)E∈En be the family determined by a sequence
(s(m))m≤n of equivariant selectors (see (3.1)). The family s is directly additive

(or, the sequence (s(m))m≤n is directly additive) if and only if

s(n)(A1 ⊕A2) = sE1(A1) + sE2(A2) (3.4)

whenever Ei = aff Ai and Rn = E1 ⊕E2 with E1, E2 orthogonal.

Theorem 3.3. The family of centroids, c, of the Steiner point maps, p,
and the family of Čebyšev point maps, č, are directly additive.

Proof. Since the Lebegue measure is multiplicative, that is, for every
pair of orthogonal subspaces E1, E2 of R

n with dimEi = ni and every Borel
sets X1, X2 with Xi ⊂ Ei

λn(X1 ⊕X2) = λn1(X1) · λn2(X2),

from (3.2) it follows that c is directly additive.
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Since the Steiner point is independent of dimension of the ambient space,
that is, for every subspace E of Rn with dimE < n and every A ∈ K(E)

pE(A) = p(n)(A),

the Minkowski additivity of p implies direct additivity of p.
It remains to prove direct additivity of č.
Let Rn = E1 ⊕ E2 for some orthogonal affine subspaces E1, E2 with

dimEi ≥ 1; let aff Ai = Ei, and Ai ∈ K0(Ei) for i=1,2.
Let ai = čEi(Ai), and let B(ai, ri) be the Čebyšev ball of Ai in Ei for

i = 1, 2 (i.e. the smallest ball in Ei containing Ai).
Let X := B(a1, r1) ⊕ B(a2, r2); then A1 ⊕ A2 ⊂ X . Let a = a1 + a2.

Since, evidently, a is the symmetry centre of X , it follows that a = č(n)(X).
Let B̌ be the Čebyšev ball of X . Then B̌ = B(a, r), where

r =
√
(r1)2 + (r2)2.

Suppose that B̌ is not the Čebyšev ball of A1 ⊕ A2. Thus, there exists
a ball B0 containing A1 ⊕ A2, with a radius r0 < r. Let B0,i := B0 ∩ Ei for
i = 1, 2. Then the ball B0,i in Ei contains Ai, whence its radius r0,i is at least
ri. But

r0 =
√
(r0,1)2 + (r0,2)2 < r,

a contradiction. Hence B̌ is the Čebyšev ball of A1 ⊕ A2, and thus a =
č(n)(A1 ⊕A2), i.e.,

č(n)(A1 ⊕A2) = čE1(A1) + čE2(A2).

Let us notice that direct additivity of p is a particular case of much more
general fact (Theorem 3.5).

Let us recall that every A ∈ Kn determines a sequence of curvature mea-
sures Φk(A, ·), k = 0, ..., n (see [11]). This notion was originally introduced
and studied by H. Federer in [2] for arbitrary set A with positive reach in Rn;
we shall need the following version of his Theorem 5.14 (4) in [2] p. 422.

Theorem 3.4. Let Ai ∈ K0(Ei) and Ai ⊂ Ei for orthogonal affine
subspaces E1, E2 of Rn, with dimEi = ni, where n1 + n2 = n, and let
k ∈ {0, ..., n}. Then for every Borel sets Xi in Ei, i = 1, 2,

Φk(A1 ⊕A2, X1 ⊕X2) =
∑

i1+i2=k

Φi1(A1, X1) · Φi2(A2, X2).

Let us consider the curvature centroids, i.e. the gravity centres with
respect to curvature measures:

pi(A) := cΦn−i(A,·)(A), (3.7)
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In particular, pn is the Steiner point map, i.e., pn = p(n). (see [12]). As
a consequence of the Federer Theorem 3.4, we obtain the following result
concerning a relationship between the selectors p0, ..., pn.

Theorem 3.5. Let E1, E2 be two orthogonal affine subspaces of Rn with
dimEk = nk and n1 + n2 = n. Let A1, A2 ∈ Kn and Ak ⊂ Ek. Then, for
every i ∈ {0, ..., n}

pn−i(A1 ⊕A2) =
∑

i1+i2=i

αi1,i2 · ((pn1−i1)E1(A1) + (pn2−i2)E2(A2)) ,

where, for ik ≤ nk, k = 1, 2,

αi1,i2 :=
Vi1(A1)Vi2 (A2)

Vi(A1 ⊕A2)
. (3.8)

Proof. By Theorem 3.4 combined with the Fubini theorem,∫

A1⊕A2

xdΦi(A1 ⊕A2, x) =
∑

i1+i2=i

∫

A1

∫

A2

(x1 + x2)dΦi1(A1, x1)dΦi2(A2, x2)

=
∑

i1+i2=i

Vi1(A1)Vi2 (A2)((pn1−i1)E1(A1) + (pn2−i2)E2(A2)).

To complete the proof, it now remains to use (3.7) and (3.8).

Finally, let us mention that direct additivity of centre of the minimal ring
was studied in [6]; it was proved that this selector was not directly additive.

