SPANS OF CONTINUA RELATED TO INDENTED CIRCLES

Thelma West
University of Louisiana at Lafayette, USA

Abstract

Let X be a special type of simple closed curve in the plane known as an indented circle. Let Y be a continuum which is contained in $X \cup V$ where V is the bounded component of $R^{2}-X$. We show that $\tau(Y) \leq \tau(X)$ where τ is the span σ, surjective span σ^{*}, semispan σ_{0}, surjective semispan σ_{0}^{*}, symmetric span s, or the surjective symmetric span s^{*}.

1. Introduction

The span of a metric continuum was originally defined by A. Lelek (see [L1], p. 209). Later variations of the span were defined (cf [L2, L3, D]). In general it is difficult to calculate the spans of a particular geometric object. Also, it is not clear how the various spans of related objects compare to each other. The following question on this topic was asked by H. Cook[C].

If X_{1} is a plane simple closed curve and X_{2} is a simple closed curve which is contained in the bounded component of $R^{2}-X_{1}$ then is $\sigma\left(X_{2}\right)<\sigma\left(X_{1}\right)$?

There have been various partial results on this question (cf [W1, W2, W3, $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{DF}])$. In this paper we show the following:

If X is a particular type of a simple closed curve known as an indented circle and Y is any continuum contained in $X \cup V$ where V is the bounded component of $R^{2}-X$, then $\tau(Y) \leq \tau(X)$ where τ is any of the various spans.

2. Preliminaries

The standard projections $p_{1}, p_{2}: X \times X \rightarrow X$ are mappings defined by $p_{1}(x, y)=x$ and $p_{2}(x, y)=y$ for $(x, y) \in X \times X$.

[^0]Let X be a nonempty metric space. The surjective span $\sigma^{*}(X)$ of X is the least upper bound of real number α such that there exist nonempty connected sets $C_{\alpha} \subset X \times X$ with $d(x, y) \geq \alpha$ for $(x, y) \in C_{\alpha}$ and

$$
\begin{equation*}
p_{1}\left(C_{\alpha}\right)=p_{2}\left(C_{\alpha}\right)=X \tag{*}
\end{equation*}
$$

Relaxing condition $\left(\sigma^{*}\right)$ to the conditions

$$
p_{1}\left(C_{\alpha}\right)=p_{2}\left(C_{\alpha}\right)
$$

$$
\begin{equation*}
p_{2}\left(C_{\alpha}\right)=X \tag{0}
\end{equation*}
$$

$\left(\sigma_{0}\right)$

$$
p_{1}\left(C_{\alpha}\right) \subset p_{2}\left(C_{\alpha}\right)
$$

we obtain the definitions of the span $\sigma(X)$, the surjective semispan $\sigma_{0}^{*}(X)$, and the semispan $\sigma_{0}(X)$ of X, respectively.

If to condition $\left(\sigma^{*}\right)$ we add the condition that $C^{*}=\left(C^{*}\right)^{-1}$ we get $s^{*}(X)$ the surjective symmetric span. If to condition (σ) we add the condition that $C^{*}=\left(C^{*}\right)^{-1}$ we get $s(X)$ the symmetric span.

In [W1] we defined a particular type of closed curve which we called an indented circle. The construction is given below.

We start with a circle S in the complex plane of radius r and center the origin O. Also, we will consider X as a subset of the real plane whenever this will simplify the exposition.

We choose angles $\theta_{1}, \ldots, \theta_{n}$ such that

$$
0<\theta_{1}<\theta_{2}<\cdots<\theta_{n}<\pi
$$

We choose $4 n$ more angles $\theta_{j}^{1}, \theta_{j}^{2}, \theta_{j}^{3}, \theta_{j}^{4}$, for $j=1,2, \ldots, n$ such that

$$
\begin{gathered}
0 \leq \theta_{1}^{1} \leq \theta_{1} \leq \theta_{1}^{2} \leq \cdots \leq \theta_{n}^{1} \leq \theta_{n} \leq \theta_{n}^{2} \leq \pi \\
\pi \leq \theta_{1}^{3} \leq \theta_{1}+\pi \leq \theta_{1}^{4} \leq \cdots \leq \theta_{n}^{3} \leq \theta_{n}+\pi \leq \theta_{n}^{4} \leq 2 \pi \\
\text { either } \theta_{j}^{1}=\theta_{j}=\theta_{j}^{2} \text { or } \theta_{j}^{1}<\theta_{j}<\theta_{j}^{2} \text { for } j=1,2, \ldots, n, \\
\text { either } \theta_{j}^{3}=\theta_{j}+\pi=\theta_{j}^{4} \text { or } \theta_{j}^{3}<\theta_{j}+\pi<\theta_{j}^{4} \text { for } j=1,2, \ldots, n, \\
\quad \theta_{j}+\alpha_{j}^{2} \leq \theta_{j+1}-\alpha_{j+1}^{1} \text { for } j=1,2, \ldots, n-1,
\end{gathered}
$$

where $\alpha_{j}^{1}=\operatorname{Max}\left\{\theta_{j}-\theta_{j}^{1}, \theta_{j}+\pi-\theta_{j}^{3}\right\}, \alpha_{j}^{2}=\operatorname{Max}\left\{\theta_{j}^{4}-\left(\theta_{j}+\pi\right), \theta_{j}^{2}-\theta_{j}\right\}$.
Let $r_{j}=r e^{i \theta_{j}}, q_{j}=r e^{i\left(\theta_{j}+\pi\right)}, x_{j}=r e^{i \theta_{j}^{1}}, y_{j}=r e^{i \theta_{j}^{2}}, s_{j}=r e^{i \theta_{j}^{3}}$, and $t_{j}=r e^{i \theta_{j}^{4}}$ for $j=1,2, \ldots, n$.

