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Vol. 39(59)(2004), 171 – 183

SPANS OF CONTINUA RELATED TO INDENTED CIRCLES

Thelma West

University of Louisiana at Lafayette, USA

Abstract. Let X be a special type of simple closed curve in the plane
known as an indented circle. Let Y be a continuum which is contained in
X ∪ V where V is the bounded component of R2 − X. We show that
τ(Y ) ≤ τ(X) where τ is the span σ, surjective span σ∗, semispan σ0,
surjective semispan σ∗0 , symmetric span s, or the surjective symmetric span
s∗.

1. Introduction

The span of a metric continuum was originally defined by A. Lelek (see
[L1], p. 209). Later variations of the span were defined (cf [L2, L3, D]). In
general it is difficult to calculate the spans of a particular geometric object.
Also, it is not clear how the various spans of related objects compare to each
other. The following question on this topic was asked by H. Cook[C].

If X1 is a plane simple closed curve and X2 is a simple closed curve which
is contained in the bounded component of R2 −X1 then is σ(X2) < σ(X1)?

There have been various partial results on this question (cf [W1, W2, W3,
T1, T2, DF]). In this paper we show the following:

If X is a particular type of a simple closed curve known as an indented
circle and Y is any continuum contained in X ∪ V where V is the bounded
component of R2−X, then τ(Y ) ≤ τ(X) where τ is any of the various spans.

2. Preliminaries

The standard projections p1, p2 : X × X → X are mappings defined by
p1(x, y) = x and p2(x, y) = y for (x, y) ∈ X ×X.
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Let X be a nonempty metric space. The surjective span σ∗(X) of X is the
least upper bound of real number α such that there exist nonempty connected
sets Cα ⊂ X ×X with d(x, y) ≥ α for (x, y) ∈ Cα and

(σ∗) p1(Cα) = p2(Cα) = X.

Relaxing condition (σ∗) to the conditions

(σ) p1(Cα) = p2(Cα),

(σ∗
0) p2(Cα) = X,

(σ0) p1(Cα) ⊂ p2(Cα),

we obtain the definitions of the span σ(X), the surjective semispan σ∗
0(X),

and the semispan σ0(X) of X, respectively.
If to condition (σ∗) we add the condition that C∗ = (C∗)−1 we get s∗(X)

the surjective symmetric span. If to condition (σ) we add the condition that
C∗ = (C∗)−1 we get s(X) the symmetric span.

In [W1] we defined a particular type of closed curve which we called an
indented circle. The construction is given below.

We start with a circle S in the complex plane of radius r and center the
origin O. Also, we will consider X as a subset of the real plane whenever this
will simplify the exposition.

We choose angles θ1, . . . , θn such that

0 < θ1 < θ2 < · · · < θn < π.

We choose 4n more angles θ1
j , θ

2
j , θ

3
j , θ

4
j , for j = 1, 2, . . . , n such that

0 ≤ θ11 ≤ θ1 ≤ θ21 ≤ · · · ≤ θ1n ≤ θn ≤ θ2n ≤ π,
π ≤ θ31 ≤ θ1 + π ≤ θ41 ≤ · · · ≤ θ3n ≤ θn + π ≤ θ4n ≤ 2π,
either θ1j = θj = θ2j or θ

1
j < θj < θ2j for j = 1, 2, . . . , n,

either θ3j = θj + π = θ4j or θ
3
j < θj + π < θ4j for j = 1, 2, . . . , n,

θj + α
2
j ≤ θj+1 − α1

j+1 for j = 1, 2, . . . , n− 1,
where α1

j =Max{θj − θ1j , θj + π − θ3j }, α2
j =Max{θ4j − (θj + π), θ

2
j − θj}.

Let rj = reiθj , qj = rei(θj+π), xj = reiθ1
j , yj = reiθ2

j , sj = reiθ3
j , and

tj = reiθ4
j for j = 1, 2, . . . , n.

We represent the straight line interval in the plane with endpoints a and b
by ab. Pick points vj , wj 6= O where vj ∈ Orj and wj ∈ Oqj for j = 1, 2, . . . , n.
We must choose vj and wj such that the following restrictions are satisfied
for j = 1, 2, . . . , n. If θ1

j = θ2j , then vj = rj . If θ
3
j = θ4j , then wj = qj .

Otherwise, we must choose vj and wj so that the following conditions are
satisfied. If θ1j 6= θ2j , then the smaller angles formed by the following pairs of
line intervals, the pair xjvj and vjrj , and the pair rjvj and vjyj must be no
greater than 90◦. If θ3j 6= θ4j , then the smaller angles formed by the following
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pairs of line intervals, the pair sjwj and wjqj , and the pair qjwj and wjtj
must be no greater than 90◦. We will refer to these conditions as the angle
conditions.

