A GENERALIZATION OF THE 0-NUMERICAL RANGE

Rajna Rajić

University of Zagreb, Croatia

ABSTRACT. Let H be a complex Hilbert space. Given a bounded linear operator A on H, we describe the set $\mathbb{R}^n(A) = \{V^*AW : V, W : \mathbb{C}^n \to H, V^*V = W^*W = I_n, V^*W = 0\}$. It is shown that the closed matricial convex hull of $\mathbb{R}^n(A)$ is a closed ball of radius $\min\{||A - \lambda I|| : \lambda \in \mathbb{C}\}$ centered at the origin.

1. INTRODUCTION

Throughout this paper H will denote a complex Hilbert space with an inner product (\cdot, \cdot) . By B(H) we denote the algebra of all bounded linear operators on H.

In [15] E. L. Stolov showed that the 0-numerical range of a linear operator A acting on a finite dimensional Hilbert space H (i.e., the set $W_0(A) = \{(Ax, y) : x, y \in H, (x, x) = (y, y) = 1, (x, y) = 0\}$) is a circular disc with center at the origin and with radius $\min\{||A - \lambda I|| : \lambda \in \mathbf{C}\}$. The infinite dimensional analogue of this theorem was given in [8, Proposition 2.11].

In this paper we will consider the matricial generalization of the 0numerical range of $A \in B(H)$. More precisely, our aim is to provide for $R^n(A) = \{V^*AW : V, W : \mathbf{C}^n \to H, V^*V = W^*W = I_n, V^*W = 0\}$ a theorem analogous to the theorem of E. L. Stolov.

One obvious consequence of Stolov's theorem is that $\sup\{|\lambda| : \lambda \in W_0(A)\}$ is equal to $\min\{||A - \lambda I|| : \lambda \in \mathbb{C}\}$. (For hermitian $A \in B(H)$ this result was first obtained by Mirsky ([11]).) As it will be seen, the same assertion is valid for the set $\mathbb{R}^n(A)$.

²⁰⁰⁰ Mathematics Subject Classification. 47A12. Key words and phrases. q-numerical range of an operator.

¹³⁹

R. RAJIĆ

2. Main result

DEFINITION 2.1. For an operator $T \in B(H)$ we define the set

$$R^{n}(A) = \{ V^{*}AW : V, W : \mathbf{C}^{n} \to H, V^{*}V = W^{*}W = I_{n}, V^{*}W = 0 \}.$$

REMARK 2.2. Observe that the operators V and W from the above definition are isometries from \mathbf{C}^n to H with orthogonal ranges. Therefore, to avoid the trivial case $\mathbb{R}^n(A) = \emptyset$, we shall assume that the dimension of H is greater than or equal to 2n.

REMARK 2.3. Note that x and y are orthogonal unit vectors of H if and only if $V, W : \mathbb{C} \to H$, where V(1) = y and W(1) = x, are isometries with orthogonal ranges. Then (identifying $B(\mathbb{C})$ with \mathbb{C}) we have $V^*AW = (Ax, y)$. So, in the case n = 1 the set $R^1(A)$ coincides to the 0-numerical range of an operator A. (For the definition and more details see [8, 10, 15, 16]).

REMARK 2.4. Similar concept to the set $R^n(A)$ is the spatial matricial range of $A \in B(H)$ defined by $V^n(A) = \{V^*AV : V : \mathbb{C}^n \to H, V^*V = I_n\}$. When n = 1 this set reduces to the classical numerical range of A, i.e., $W(A) = \{(Ax, x) : x \in H, ||x|| = 1\}$. However, the set $V^n(A)$ lacks an important property of W(A): it need not be convex if n > 1 ([4, p. 142]). The closure of W(A), known as the numerical range of A, is the set of all $\phi(A)$, where ϕ ranges over all norm-one positive linear functionals on B(H). Using completely positive maps, W. B. Arveson ([1]) generalized the concept of numerical range in defining matricial range. J. Bunce and N. Salinas proved in [5, Theorem 3.5] that the matricial convex hull of $V^n(A)$ has the matricial range of A as its closure. Basic references for the numerical and matricial ranges are [1, 3, 4, 5, 6, 7, 13, 14].