We represent the straight line interval in the plane with endpoints a and b by $\overline{a b}$. Pick points $v_{j}, w_{j} \neq O$ where $v_{j} \in \overline{O r_{j}}$ and $w_{j} \in \overline{O q_{j}}$ for $j=1,2, \ldots, n$. We must choose v_{j} and w_{j} such that the following restrictions are satisfied for $j=1,2, \ldots, n$. If $\theta_{j}^{1}=\theta_{j}^{2}$, then $v_{j}=r_{j}$. If $\theta_{j}^{3}=\theta_{j}^{4}$, then $w_{j}=q_{j}$.

Otherwise, we must choose v_{j} and w_{j} so that the following conditions are satisfied. If $\theta_{j}^{1} \neq \theta_{j}^{2}$, then the smaller angles formed by the following pairs of line intervals, the pair $\overline{x_{j} v_{j}}$ and $\overline{v_{j} r_{j}}$, and the pair $\overline{r_{j} v_{j}}$ and $\overline{v_{j} y_{j}}$ must be no greater than 90°. If $\theta_{j}^{3} \neq \theta_{j}^{4}$, then the smaller angles formed by the following
pairs of line intervals, the pair $\overline{s_{j} w_{j}}$ and $\overline{w_{j} q_{j}}$, and the pair $\overline{q_{j} w_{j}}$ and $\overline{w_{j} t_{j}}$ must be no greater than 90°. We will refer to these conditions as the angle conditions.

For each j, when $\theta_{j}^{1} \neq \theta_{j}^{2}$, the shorter arc on S with endpoints x_{j} and y_{j} is replaced by $\overline{x_{j} v_{j}} \cup \overline{v_{j} y_{j}}$ and when $\theta_{j}^{3} \neq \theta_{j}^{4}$, the shorter arc on S with endpoints s_{j} and t_{j} is replaced by $\overline{s_{j} w_{j}} \cup \overline{w_{j} t_{j}}$.

We refer to both $\overline{x_{j} v_{j}} \cup \overline{v_{j} y_{j}}$ and $\overline{s_{j} w_{j}} \cup \overline{w_{j} t_{j}}$ as indentations of X for $j=1,2, \ldots, n$. We refer to v_{j} and w_{j} as the vertices of the corresponding indentations. The space X consists of the remaining points of S and the added indentations.

From the construction of X, we see that it is a simple closed curve. We call each such simple closed curve X an indented circle (see Fig. 1).

Figure 1

Let d_{j} be the point on $\overline{x_{j} v_{j}}$ closet to t_{j}, c_{j} the point on $\overline{v_{j} y_{j}}$ closest to s_{j}, b_{j} the point on $\overline{s_{j} w_{j}}$ closest to y_{j}, and a_{j} be the point on $\overline{w_{j} t_{j}}$ closest to x_{j}, for $j=1,2, \ldots, n$.

Let $d_{j}^{\prime}=d\left(d_{j}, t_{j}\right), c_{j}^{\prime}=d\left(c_{j}, s_{j}\right), b_{j}^{\prime}=d\left(b_{j}, y_{j}\right)$, and $a_{j}^{\prime}=d\left(a_{j}, x_{j}\right)$, for $j=1,2, \ldots, n$. We call the number

$$
s_{X}=\operatorname{Min}\left\{\operatorname{Max}\left\{\operatorname{Min}\left\{a_{j}^{\prime}, d_{j}^{\prime}\right\}, \operatorname{Min}\left\{b_{j}^{\prime}, c_{j}^{\prime}\right\}\right\}: j=1,2, \ldots, n\right\}
$$

the indentation spread of the indented circle X.
In [W1] we proved the following:
Theorem 2.1. If X is an indented circle and s_{X} is the indentation spread of X, then

$$
\sigma(X)=\sigma_{0}(X)=\sigma^{*}(X)=\sigma_{0}^{*}(X)=s_{X}
$$

T. WEST

Though it was not stated in this theorem, the proof also gives us that $s(X)=s^{*}(X)$, since the continuum $C \subset X \times X$ constructed in the proof of Theorem 2.1 is such that $C=C^{-1}$ and $p_{1}(C)=p_{2}(C)=X$.

3. Main Result

Theorem 3.1. If X is an indented circle, V is the bounded component of $R^{2}-X$, and Y is a continuum such that $Y \subset X \cup V$ then $\tau(Y) \leq \tau(X)$ where $\tau=\sigma, \sigma_{0}, \sigma^{*}, \sigma_{0}^{*}, s, s^{*}$.

Proof. Suppose that X^{*} is an indented circle that has n indentations. We know from [W1, Th2.1] that

$$
\begin{aligned}
\sigma\left(X^{*}\right) & =\sigma_{0}\left(X^{*}\right)=\sigma_{0}^{*}\left(X^{*}\right)=\sigma^{*}\left(X^{*}\right)=s_{X^{*}} \\
& =\operatorname{Min}\left\{\operatorname{Max}\left\{\operatorname{Min}\left\{a_{j}^{\prime}, d_{j}^{\prime}\right\}, \operatorname{Min}\left\{c_{j}^{\prime}, d_{j}^{\prime}\right\}: j=1,2, \ldots, n\right\}\right\}
\end{aligned}
$$

where $s_{X^{*}}$ is the indentation spread of X^{*}. For some j,

$$
s_{X^{*}}=\operatorname{Max}\left\{\operatorname{Min}\left\{a_{j}^{\prime}, d_{j}^{\prime}\right\}, \operatorname{Min}\left\{c_{j}^{\prime}, b_{j}^{\prime}\right\}\right\}
$$