For each j, when θ1
j 6= θ2j , the shorter arc on S with endpoints xj and

yj is replaced by xjvj ∪ vjyj and when θ
3
j 6= θ4j , the shorter arc on S with

endpoints sj and tj is replaced by sjwj ∪ wj tj .
We refer to both xjvj ∪ vjyj and sjwj ∪ wj tj as indentations of X for

j = 1, 2, . . . , n. We refer to vj and wj as the vertices of the corresponding
indentations. The space X consists of the remaining points of S and the
added indentations.

From the construction of X, we see that it is a simple closed curve. We
call each such simple closed curve X an indented circle (see Fig. 1).
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Figure 1

Let dj be the point on xjvj closet to tj , cj the point on vjyj closest to
sj , bj the point on sjwj closest to yj , and aj be the point on wj tj closest to
xj , for j = 1, 2, . . . , n.

Let d′j = d(dj , tj), c
′
j = d(cj , sj), b

′
j = d(bj , yj), and a

′
j = d(aj , xj), for

j = 1, 2, . . . , n. We call the number

sX = Min{Max{Min{a′j , d′j},Min{b′j , c′j}} : j = 1, 2, . . . , n}
the indentation spread of the indented circle X.

In [W1] we proved the following:

Theorem 2.1. If X is an indented circle and sX is the indentation spread
of X, then

σ(X) = σ0(X) = σ∗(X) = σ∗
0(X) = sX .
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Though it was not stated in this theorem, the proof also gives us that
s(X) = s∗(X), since the continuum C ⊂ X ×X constructed in the proof of
Theorem 2.1 is such that C = C−1 and p1(C) = p2(C) = X .

3. Main Result

Theorem 3.1. If X is an indented circle, V is the bounded component
of R2 − X, and Y is a continuum such that Y ⊂ X ∪ V then τ(Y ) ≤ τ(X)
where τ = σ, σ0, σ

∗, σ∗
0 , s, s

∗.

Proof. Suppose that X∗ is an indented circle that has n indentations.
We know from [W1, Th2.1] that

σ(X∗) = σ0(X
∗) = σ∗

0(X
∗) = σ∗(X∗) = sX∗

= Min{Max{Min{a′j , d′j},Min{c′j , d′j} : j = 1, 2, . . . , n}}
where sX∗ is the indentation spread of X∗. For some j,

sX∗ = Max{Min{a′j , d′j},Min{c′j , b′j}}.
Let r : R2 → R2 be the function that rotates the plane by an angle of π

2 − θ
about the origin; so,

r(vj) = rve
i π
2

where
vj = rve

iθj

and
r(wj ) = rwe

i 3π
2

where
wj = rwe

i(θj+π).

Let
r(xj ) = x, r(yj) = y, r(sj) = s, r(tj) = t,

r(aj) = a, r(bj) = b, r(cj) = c, and r(dj ) = d.

Let
d(x, a) = a′, d(t, d) = d′, d(s, c) = c′ and d(y, d) = d′.

Let
X = xv ∪ vy ∪ sw ∪ wt ∪ {reiθ|θ ∈ [0, θx] ∪ [θy, θs] ∪ [θt, 2π]}

where 0 ≤ θx ≤ θy ≤ θs ≤ θt ≤ 2π and x = reiθx , y = reiθy , s = reiθs and
t = reiθt . From [W1, Th2.1] we see that

sX∗ = τ(X∗) = τ(X) = sX for τ = σ, σ0, σ
∗, σ∗

0 .

From the proof of the theorem we also see that

sX∗ = τ(X∗) = τ(X) = sX for τ = σ, σ0, σ
∗, σ∗

0

where τ = s or s∗. Also, if Y is a continuum such that Y ⊂ X∗ ∪ V ∗ where
V ∗ is the bounded component of R2 − X∗ then Y ⊆ X ∪ V where V is the
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bounded component of R2 −X. So, without loss of generality we can assume
that our indented circle is X rather than X∗. Note that either

a) 0 < θx <
π
2 < θy < π < θs <

3π
2 < θt < 2π,

b) 0 < θx =
π
2 = θy < π < θs <

3π
2 < θt < 2π, or

c) 0 < θx <
π
2 < θy < π < θs =

3π
2 = θt < 2π.

We first consider the situation in a) we have sixteen cases to consider.