4. Problem of direct additivity for G-pseudo-centres

In [8], for any subgroup G of O(n), the notion of G-pseudo-centre of a
convex body in Rn was defined:

for A ∈ Kn
0 , the set PG(A) ofG-pseudo-centres of A consists of maximizers

of the function
A 3 x 7→ Vn(

⋂

g∈G

g(A− x)).

Generally, the set PG(A) does not have to be a singleton. However, if G
is generated by the central symmetry σn

0 of R
n, then every A has a unique

G-pseudo-centre, pG(A) (compare [1])
1; moreover, < σn

0 > is the only group
with this property.

Further, for any G ⊂ O(n), if fixG = {0}, then every strictly convex A
has a unique G-pseudo-centre (see [8, 9]).

We start with the following

Definition 4.1. Let (E1, E2) be a pair of orthogonal linear subspaces of
Rn, with Rn = E1 ⊕E2, and let GEi be a group of linear isometries of Ei for
i = 1, 2.

1In [1] this point is called quasi-centre of A
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(i) For every gi ∈ Gi, i = 1, 2, the map g1 ? g2 : R
n → Rn is defined by

(g1 ? g2)(x1 + x2) := g1(x1) + g2(x2) for every xi ∈ Ei, i = 1, 2.

(ii) GE1 ? GE2 := {g1 ? g2 | gi ∈ GEi}.

Remark 4.2. Under the assumptions of 4.1, the group GE1 ? GE2 is
isomorphic to the Cartesian product of these two groups.

We shall now prove the following (compare 3.7 in [8]).

Theorem 4.3. Let E1, E2 be orthogonal linear subspaces of Rn with
dimEi = ni and n1 + n2 = n, and let Gi be a group of linear isometries
of Ei. Then, for every Ai ∈ K(Ei), i = 1, 2,

PG1?G2(A1 ⊕A2) = PG1(A1)⊕ PG2(A2).

If, in particular, PGi(Ai) is a singleton for i = 1, 2, then PG1?G2(A1⊕A2)
is a singleton too, and

pG1?G2(A1 ⊕A2) = pG1(A1) + pG2(A2).

Proof. Let A = A1 ⊕ A2 and let x ∈ A. Then x = x1 + x2 for some
xi ∈ Ai, i = 1, 2, and

⋂

g∈G1?G2

g(A− x) =
⋂

g1∈G1

⋂

g2∈G2

g1(A1 − x1)⊕ g2(A2 − x2)

= (
⋂

g1∈G1

g1(A1 − x1))⊕ (
⋂

g2∈G2

g2(A2 − x2)).

Thus

x ∈ PG1?G2(A)⇐⇒ xi ∈ PGi(Ai) for i = 1, 2. (4.1)

Let us notice that the property of G-pseudo-centres described by Theorem
4.3 is weaker than direct additivity, because Gi depends on Ei. To define the
suitable family pG of selectors for all the En, we need equivariance with respect
to the isometries (see Lemma 1.1). As was proved in [9] (see (2.2) in Example
2.2 and Example 2.5), G-pseudo-centre pG is equivariant with respect to all
isometries if and only if G =< σ0 >.

Corollary 4.4. The sequence (pGn : Kn → Rn)n∈N of Gn-pseudo-
centres induces the family pG if and only if Gn is generated by σn

0 for every
n. This unique family is directly additive.
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5. Extensions of selectors from convex to star bodies

Let us recall two methods of extending selectors for Kn
0 to selectors for

Sn
0 (compare [7]). The first method can be applied to an arbitrary selector
s : Kn

0 → Rn: its extension s̄ : Sn
0 → Rn is defined by the formula

s̄(A) := ξker A(s(convA)) for every A ∈ Sn
0 . (5.1)

The second method can be applied to a selector s which satisfies the following
condition:

(*) There exists a family (ΦA : A→ R)A∈Kn of functions such that
(i) for every A ∈ Kn

0 , the point s(A) is the unique maximizer (min-
imizer) of ΦA,

(ii) for every A ∈ Kn
0 and X ∈ Kn with X ⊂ A, the function ΦA|X

has the unique maximizer (minimizer), s(A,X).

If s satisfies (*), then its extension s̃ : Sn
0 → Rn is defined by the formula

s̃(A) := s(convA, kerA). (5.2)

In [7] the second method was introduced 2 for s being the radial centre
map rφ : Kn

0 → Rn associated with a function φ : R+ → R+. If n ≥ 2, the
function ΦA for which rφ(A) is the maximizer is then defined by

ΦA(x) :=

∫

Sn−1

φ%A−x(u)dσ(u) for every x ∈ A. 3 (5.3)

The problem of direct additivity of radial centre maps is discussed in [4].
If s = (sE)E∈En is the family defined by (3.1) for a given sequence (s(n))

of selectors, then the corresponding families for extended selectors will be
denoted by s̄ and s̃.