Let $r: R^{2} \rightarrow R^{2}$ be the function that rotates the plane by angle of $\frac{\pi}{2}-\theta$ about the origin; so,

$$
r\left(v_{j}\right)=r_{v} e^{i \frac{\pi}{2}}
$$

where

$$
v_{j}=r_{v} e^{i \theta_{j}}
$$

and

$$
r\left(w_{j}\right)=r_{w} e^{i \frac{3 \pi}{2}}
$$

where

$$
w_{j}=r_{w} e^{i\left(\theta_{j}+\pi\right)}
$$

Let

$$
\begin{gathered}
r\left(x_{j}\right)=x, r\left(y_{j}\right)=y, r\left(s_{j}\right)=s, r\left(t_{j}\right)=t \\
r\left(a_{j}\right)=a, r\left(b_{j}\right)=b, r\left(c_{j}\right)=c, \text { and } r\left(d_{j}\right)=d
\end{gathered}
$$

Let

$$
d(x, a)=a^{\prime}, d(t, d)=d^{\prime}, d(s, c)=c^{\prime} \text { and } d(y, d)=d^{\prime}
$$

Let

$$
X=\overline{x v} \cup \overline{v y} \cup \overline{s w} \cup \overline{w t} \cup\left\{r e^{i \theta} \mid \theta \in\left[0, \theta_{x}\right] \cup\left[\theta_{y}, \theta_{s}\right] \cup\left[\theta_{t}, 2 \pi\right]\right\}
$$

where $0 \leq \theta_{x} \leq \theta_{y} \leq \theta_{s} \leq \theta_{t} \leq 2 \pi$ and $x=r e^{i \theta_{x}}, y=r e^{i \theta_{y}}, s=r e^{i \theta_{s}}$ and $t=r e^{i \theta_{t}}$. From [W1, Th2.1] we see that

$$
s_{X^{*}}=\tau\left(X^{*}\right)=\tau(X)=s_{X} \text { for } \tau=\sigma, \sigma_{0}, \sigma^{*}, \sigma_{0}^{*}
$$

From the proof of the theorem we also see that

$$
s_{X^{*}}=\tau\left(X^{*}\right)=\tau(X)=s_{X} \text { for } \tau=\sigma, \sigma_{0}, \sigma^{*}, \sigma_{0}^{*}
$$

where $\tau=s$ or s^{*}. Also, if Y is a continuum such that $Y \subset X^{*} \cup V^{*}$ where V^{*} is the bounded component of $R^{2}-X^{*}$ then $Y \subseteq X \cup V$ where V is the
bounded component of $R^{2}-X$. So, without loss of generality we can assume that our indented circle is X rather than X^{*}. Note that either
a) $0<\theta_{x}<\frac{\pi}{2}<\theta_{y}<\pi<\theta_{s}<\frac{3 \pi}{2}<\theta_{t}<2 \pi$,
b) $0<\theta_{x}=\frac{\pi}{2}=\theta_{y}<\pi<\theta_{s}<\frac{3 \pi}{2}<\theta_{t}<2 \pi$, or
c) $0<\theta_{x}<\frac{\pi}{2}<\theta_{y}<\pi<\theta_{s}=\frac{3 \pi}{2}=\theta_{t}<2 \pi$.

We first consider the situation in a) we have sixteen cases to consider.
A1

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} \\
& a \neq w \neq b
\end{aligned}
$$

A2

$$
\begin{aligned}
& s_{X}=\max \left\{c^{\prime}, d^{\prime}\right\} \\
& c \neq v \neq d
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the origin then case $A 2$ is comparable to case $A 1$.
B1

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} \\
& a \neq w, c \neq v
\end{aligned}
$$

B2

$$
\begin{aligned}
& s_{X}=\max \left\{d^{\prime}, b^{\prime}\right\} \\
& d \neq v, b \neq w
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the y-axis then case $B 2$ is comparable to case $B 1$.
C1

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} \\
& a=b=w
\end{aligned}
$$

C2

$$
\begin{aligned}
& s_{X}=\max \{c, d\} \\
& c=v=d
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the origin then case $C 2$ is comparable to case $C 1$.
D1

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} \\
& a=w, c=v
\end{aligned}
$$

D2

$$
\begin{aligned}
& s_{X}=\max \left\{d^{\prime}, b^{\prime}\right\} \\
& d=v, b=w
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the y-axis then case $D 2$ is comparable to case $D 1$.
E1

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} \\
& a=w, b \neq w
\end{aligned}
$$

E2

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} \\
& a \neq w, b=w
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the y-axis then case $E 2$ is comparable to case $E 1$.
E3

$$
\begin{aligned}
& s_{X}=\max \left\{d^{\prime}, c^{\prime}\right\} \\
& d=v, c \neq v
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the x-axis then case $E 3$ is comparable to case $E 1$.
E4

$$
\begin{aligned}
& s_{X}=\max \left\{d^{\prime}, c^{\prime}\right\} \\
& d \neq v, c=v
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the origin then case $E 4$ is comparable to case $E 1$.
F1

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} \\
& a=w, c \neq v
\end{aligned}
$$

F2

$$
\begin{aligned}
& s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} \\
& a \neq w, c=v
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the origin then case $F 2$ is comparable to case $F 1$.
F3

$$
\begin{aligned}
& s_{X}=\max \left\{d^{\prime}, b^{\prime}\right\} \\
& d=v, b \neq w
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the x-axis then case $F 3$ is comparable to case $F 1$
F4

$$
\begin{aligned}
& s_{X}=\max \left\{d^{\prime}, b^{\prime}\right\} \\
& d \neq v, b=w
\end{aligned}
$$

If we rotate X by 180° in R^{4} about the y-axis then case $F 4$ is comparable to case $F 1$.