A1
sX = max{a′, b′}
a 6= w 6= b

A2
sX = max{c′, d′}
c 6= v 6= d

If we rotate X by 180◦ in R2 about the origin then case A2 is compa-
rable to case A1.
B1

sX = max{a′, c′}
a 6= w, c 6= v

B2
sX = max{d′, b′}
d 6= v, b 6= w

If we rotate X by 180◦ in R2 about the y-axis then case B2 is compa-
rable to case B1.
C1

sX = max{a′, b′}
a = b = w

C2
sX = max{c, d}
c = v = d

If we rotate X by 180◦ in R2 about the origin then case C2 is compa-
rable to case C1.
D1

sX = max{a′, c′}
a = w, c = v

D2
sX = max{d′, b′}
d = v, b = w

If we rotate X by 180◦ in R2 about the y-axis then case D2 is compa-
rable to case D1.
E1

sX = max{a′, b′}
a = w, b 6= w
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E2
sX = max{a′, b′}
a 6= w, b = w

If we rotate X by 180◦ in R2 about the y-axis then case E2 is compa-
rable to case E1.
E3

sX = max{d′, c′}
d = v, c 6= v

If we rotate X by 180◦ in R2 about the x-axis then case E3 is compa-
rable to case E1.
E4

sX = max{d′, c′}
d 6= v, c = v

If we rotate X by 180◦ in R2 about the origin then case E4 is compa-
rable to case E1.
F1

sX = max{a′, c′}
a = w, c 6= v

F2
sX = max{a′, c′}
a 6= w, c = v

If we rotate X by 180◦ in R2 about the origin then case F2 is compa-
rable to case F1.
F3

sX = max{d′, b′}
d = v, b 6= w

If we rotate X by 180◦ in R2 about the x-axis then case F3 is compa-
rable to case F1
F4

sX = max{d′, b′}
d 6= v, b = w

If we rotate X by 180◦ in R4 about the y-axis then case F4 is compa-
rable to case F1.

Now we consider the situations in b) and c).
G1

sX = d(v, w)
v = rei π

2

G2
sX = d(v, w)

w = rei 3π
2
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If we rotate X by 180◦ in R2 about the origin then case G2 is comparable
to case G1. So, in order to prove the theorem we just need to examine cases
A1, B1, C1, D1, E1, F1 and G1.

In order to do this we first define functions pε and qε under various con-
ditions. We define continuous functions pε and qε where

pε : R→ −→wt

qε : L→ −→ws

R = {(x1, y1) ∈ X ∪ V |x1 ≥ 0},

and

L = {(x1, y1) ∈ X ∪ V |x1 ≤ 0}.

First we define pε in two different cases.

pε Case 1: a 6= w
We define pε for ε where 0 < ε < 1

4 min{d(w, a), d(w, v)}. Pick m ∈ wa
such that 0 < d(w,m) < ε. Let n ∈ vx such that mn is perpendicular to wt.
Let P1 be the portion of the plane which is bound by

B1 = tm ∪mn ∪ nx ∪ {reiθ|0 ≤ θ ≤ θx, θt ≤ θ ≤ 2π}

together with its boundary B1.
For 0 ≤ t ≤ 1, let nt = tn+(1− t)v, mt = tm+(1− t)w, and Rt = mtnt.

We define pε : R→ −→wt as follows:
a) pε/P1 is the perpendicular projection of P1 into

−→
wt,

b) pε/Rt is the constant function which sends each point of Rt to mt for
0 ≤ t ≤ 1.

Observation 1: If x1 and x2 ∈ P1 where x1x2 is perpendicular to
←→
wt

then d(x1, x2) ≤ a′.

Proof. To see this, let Lx be the line through x which is parallel to
←→
wt.

Note that

P1 ⊆ Lx ∪←→wt ∪ V (Lx,
←→
wt)

where V (Lx,
←→
wt) is the portion of the plane bound by Lx and

←→
wt. Con-

sequently, if x1 and x2 ∈ P1 where x1x2 is perpendicular to
←→
wt then

d(x1, x2) ≤ d(a, x) = a′.

Observation 2: If x1, x2 ∈ Rt then d(x1, x2) ≤ a′ + 2ε.
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Proof. Note that

d(x1, x2) ≤ d(mt, nt)

≤ d(mt,m) + d(m,nt)

≤ ε+ d(m,nt)

≤ ε+max{d(m, v), d(m,n)}
≤ ε+max{a′, d(v, w) + ε}
≤ ε+max{a′, a′ + ε}
= a′ + 2ε.