One other familiar concept is the set $\{V^*AW : V, W : \mathbf{C}^n \to H, V^*V = W^*W = I_n\}$ where H is a finite dimensional space which dimension is greater than or equal to n. In [9] the authors examine the conditions on A under which this set is convex or starshaped.

REMARK 2.5. If H is a finite dimensional space then $R^n(A)$ is a compact set. Indeed, let us take an arbitrary sequence $(V_i^*AW_i)_i$ in $R^n(A)$. Since (V_i) and (W_i) are the bounded sequences of isometries in the finite dimensional space $B(\mathbf{C}^n, H)$ of all linear operators from \mathbf{C}^n to H such that $V_i^*W_i = 0$ they have the subsequences which converge to some isometries in $B(\mathbf{C}^n, H)$ with orthogonal ranges. Therefore, $(V_i^*AW_i)_i$ must also have a subsequence that converges in $R^n(A)$. Hence, $R^n(A)$ is compact.

Before stating our results we introduce some notation.

The matricial convex hull of a subset S of $B(\mathbf{C}^n)$, denoted by mconv(S), is the set of all finite sums of the form $\sum_{i} T_i^* A_i T_i$, where $A_i \in S$ and where the operators $T_i \in B(\mathbf{C}^n)$ are such that $\sum_{i} T_i^* T_i = I_n$.

We denote by S^- the topological closure of a set S.

The result which follows resembles those obtained by E. L. Stolov ([15]) and by C. K. Li, P. P. Mehta and L. Rodman ([8, Proposition 2.11]).

THEOREM 2.6. Let $A \in B(H)$. Then

 $\operatorname{mconv}(R^{n}(A)^{-}) = (\operatorname{mconv}(R^{n}(A)))^{-} = \{L \in B(\mathbf{C}^{n}) : ||L|| \le r\},\$

where $r = \min\{||A - \lambda I|| : \lambda \in \mathbf{C}\}$. Particularly, if H is finite dimensional then

$$\operatorname{mconv}(R^n(A)) = \{ L \in B(\mathbf{C}^n) : ||L|| \le r \}.$$

PROOF. The first equality follows by [6, Corollary 2.5] since $R^n(A)$ is a bounded subset of $B(\mathbb{C}^n)$ and \mathbb{C}^n is finite dimensional.

Take any $V^*AW \in \mathbb{R}^n(A)$. Since $V^*W = 0$, for every $\lambda \in \mathbb{C}$ we have

$$||V^*AW|| = ||V^*(A - \lambda I)W|| \le ||V^*|| ||A - \lambda I|| ||W|| = ||A - \lambda I||.$$

Hence, $||V^*AW|| \leq \min\{||A - \lambda I|| : \lambda \in \mathbf{C}\} = r$. We conclude that $R^n(A) \subseteq \{L \in B(\mathbf{C}^n) : ||L|| \leq r\}$. Since $\{L \in B(\mathbf{C}^n) : ||L|| \leq r\}$ is a compact matricially convex set, it follows that $(\operatorname{mconv}(R^n(A)))^- \subseteq \{L \in B(\mathbf{C}^n) : ||L|| \leq r\}$.

Recall that the unit ball in $B(\mathbf{C}^n)$ is the closed convex hull of the set of all unitary operators of $B(\mathbf{C}^n)$ ([12, Proposition 1.1.12]). Therefore, for the opposite inclusion it is enough to show that $(\operatorname{mconv}(R^n(A)))^-$ contains every normal operator in $B(\mathbf{C}^n)$ whose norm is less than or equal to r. Hence, let L be a normal operator in $B(\mathbf{C}^n)$ with $||L|| \leq r$. Denote by $\{e_1, \ldots, e_n\}$ an orthonormal basis of \mathbf{C}^n consisting of eigenvectors of L. Let λ_i be the eigenvalue of L corresponding to e_i and let $P_i \in B(\mathbf{C}^n)$ be the orthogonal

projection on the subspace spanned by e_i , i = 1, ..., n. Clearly, $L = \sum_{i=1}^n \lambda_i P_i$

and $\sum_{i=1}^{n} P_i = I_n$. Given $0 < \varepsilon < 1$ we get $|\lambda_i - \varepsilon \lambda_i| = (1 - \varepsilon)|\lambda_i| \le (1 - \varepsilon)|L|| \le 1 - \varepsilon$