Now we consider the situations in b) and c).
G1

$$
\begin{aligned}
& s_{X}=d(v, w) \\
& v=r e^{i \frac{\pi}{2}}
\end{aligned}
$$

G2

$$
\begin{aligned}
& s_{X}=d(v, w) \\
& w=r e^{i \frac{3 \pi}{2}}
\end{aligned}
$$

If we rotate X by 180° in R^{2} about the origin then case $G 2$ is comparable to case $G 1$. So, in order to prove the theorem we just need to examine cases $A 1, B 1, C 1, D 1, E 1, F 1$ and $G 1$.

In order to do this we first define functions p_{ε} and q_{ε} under various conditions. We define continuous functions p_{ε} and q_{ε} where

$$
\begin{gathered}
p_{\varepsilon}: R \rightarrow \overrightarrow{w t} \\
q_{\varepsilon}: L \rightarrow \overrightarrow{w s} \\
R=\left\{\left(x_{1}, y_{1}\right) \in X \cup V \mid x_{1} \geq 0\right\},
\end{gathered}
$$

and

$$
L=\left\{\left(x_{1}, y_{1}\right) \in X \cup V \mid x_{1} \leq 0\right\} .
$$

First we define p_{ε} in two different cases.
p_{ε} CASE 1: $a \neq w$
We define p_{ε} for ε where $0<\varepsilon<\frac{1}{4} \min \{d(w, a), d(w, v)\}$. Pick $m \in \overline{w a}$ such that $0<d(w, m)<\varepsilon$. Let $n \in \overline{v x}$ such that $\overline{m n}$ is perpendicular to $\overline{w t}$. Let P_{1} be the portion of the plane which is bound by

$$
B_{1}=\overline{t m} \cup \overline{m n} \cup \overline{n x} \cup\left\{r e^{i \theta} \mid 0 \leq \theta \leq \theta_{x}, \theta_{t} \leq \theta \leq 2 \pi\right\}
$$

together with its boundary B_{1}.
For $0 \leq t \leq 1$, let $n_{t}=t n+(1-t) v, m_{t}=t m+(1-t) w$, and $R_{t}=\overline{m_{t} n_{t}}$. We define $p_{\varepsilon}: R \rightarrow \overrightarrow{w t}$ as follows:
a) p_{ε} / P_{1} is the perpendicular projection of P_{1} into $\overrightarrow{w t}$,
b) p_{ε} / R_{t} is the constant function which sends each point of R_{t} to m_{t} for $0 \leq t \leq 1$.
Observation 1: If x_{1} and $x_{2} \in P_{1}$ where $\overline{x_{1} x_{2}}$ is perpendicular to $\overleftrightarrow{w t}$ then $d\left(x_{1}, x_{2}\right) \leq a^{\prime}$.

Proof. To see this, let L_{x} be the line through x which is parallel to $\overleftrightarrow{w t}$. Note that

$$
P_{1} \subseteq L_{x} \cup \overleftrightarrow{w t} \cup V\left(L_{x}, \overleftrightarrow{w t}\right)
$$

where $V\left(L_{x}, \overleftrightarrow{w t}\right)$ is the portion of the plane bound by L_{x} and $\overleftrightarrow{w t}$. Consequently, if x_{1} and $x_{2} \in P_{1}$ where $\overline{x_{1} x_{2}}$ is perpendicular to $\overleftrightarrow{w t}$ then $d\left(x_{1}, x_{2}\right) \leq d(a, x)=a^{\prime}$.

ObSERVATION 2: If $x_{1}, x_{2} \in R_{t}$ then $d\left(x_{1}, x_{2}\right) \leq a^{\prime}+2 \varepsilon$.

Proof. Note that

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq d\left(m_{t}, n_{t}\right) \\
& \leq d\left(m_{t}, m\right)+d\left(m, n_{t}\right) \\
& \leq \varepsilon+d\left(m, n_{t}\right) \\
& \leq \varepsilon+\max \{d(m, v), d(m, n)\} \\
& \leq \varepsilon+\max \left\{a^{\prime}, d(v, w)+\varepsilon\right\} \\
& \leq \varepsilon+\max \left\{a^{\prime}, a^{\prime}+\varepsilon\right\} \\
& =a^{\prime}+2 \varepsilon
\end{aligned}
$$

(*) So we see that for $y^{\prime} \in p_{\varepsilon}(R)$, $\operatorname{diam}\left(p_{\varepsilon}^{-1}\left\{y^{\prime}\right\}\right) \leq a^{\prime}+2 \varepsilon$.
p_{ε} Case 2: $a=w$
We define p_{ε} for ε where $0 \leq \varepsilon \leq \frac{\frac{1}{4}}{\min }\{d(v, w), d(w, t)\}$. Pick $m \in \overline{w t}$ such that $0<d(w, m)<\varepsilon$. Pick $m_{1} \in \overline{m t}$ such that $0<d\left(m_{1}, m_{2}\right)<\varepsilon$. Let $m_{2} \in X$ such that $\overline{m_{1} m_{2}}$ is perpenducular to $\overline{w t}$. Let $m_{2}=r e^{i \theta_{m_{2}}}$. Either $0 \leq \theta_{m_{2}}<\theta_{x}$ or $\theta_{t}<\theta_{m_{2}}<2 \pi$.