(*) So we see that for y′ ∈ pε(R), diam(p
−1
ε {y′}) ≤ a′ + 2ε.

pε Case 2: a = w
We define pε for ε where 0 ≤ ε ≤ 1

4 min{d(v, w), d(w, t)}. Pick m ∈ wt
such that 0 < d(w,m) < ε. Pick m1 ∈ mt such that 0 < d(m1,m2) < ε. Let
m2 ∈ X such that m1m2 is perpenducular to wt. Let m2 = reiθm2 . Either
0 ≤ θm2 < θx or θt < θm2 < 2π.

Let

B1 = m1t ∪m1m2 ∪Xtm2

where Xtm2 = {reiθ|θ ∈ [θt, θm2 ] if
3
2 < θm2 < 2π, or θ ∈ [θt, 2π) ∪ [0, θm2 ] if

0 ≤ θm2 <
π
2 }.

Let P1 be the portion of the plane bound by B1 together with its boundary
B1. Let

Xm2x = {reiθ|θ ∈ [θm2 , θx] if 0 ≤ θm2 <
π

2
or

θ ∈ [θm2 , 2π) ∪ [0, θx] if
3π

2
< θm2 < 2π}.

Let r : [0, 1] → Xm2x be a continuous surjective function where r(0) = m2

and r(1) = x. Let

m1t = (1− t)m1 + tm and

Mt = m1tr(t).

For 0 ≤ t ≤ 1 let
nt = tx+ (1− t)v,

mt = tm+ (1− t)w, and
Rt = mtnt.

We define pε : R→ −→wt as follows:
a) pε/P1 is the perpendicular projection of P1 into

−−→
m1t,

b) pε/Mt is the constant function which sends each point of Mt to the
point m1t,
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c) pε/Rt is the constant function which sends each point of Rt to the
point mt.

Observation 3: If x1, x2 ∈Mt then d(x1, x2) ≤ a′ + 2ε.

Proof. First we observed that the funcion d∗ : [0, 1] → R+ given by
d∗(t) = d(m1, r(t)) is increasing. To see this compare the two triangles M
Om1r(0) and M Om1r(t) where 0 < t ≤ 1. Let αt be the smaller angle

between Om1 and Or(t) for 0 ≤ t ≤ 1. Note that Om1 is of fixed length, r is

the length of Or(t) for each 0 ≤ t ≤ 1, and αt′′ > αt′ for 0 ≤ t′ < t′′ ≤ 1. So,
d∗(m1, r(t)) increases as t increases. Hence, d(m1,m2) < d(m1, x) < a′ + 2ε.

In this case as in case 1, we see that for y′ ∈ pε(R),

diam(p−1
ε {y′}) ≤ a′ + 2ε.

Now we define qε in four different cases.

qε Case 1: b 6= w
We define qε for ε where 0 < ε < 1

4 min{d(w, b), d(w, v)}. Pick p ∈ sw
such that 0 < d(w, p) < ε. Let u ∈ yv such that pu is perpendicular to sw.
For 0 ≤ t ≤ 1, let

pt = tp+ (1− t)w,
ut = tu+ (1− t)v, and

Lt = ptut.

Let P2 be the portion of the plane which is bound by

B2 = sp ∪ pu ∪ uy ∪ {reiθ|θy ≤ θ ≤ θs}
together with its boundary B2. We define qε : L→ −→ws as follows

a) qε/Lt is the constant function which sends each point of Lt to Pt,
b) qε/P2 is the perpendicular projection of P2 into

−→ws.
From previous observations we can see that for y′ ∈ qε(L),

diam(q−1
ε {y′}) ≤ b′ + 2ε.

qε Case 2: b = w
We define qε for ε where 0 < ε < 1

4 min{d(v, w), d(w, s)}. Pick p ∈ ws
such that 0 < d(w, p) < ε. Pick p1 ∈ ps such that 0 < d(p1, p) < ε. Let p2 ∈ X
such that p1p2 is perpendicular to ws. Let p2 = reiθp2 . For 0 ≤ t ≤ 1 let

ut = ty + (1− t)v,
pt = tp+ (1− t)w, and

Lt = utpt.
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Let Xp2y = {reiθ|θ ∈ [θy, θp2]}. Let l : [0, 1]→ Xp2y be a continuous surjective

function where l(0) = p2, l(1) = y. Let p1t = (1− t)p1 + tp and Ut = p1tl(t).
Let P2 be the portion of the plane which is bound by B2 = sp1 ∪ p1p2 ∪Xp2s

where Xp2s = {reiθ|θp2 ≤ θ ≤ θs} together with its boundary B2. We define
qε : L→ −→ws as follows

a) qε/Lt
is the constant function which takes each point of Lt to the point

pt,
b) qε/Ut

is the constant function which sends each point of Ut to the point
p1t,

c) qε/P2
is the perpendicular projection of P2 into

−→ws.
From previous observations we can see that for y′ ∈ qε(L),

diam(q−1
ε {y′}) ≤ b′ + 2ε.

qε Case 3: c 6= v
We define qε for ε where 0 < ε < 1

4 min{d(v, w), d(v, c)}. Pick u ∈ cv such
that 0 < d(u, v) < ε. Let p ∈ sw such that pu is perpendicular to vy. Let

ut = tu+ (1− t)v,
pt = tp+ (1− t)w, and

Lt = utpt.