We shall now prove that the extensions s 7→ s̄ and s 7→ s̃ preserve direct
additivity (Theorems 5.3 and 5.4). Let us start with the following.

Proposition 5.1. (i) For every subsets A1, A2 of Rn

ker(A1 +A2) ⊃ kerA1 + kerA2.

(ii) If Rn = E1 ⊕E2 (for E1, E2 non-necessarily orthogonal) and Ai ⊂ Ei

for i = 1, 2, then

ker(A1 ⊕A2) = kerA1 ⊕ kerA2.

Proof. (i) : Let xi ∈ kerAi for i = 1, 2 and x = x1 + x2. Then for
every a ∈ A1+A2 there exist ai ∈ Ai for i = 1, 2 such that a = a1+a2

and ∆(ai, xi) ⊂ Ai. Since

∀t ∈ [0, 1] (1− t)x + ta = ((1− t)x1 + ta1) + ((1− t)x2 + ta2),

2On the p. 139 of [7] the restriction to T n is not needed; T n should be replaced by Sn0 .
3In [7] this selector was denoted by Mφ.
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it follows that

∆(x, a) ⊂ ∆(x1, a1) + ∆(x2, a2) ⊂ A1 +A2.

Thus x ∈ ker(A1 +A2).
(ii) : Let now x ∈ ker(A1 ⊕ A2). Then x = x1 + x2 for a unique pair

(x1, x2) ∈ A1 ×A2. Take ai ∈ Ai for i = 1, 2 and let a = a1 + a2; then
∆(x, a) ⊂ A1 ⊕A2, i.e.

∀t ∈ [0, 1] (1− t)x+ ta ∈ A1 ⊕A2.

Thus (1 − t)xi + tai ∈ Ai for every t ∈ [0, 1], whence xi ∈ kerAi for
i = 1, 2. Therefore

x ∈ kerA1 ⊕ kerA2.

As a direct consequence of 5.1.(i), we obtain

Corollary 5.2. If A1 and A2 are star sets in Rn, then so is A1 +A2.

We shall now prove the following.

Theorem 5.3. If s is a directly additive family of selectors for Kn
0 , then

s̄ is a directly additive family of selectors for Sn
0 .

Proof. By (5.1), s̄(n)(A) = ξker A(s
(n)(convA)). Let A = A1 ⊕ A2 with

Ai ∈ K(Ei) for i = 1, 2. Since s is directly additive and convA = convA1 ⊕
convA2, by Proposition 5.1(ii) combined with Lemma 2.2 it follows that

s̄(n)(A) = ξker A1(sE1(convA1)) + ξker A2(sE2(convA2)) = s̄E1(A1) + s̄E2(A2).

By 3.3, Theorem 5.3 applies to the centroid, the Steiner point, and the
Čebyšev point; by 4.4, it applies to the < σ0 >-pseudo-centre:

Corollary 5.4. The families c̄, p̄, ¯̌c, and p̄<σn
0 > are directly additive.

Let us now pass to the second method of extending selectors from convex
to star bodies.

Theorem 5.5. For every n ≥ 2, let s(n) : Kn
0 → Rn be a selector satisfying

condition (*). If for any Ai ∈ K0(Ei) and Xi ∈ K(Ei) with Xi ⊂ Ai for
i = 1, 2

s(n)(A1 ⊕A2, X1 ⊕X2) = sE1(A1, X1) + sE2(A2, X2), (5.4)

then s̃ is directly additive for Sn
0 .

Proof. Since conv(A1⊕A2) = convA1⊕convA2 and, by 5.1(ii), ker(A1⊕
A2) = kerA1 ⊕ kerA2, it follows that for every Ai ∈ S0(Ei), i = 1, 2,

s̃(n)(A1 ⊕A2) = s(conv(A1 ⊕A2), ker(A1 ⊕A2))

= sE1(convA1, kerA1) + sE2(convA2, kerA2)

= s̃E1(A1) + s̃E2(A2).
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Example 5.6. The family of Čebyšev point maps, č, is directly additive
(see 3.3). Moreover, č(n) satisfies condition (*); indeed, for every A ∈ Kn, the
point č(n)(A) is the unique minimizer of the function ΨA : A→ R defined by
the formula

ΨA(x) := inf{r > 0|B(x, r) ⊃ A},
thus č(n) satisfies the first part of (*); it is easy to verify that it also satisfies
the second part. Moreover, (5.4) holds. Hence ˜̌c is directly additive.

Example 5.7. By 4.4 combined with 5.5, the family p̃<σn
0 > is directly

additive, because the sequence of < σn
0 >-pseudo-centres satisfies condition

(*). Indeed, the first part of condition (*) is obvious; it is also easy to prove
the second part, because the proof of the uniqueness in [1] (compare Satz 1)
is based on Hilfsatz 1, p.209, which can be applied in our situation as well.
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[7] M. Moszyńska, Looking for selectors of star bodies, Geom. Dedicata 81 (2000), 131–

147.
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