Let

$$
B_{1}=\overline{m_{1} t} \cup \overline{m_{1} m_{2}} \cup X_{t m_{2}}
$$

where $X_{t m_{2}}=\left\{r e^{i \theta} \mid \theta \in\left[\theta_{t}, \theta_{m_{2}}\right]\right.$ if $\frac{3}{2}<\theta_{m_{2}}<2 \pi$, or $\theta \in\left[\theta_{t}, 2 \pi\right) \cup\left[0, \theta_{m_{2}}\right]$ if $\left.0 \leq \theta_{m_{2}}<\frac{\pi}{2}\right\}$.

Let P_{1} be the portion of the plane bound by B_{1} together with its boundary B_{1}. Let

$$
\begin{aligned}
X_{m_{2} x}=\left\{r e^{i \theta} \mid \theta\right. & \in\left[\theta_{m_{2}}, \theta_{x}\right] \text { if } 0 \leq \theta_{m_{2}}<\frac{\pi}{2} \text { or } \\
& \left.\theta \in\left[\theta_{m_{2}}, 2 \pi\right) \cup\left[0, \theta_{x}\right] \text { if } \frac{3 \pi}{2}<\theta_{m_{2}}<2 \pi\right\}
\end{aligned}
$$

Let $r:[0,1] \rightarrow X_{m_{2} x}$ be a continuous surjective function where $r(0)=m_{2}$ and $r(1)=x$. Let

$$
\begin{gathered}
m_{1 t}=(1-t) m_{1}+t m \text { and } \\
M_{t}=\overline{m_{1 t} r(t)}
\end{gathered}
$$

For $0 \leq t \leq 1$ let

$$
\begin{gathered}
n_{t}=t x+(1-t) v, \\
m_{t}=t m+(1-t) w, \text { and } \\
R_{t}=\overline{m_{t} n_{t}}
\end{gathered}
$$

We define $p_{\varepsilon}: R \rightarrow \overrightarrow{w t}$ as follows:
a) p_{ε} / P_{1} is the perpendicular projection of P_{1} into $\overrightarrow{m_{1} t}$,
b) p_{ε} / M_{t} is the constant function which sends each point of M_{t} to the point $m_{1 t}$,
c) p_{ε} / R_{t} is the constant function which sends each point of R_{t} to the point m_{t}.
Observation 3: If $x_{1}, x_{2} \in M_{t}$ then $d\left(x_{1}, x_{2}\right) \leq a^{\prime}+2 \varepsilon$.
Proof. First we observed that the funcion $d^{*}:[0,1] \rightarrow R^{+}$given by $d^{*}(t)=d\left(m_{1}, r(t)\right)$ is increasing. To see this compare the two triangles Δ $O m_{1} r(0)$ and $\Delta O m_{1} r(t)$ where $0<t \leq 1$. Let α_{t} be the smaller angle between $\overline{O m_{1}}$ and $\overline{O r(t)}$ for $0 \leq t \leq 1$. Note that $\overline{O m_{1}}$ is of fixed length, r is the length of $\overline{O r(t)}$ for each $0 \leq t \leq 1$, and $\alpha_{t^{\prime \prime}}>\alpha_{t^{\prime}}$ for $0 \leq t^{\prime}<t^{\prime \prime} \leq 1$. So, $d^{*}\left(m_{1}, r(t)\right)$ increases as t increases. Hence, $d\left(m_{1}, m_{2}\right)<d\left(m_{1}, x\right)<a^{\prime}+2 \varepsilon$.

In this case as in case 1 , we see that for $y^{\prime} \in p_{\varepsilon}(R)$,

$$
\operatorname{diam}\left(p_{\varepsilon}^{-1}\left\{y^{\prime}\right\}\right) \leq a^{\prime}+2 \varepsilon
$$

Now we define q_{ε} in four different cases.
q_{ε} Case 1: $b \neq w$
We define q_{ε} for ε where $0<\varepsilon<\frac{1}{4} \min \{d(w, b), d(w, v)\}$. Pick $p \in \overline{s w}$ such that $0<d(w, p)<\varepsilon$. Let $u \in \overline{y v}$ such that $\overline{p u}$ is perpendicular to $\overline{s w}$. For $0 \leq t \leq 1$, let

$$
\begin{gathered}
p_{t}=t p+(1-t) w, \\
u_{t}=t u+(1-t) v, \text { and } \\
L_{t}=\overline{p_{t} u_{t}} .
\end{gathered}
$$

Let P_{2} be the portion of the plane which is bound by

$$
B_{2}=\overline{s p} \cup \overline{p u} \cup u y \cup\left\{r e^{i \theta} \mid \theta_{y} \leq \theta \leq \theta_{s}\right\}
$$

together with its boundary B_{2}. We define $q_{\varepsilon}: L \rightarrow \overrightarrow{w s}$ as follows
a) q_{ε} / L_{t} is the constant function which sends each point of L_{t} to P_{t},
b) q_{ε} / P_{2} is the perpendicular projection of P_{2} into $\overrightarrow{w s}$.