 $(1-\varepsilon)r < r$, so by [15] (i.e. [8, Proposition 2.11]) there exist two orthogonal unit vectors $x_i, y_i \in H$ such that

$$\lambda_i - \varepsilon \lambda_i = (Ax_i, y_i)$$

for i = 1, ..., n. Now, for $x_i, y_i \in H$ and a unit vector e_i one can find two isometries $V_i, W_i : \mathbb{C}^n \to H$ with orthogonal ranges such that $V_i e_i = y_i$ and R. RAJIĆ

 $W_i e_i = x_i, i = 1, ..., n$. From this we have $(V_i^* A W_i e_i, e_i) = (A x_i, y_i)$, so $P_i V_i^* A W_i P_i = (A x_i, y_i) P_i$. Therefore,

$$L = \sum_{i=1}^{n} \lambda_i P_i = \sum_{i=1}^{n} (Ax_i, y_i) P_i + \sum_{i=1}^{n} \varepsilon \lambda_i P_i = \sum_{i=1}^{n} P_i V_i^* A W_i P_i + \varepsilon L,$$

so we obtain

$$\|L - \sum_{i=1}^{n} P_i V_i^* A W_i P_i\| = \|\varepsilon L\| \le \varepsilon r.$$

Hence, the arbitrariness of $0 < \varepsilon < 1$ implies $L \in (\operatorname{mconv}(R^n(A)))^-$.

The second assertion follows from the first one and Remark 2.5.

Given a bounded linear operator A defined on a complex Hilbert space H, Mirsky's constant of A ([11]), i.e.,

Π

$$\sup\{|(Ax, y)|: x, y \in H, (x, x) = (y, y) = 1, (x, y) = 0\}$$

is equal to $\min\{||A - \lambda I|| : \lambda \in \mathbf{C}\}$, which is an obvious consequence of the result of [15] (see also [8, Proposition 2.11]). In what follows we shall see that an analogous assertion holds for the set $\mathbb{R}^n(A)$.

THEOREM 2.7. Let
$$A \in B(H)$$
. Then
 $\sup\{\|V^*AW\| : V, W : \mathbb{C}^n \to H, \|V\| = \|W\| = 1, V^*W = 0\} =$
 $= \sup\{\|L\| : L \in \mathbb{R}^n(A)\} = \min\{\|A - \lambda I\| : \lambda \in \mathbb{C}\}.$

PROOF. Let us denote

$$m_1(A) = \{ \|V^*AW\| : V, W : \mathbf{C}^n \to H, \|V\| = \|W\| = 1, V^*W = 0 \}$$

$$m_2(A) = \{ \|L\| : L \in \mathbb{R}^n(A) \}$$

$$r = \min\{ \|A - \lambda I\| : \lambda \in \mathbf{C} \}.$$
co $V^*V = W^*W = L$ implies $\|V\| = \|W\| = 1$ it follows that $m_2(A) = \{ \|V\| = 1 \}$.

Since $V^*V = W^*W = I_n$ implies ||V|| = ||W|| = 1, it follows that $m_2(A) \subseteq m_1(A)$. Further, for $V, W : \mathbb{C}^n \to H$, ||V|| = ||W|| = 1, $V^*W = 0$ we have

$$||V^*AW|| = ||V^*(A - \lambda I)W|| \le ||V^*|| ||A - \lambda I|| ||W|| = ||A - \lambda I||$$