From previous observations we can see that for $y^{\prime} \in q_{\varepsilon}(L)$,

$$
\operatorname{diam}\left(q_{\varepsilon}^{-1}\left\{y^{\prime}\right\}\right) \leq b^{\prime}+2 \varepsilon
$$

q_{ε} Case 2: $b=w$
We define q_{ε} for ε where $0<\varepsilon<\frac{1}{4} \min \{d(v, w), d(w, s)\}$. Pick $p \in \overline{w s}$ such that $0<d(w, p)<\varepsilon$. Pick $p_{1} \in \overline{p s}$ such that $0<d\left(p_{1}, p\right)<\varepsilon$. Let $p_{2} \in X$ such that $\overline{p_{1} p_{2}}$ is perpendicular to $\overline{w s}$. Let $p_{2}=r e^{i \theta_{p_{2}}}$. For $0 \leq t \leq 1$ let

$$
\begin{gathered}
u_{t}=t y+(1-t) v, \\
p_{t}=t p+(1-t) w, \text { and } \\
L_{t}=\overline{u_{t} p_{t}}
\end{gathered}
$$

Let $X_{p_{2} y}=\left\{r e^{i \theta} \mid \theta \in\left[\theta_{y}, \theta_{\left.\left.p_{2}\right]\right\}}\right.\right.$. Let $l:[0,1] \rightarrow X_{p_{2} y}$ be a continuous surjective function where $l(0)=p_{2}, l(1)=y$. Let $p_{1 t}=(1-t) p_{1}+t p$ and $U_{t}=\overline{p_{1 t} l(t)}$. Let P_{2} be the portion of the plane which is bound by $B_{2}=\overline{s p_{1}} \cup \overline{p_{1} p_{2}} \cup X_{p_{2} s}$ where $X_{p_{2} s}=\left\{r e^{i \theta} \mid \theta_{p_{2}} \leq \theta \leq \theta_{s}\right\}$ together with its boundary B_{2}. We define $q_{\varepsilon}: L \rightarrow \overrightarrow{w s}$ as follows
a) $q_{\varepsilon / L_{t}}$ is the constant function which takes each point of L_{t} to the point p_{t}
b) $q_{\varepsilon_{U_{t}}}$ is the constant function which sends each point of U_{t} to the point $p_{1 t}$
c) $q_{\varepsilon / P_{2}}$ is the perpendicular projection of P_{2} into $\overrightarrow{w s}$.

From previous observations we can see that for $y^{\prime} \in q_{\varepsilon}(L)$,

$$
\operatorname{diam}\left(q_{\varepsilon}^{-1}\left\{y^{\prime}\right\}\right) \leq b^{\prime}+2 \varepsilon
$$

q_{ε} Case 3: $c \neq v$
We define q_{ε} for ε where $0<\varepsilon<\frac{1}{4} \min \{d(v, w), d(v, c)\}$. Pick $u \in \overline{c v}$ such that $0<d(u, v)<\varepsilon$. Let $p \in \overline{s w}$ such that $\overline{p u}$ is perpendicular to $\overline{v y}$. Let

$$
\begin{gathered}
u_{t}=t u+(1-t) v, \\
p_{t}=t p+(1-t) w, \text { and } \\
L_{t}=\overline{u_{t} p_{t}}
\end{gathered}
$$

Let P_{2} be the portion of the plane bound by

$$
B_{2}=\overline{y u} \cup \overline{u p} \cup \overline{s p} \cup X_{y s}
$$

where $X_{y s}=\left\{e^{i \theta} \mid \theta_{y} \leq \theta \leq \theta_{s}\right\}$ together with its boundary B_{2}. Let $q: L \rightarrow \overrightarrow{v y}$ be defined as follows
a) q / L_{t} is the constant function that sends each point of L_{t} to u_{t},
b) q / P_{2} is the perpendicular projection of P_{2} into $\overrightarrow{v y}$.

Let $q(L)=\overline{v y^{\prime}}$. Let $q^{*}: \overline{v y^{\prime}} \rightarrow \overline{s w}$ be a surjective continuous map such that $q^{*}(v)=w, q^{*}(u)=p, q^{*}\left(y^{\prime}\right)=s$. Let $q_{\varepsilon}=q^{*} \circ q$. From previous observations it is clear that if $y^{\prime} \in \overline{s w}$, $\operatorname{diam} q_{\varepsilon}^{-1}\left\{y^{\prime}\right\} \leq c^{\prime}+2 \varepsilon$.
q_{ε} CASE 4: $v=c$
We define q_{ε} for ε where $0<\varepsilon<\frac{1}{4} \min \{d(v, w), d(v, y)\}$. Pick $u \in \overline{v y}$ such that $0<d(v, u)<\varepsilon$. Pick $u_{1} \in \overline{u y}$ such that $0<d\left(u, u_{1}\right)<\varepsilon$. Let $u_{2} \in X$ such that $\overline{u_{1} u_{2}}$ is perpendicular to $\overline{v y}$. Let $u_{2}=r e^{i \theta u_{2}}$. Let

$$
\begin{aligned}
& u_{t}=t u+(1-t) v \\
& p_{t}=t s+(1-t) w
\end{aligned}
$$

Let $L_{t}={\overline{U_{t}}}_{t}$. Let $X_{u_{2} s}=\left\{r e^{i \theta} \mid \theta_{u_{2}} \leq \theta \leq \theta_{s}\right\}$. Let $l:[0,1] \rightarrow X_{u_{2} s}$ be a continuous surjective function where $l(0)=u_{2}$ and $l(1)=s$. Let $u_{1 t}=$ $(1-t) u_{1}+t u$ and $U_{t}=\overline{u_{1 t} l(t)}$. Let $B_{2}=\overline{u_{1} y} \cup \overline{u_{1} u_{2}} \cup X_{y u_{2}}$ where $X_{y u_{2}}=$
$\left\{r e^{i \theta} \mid \theta_{y} \leq \theta \leq \theta_{u_{2}}\right\}$. Let P_{2} be the portion of the plane bound by B_{2} together with its boundary B_{2}. We define a function $q: L \rightarrow \overrightarrow{v y}$ as follows
a) q / L_{t} is the constant function that sends each point of L_{t} to U_{t},
b) q / U_{t} sends each point of u_{t} to $u_{1 t}$,
c) q / P_{2} is the perpendicular projection of P_{2} into $\overrightarrow{u_{1} y}$.

Let $q(L)=\overline{v y^{\prime}}$. Let $q^{*}: \overline{v y^{\prime}} \rightarrow \overline{s w}$ be a surjective continuous map such that $q^{*}(v)=w, q^{*}\left(y^{\prime}\right)=s$. Let $q_{\varepsilon}=q^{*} \circ q$. From previous observations it is clear that if $x^{\prime} \in \overline{s w}$ then $\operatorname{diam} q_{\varepsilon}^{-1}\left\{x^{\prime}\right\} \leq c^{\prime}+2 \varepsilon$.

Let Y be the continuum as given above. We consider 7 cases as given below:

Case A1: $s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} a \neq w \neq b$
Case B1: $s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} a \neq w, c \neq v$
Case C1: $s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} a=w=b$
Case D1: $s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} a=w, c=v$
Case E1: $s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} a=w, b \neq w$
Case F1: $s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\} a=w, c \neq v$
Case G1: $v=r e^{i \frac{\pi}{2}} s_{x}=d(v, w)$
Let $C \subseteq Y \times Y$ be a continuum such that $p_{1}[C] \subseteq p_{2}[C] \subseteq Y$.
Case A1: $s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\} a \neq w \neq b$
Let $p: L \cup R \rightarrow \overrightarrow{w s} \cup \overrightarrow{w t}$ be given by $p / R=p_{\varepsilon}$ as defined in case 1 for p_{ε}. $p / L=q_{\varepsilon}$ as defined in case 1 for q_{ε}.

Consider $p \circ p_{1}, p \circ p_{2}: C \rightarrow \overrightarrow{w s} \cup \overrightarrow{w t}$. The functions $p \circ p_{1}$ and $p \circ p_{2}$ are continuous, $p \circ p_{1}[C] \subseteq p \circ p_{2}[C]=J \subset \overrightarrow{w s} \cup \overrightarrow{w t}$. Clearly J is an interval and there is a $c \in C$ such that $p \circ p_{1}(c)=p \circ p_{2}(c)$. From previous observations we see that $\operatorname{diam}\left(p^{-1}\left\{p \circ p_{1}(c)\right\}\right) \leq \max \left\{a^{\prime}+2 \varepsilon, b^{\prime}+2 \varepsilon\right\}$. So, $d\left(p_{1}(c), p_{2}(c)\right) \leq$ $\max \left\{a^{\prime}+2 \varepsilon, b^{\prime}+2 \varepsilon\right\}$. Since this is true for all $\varepsilon>0$, we conclude that

$$
\tau(Y) \leq \max \left\{a^{\prime}, b^{\prime}\right\}=s_{X}=\tau(X) \text { where } \tau \text { is any of the spans. }
$$

Case B1: $s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\}, a \neq w, c \neq v$
In this case we define $p: L \cup R \rightarrow \overrightarrow{w s} \cup \overrightarrow{w t}$ by $p / R=p_{\varepsilon}$ as in case 1 for p_{ε} and $p / L=q_{\varepsilon}$ as in case 3 for q_{ε}.

The rest of this case is handled as in case A1. Our conclusion now is that $\tau(Y) \leq \max \left\{a^{\prime}, c^{\prime}\right\}=s_{X}=\tau(X)$ where τ is any of the spans.
Case C1: $s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\}, a=w=b$
In this case we define $p: L \cup R \rightarrow \overrightarrow{w s} \cup \overrightarrow{w t}$ by $p / R=p_{\varepsilon}$ as defined in case 2 for p_{ε} and $p / L=q_{\varepsilon}$ as defined in case 2 for q_{ε}.

In a manner similar to the previous cases we can conclude that $\tau(Y) \leq \max \left\{a^{\prime}, b^{\prime}\right\}=s_{X}=\tau(X)$ where τ is any of the spans.

Case D1: $s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\}, a=w, c=v$

In this case we define $p: L \cup R \rightarrow \overrightarrow{s w} \cup \overrightarrow{w t}$ by $p / R=p_{\varepsilon}$ as in case 2 for p_{ε} and $p / L=q_{\varepsilon}$ as in case 4 for q_{ε}.

As in the previous cases we can conclude that

$$
\tau(Y) \leq \max \left\{a^{\prime}, c^{\prime}\right\}=s_{X}=\tau(X) \text { where } \tau \text { is any of the spans. }
$$

Case E1: $s_{X}=\max \left\{a^{\prime}, b^{\prime}\right\}, a=w, b \neq w$
In this case we define $p: L \cup R \rightarrow \overrightarrow{s w} \cup \overrightarrow{w t}$ by $p / R=p_{\varepsilon}$ as defined in case 2 for p_{ε} and $p / L=q_{\varepsilon}$ as defined in case 2 for q_{ε}.

In this case we can conclude that

$$
\tau(Y) \leq \max \left\{a^{\prime}, b^{\prime}\right\}=s_{X}=\tau(X) \text { where } \tau \text { is any of the spans. }
$$

Case F1: $s_{X}=\max \left\{a^{\prime}, c^{\prime}\right\}, a=w, c \neq v$
In this case we define $p: R \cup L \rightarrow \overrightarrow{s w} \cup \overrightarrow{w t}$ by $p / R=p_{\varepsilon}$ as in case 2 for p_{ε} and $p / L=q_{\varepsilon}$ as in case 3 for q_{ε}.