for every $\lambda \in \mathbf{C}$, so $||V^*AW|| \leq r$. Hence,

(2.1)
$$\sup m_2(A) \le \sup m_1(A) \le r.$$

If r = 0 we are done. So assume that r > 0. By [15] (i.e. [8, Proposition 2.11]) we conclude that for an arbitrary $0 < \varepsilon \leq r$ there exist $x_{\varepsilon}, y_{\varepsilon} \in H$ such that $(x_{\varepsilon}, x_{\varepsilon}) = (y_{\varepsilon}, y_{\varepsilon}) = 1, (x_{\varepsilon}, y_{\varepsilon}) = 0, |(Ax_{\varepsilon}, y_{\varepsilon})| = r - \varepsilon$. Let $V_{\varepsilon}, W_{\varepsilon} : \mathbb{C}^n \to H$ be two isometries with mutually orthogonal ranges such that $V_{\varepsilon}e = y_{\varepsilon}$ and $W_{\varepsilon}e = x_{\varepsilon}$, where $e \in \mathbb{C}^n$ is an arbitrary unit vector. Then we obtain

$$r-\varepsilon = |(Ax_{\varepsilon}, y_{\varepsilon})| = |(AW_{\varepsilon}e, V_{\varepsilon}e)| = |(V_{\varepsilon}^*AW_{\varepsilon}e, e)| \le ||V_{\varepsilon}^*AW_{\varepsilon}||,$$

so $r = \sup m_2(A)$. To complete the proof, it remains to apply (2.1).

142

REMARK 2.8. In the original manuscript a concept of a generalized numerical range equivalent to the one introduced in Definition 2.1 was described for operators on Hilbert C^* -modules. As it was pointed out by the referee this reduces to the case of Hilbert space operators (after representing a Hilbert C^* -module as a concrete space of operators). However, in our subsequent paper we shall present some results concerned with the generalized numerical ranges for operators on Hilbert C^* -modules that can be obtained by the methods based on the results of [2].

ACKNOWLEDGEMENTS.

The author would like to thank Professor Damir Bakić for his useful comments and helpful advices. Thanks are also due to the referee for his/her valuable suggestions.

References

- [1] W. B. Arveson, Subalgebras of C^{*}-algebras II, Acta Math. **128** (1972), 271–308.
- [2] D. Bakić and B. Guljaš, Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), 249–269.
- [3] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series 2, Cambridge University Press, Cambridge, 1971.
- [4] F. F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Series 10, Cambridge University Press, Cambridge, 1973.
- [5] J. Bunce and N. Salinas, Completely positive maps on C*-algebras and the left matricial spectra of an operator, Duke Math. J. 43 (1976), 747–774.
- [6] D. R. Farenick, C^{*}-convexity and matricial ranges, Can. J. Math. Vol. 44(2) (1992), 280–297.
- [7] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- [8] C. K. Li, P. P. Mehta and L. Rodman, A generalized numerical range: the range of a constrained sesquilinear form, Linear and Multilinear Algebra 37 (1994), 25–49.
- [9] C. K. Li and N. K. Tsing, On the kth matrix numerical range, Linear and Multilinear Algebra 28 (1991), 229–239.
- [10] M. Marcus and P. Andresen, Constrained extrema of bilinear functionals, Monatsh. Math. 84 (1977), 219–235.
- [11] L. Mirsky, Inequalities for normal and hermitian matrices, Duke Math. J. 24 (1957), 591–599.
- [12] G. K. Pedersen, C*-algebras and their automorphisms groups, Academic Press, New York, 1979.
- [13] R. R. Smith and J. D. Ward, Matrix ranges for Hilbert space operators, Amer. J. Math. 102 (1980), 1031–1081.
- [14] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohôku Math. J. 20 (1968), 417–424.
- [15] E. L. Stolov, On Hausdorff set of matrices, Izv. Vyssh. Ucebn. Zaved. Mat. 10 (1979), 98–100.
- [16] N. K. Tsing, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56 (1984), 195–206.

R. RAJIĆ

Faculty of Mining, Geology and Petroleum Engineering University of Zagreb Pierottijeva 6, 10000 Zagreb Croatia *E-mail*: rajna.rajic@zg.hinet.hr

Received: 11.12.2002 Revised: 05.03.2003

144