Our conclusion in this case is that

$$
\tau(Y) \leq \max \left\{a^{\prime}, c^{\prime}\right\}=s_{x}=\tau(X) \text { where } \tau \text { is any of the spans. }
$$

Case G1:
We define $p: R \cup L \rightarrow \overrightarrow{w t} \cup \overrightarrow{w s}$ when $v=r e^{i \theta}$. In this case $s_{X}=d(v, w)$. Pick ε where $0<\varepsilon<\frac{1}{4} \min \{d(w, t), d(w, s)\}$. Pick $m \in \overline{w t}$ such that $0<$ $d(w, m)<\varepsilon$. Let $n \in X$ such that $\overline{m n}$ is perpendicular to $\overline{w t}$. Pick $u \in \overline{w s}$ such that $0<d(w, u)<\varepsilon$. Let $p=r e^{i \theta \rho} \in X$ such that $\overline{p u}$ is perpendicular to $\overline{x s}$. Let $B_{1}=\overline{n m} \cup \overline{m t} \cup X_{t n}$ where $X_{t n}=\left\{r e^{i \theta} \mid \theta \in\left[0, \theta_{n}\right] \cup\left[\theta_{t}, 2 \pi\right)\right.$ if $0 \leq \theta_{n}<\frac{\pi}{2}, \theta \in\left[\theta_{t}, \theta_{n}\right]$ if $\left.\frac{3 \pi}{2} \leq \theta_{n}<2 \pi\right\}$. Let P_{1} be the portion of the plane bound by B_{1} together with its boundary B_{1}. Let $r:[0,1] \rightarrow X_{n v}$ where $X_{n v}=\left\{r e^{i \theta} \left\lvert\, \theta_{n} \leq \theta \leq \frac{\pi}{2}\right.\right.$ if $0 \leq \theta_{n}<\frac{\pi}{2}, \theta \in\left[\theta_{n}, 2 \pi\right) \cup\left[0, \frac{\pi}{2}\right]$ if $\left.\frac{3 \pi}{2}<\theta_{n}<2 \pi\right\}$ be a continuous, surjective function such that $r(0)=v$ and $r(1)=n$. Let $m_{t}=(1-t) w+t m$. Let $R_{t}=\overline{m_{t} r(t)}$. Let $l:[0,1] \rightarrow X_{v p}$ where $X_{v p}=\left\{r e^{i \theta} \left\lvert\, \frac{\pi}{2} \leq \theta \leq \theta_{p}\right.\right\}$ be a continuous surjective function such that $l(0)=v, l(1)=p$. Let $u_{t}=(1-t) w+t u$. Let $L_{t}=\overline{u_{t} l(t)}$. Let $B_{2}=\overline{s u} \cup \overline{u p} \cup X_{p s}$ where $X_{p s}=\left\{r e^{i \theta} \mid \theta_{p} \leq \theta \leq \theta_{s}\right\}$. Let P_{2} be the portion of the plane bound by B_{2} together with its boundary B_{2}. We define $p: R \cup L \rightarrow \overrightarrow{w t} \cup \overrightarrow{w s}$ as follows:
p / P_{1} is the perpendicular projection of P_{1} into $\overrightarrow{m t}$
p / R_{t} is the constant function which sends each point in R_{t} to m_{t}.
p / L_{t} is the constant function which sends each point in L_{t} to u_{t}.
p / P_{2} is the perpendicular projection of P_{2} into $\overrightarrow{v s}$.
ObSERVATION 4:
Note that the continuous function $d^{*}:[0,1] \rightarrow R^{+}$given by $d(w, r(t))$ is decreasing. So, for each $t \in[0,1], d\left(m_{t}, r(t)\right) \leq d(v, w)+\varepsilon$. Similarly, it follows that $d\left(u_{t}, d(t)\right) \leq d(v, w)+\varepsilon$ for $t \in[0,1]$. Using this observation together with observation 1 , we see that for $y^{\prime} \in p(R \cup L)$, $\operatorname{diam} p^{-1}\left\{y^{\prime}\right\} \leq d(v, w)+\varepsilon$. Since
this is true for all $\varepsilon>0$, we can conclude that

$$
\tau(Y) \leq d(v, w)=s_{X}=\tau(X) \text { where } \tau \text { is any of the spans. }
$$

References

[C] H. Cook, W.T. Ingram and A. Lelek, A list of problems known as Houston problem book. Continua (Cincinnati, OH, 1994), 365-398, Lecture Notes in Pure and Appl. Math. 170, Dekker, New York, 1995.
[D] James F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138.
[DF] E. Duda and H.V. Fernandez, Span and plane separating continua, Houston J. Math. 27 (2001), 439-444.
[L1] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
[L2] A. Lelek, An example of a simple triod with surjective span smaller than span, Pacific J. Math. 64 (1976), 207-215.
[L3] A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
[T1] K. Tkaczyńska, The span and semispan of some simple closed curves, Proc. Amer. Math. Soc. 1111991.
[T2] K. Tkaczyńska, On the span of simple closed curves, Houston J. Math. 20 (1994), 507-528.
[W1] T. West, Spans of simple closed curves, Glasnik Matematički, 24(44) (1989), 405415.
[W2] T. West, A bound for the span of certain plane separating continua, Glasnik Matematički 32(52) (1997), 291-300.
[W3] T. West, Concerning the spans of certain plane separating continua, Houston J. Math. 25 (1999), 697-708.

University of Louisiana at Lafayette
Lafayette, Louisiana
USA
Received: 28.10. 2002

[^0]: 2000 Mathematics Subject Classification. 54F15.
 Key words and phrases. Continua, simple closed curves, indented circles.