Let P2 be the portion of the plane bound by

B2 = yu ∪ up ∪ sp ∪Xys

where Xys = {eiθ|θy ≤ θ ≤ θs} together with its boundary B2. Let q : L→ −→vy
be defined as follows

a) q/Lt is the constant function that sends each point of Lt to ut,
b) q/P2 is the perpendicular projection of P2 into

−→vy.
Let q(L) = vy′. Let q∗ : vy′ → sw be a surjective continuous map such

that q∗(v) = w, q∗(u) = p, q∗(y′) = s. Let qε = q∗ ◦ q. From previous observa-
tions it is clear that if y′ ∈ sw, diamq−1

ε {y′} ≤ c′ + 2ε.
qε Case 4: v = c
We define qε for ε where 0 < ε < 1

4 min{d(v, w), d(v, y)}. Pick u ∈ vy such
that 0 < d(v, u) < ε. Pick u1 ∈ uy such that 0 < d(u, u1) < ε. Let u2 ∈ X
such that u1u2 is perpendicular to vy. Let u2 = reiθu2 . Let

ut = tu+ (1− t)v,
pt = ts+ (1− t)w.

Let Lt = Utpt. Let Xu2s = {reiθ|θu2 ≤ θ ≤ θs}. Let l : [0, 1] → Xu2s be
a continuous surjective function where l(0) = u2 and l(1) = s. Let u1t =

(1 − t)u1 + tu and Ut = u1tl(t). Let B2 = u1y ∪ u1u2 ∪ Xyu2 where Xyu2 =
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{reiθ|θy ≤ θ ≤ θu2}. Let P2 be the portion of the plane bound by B2 together
with its boundary B2. We define a function q : L→ −→vy as follows

a) q/Lt is the constant function that sends each point of Lt to Ut,
b) q/Ut sends each point of ut to u1t,
c) q/P2 is the perpendicular projection of P2 into

−→u1y.

Let q(L) = vy′. Let q∗ : vy′ → sw be a surjective continuous map such
that q∗(v) = w, q∗(y′) = s. Let qε = q∗ ◦ q. From previous observations it is
clear that if x′ ∈ sw then diamq−1

ε {x′} ≤ c′ + 2ε.
Let Y be the continuum as given above. We consider 7 cases as given

below:
Case A1: sX = max{a′, b′} a 6= w 6= b
Case B1: sX = max{a′, c′} a 6= w, c 6= v
Case C1: sX = max{a′, b′} a = w = b
Case D1: sX = max{a′, c′} a = w, c = v
Case E1: sX = max{a′, b′} a = w, b 6= w
Case F1: sX = max{a′, c′} a = w, c 6= v
Case G1: v = rei π

2 sx = d(v, w)

Let C ⊆ Y × Y be a continuum such that p1[C] ⊆ p2[C] ⊆ Y.
Case A1: sX = max{a′, b′} a 6= w 6= b

Let p : L∪R→ −→ws∪−→wt be given by p/R = pε as defined in case 1 for pε.
p/L = qε as defined in case 1 for qε.

Consider p ◦ p1, p ◦ p2 : C → −→ws ∪ −→wt. The functions p ◦ p1 and p ◦ p2 are

continuous, p ◦ p1[C] ⊆ p ◦ p2[C] = J ⊂ −→ws ∪ −→wt. Clearly J is an interval and
there is a c ∈ C such that p ◦ p1(c) = p ◦ p2(c). From previous observations we
see that diam (p−1{p ◦ p1(c)}) ≤ max{a′ + 2ε, b′ + 2ε}. So, d(p1(c), p2(c)) ≤
max{a′ + 2ε, b′ + 2ε}. Since this is true for all ε > 0, we conclude that

τ(Y ) ≤ max{a′, b′} = sX = τ(X) where τ is any of the spans.

Case B1: sX = max{a′, c′}, a 6= w, c 6= v

In this case we define p : L ∪ R → −→ws ∪ −→wt by p/R = pε as in case 1 for
pε and p/L = qε as in case 3 for qε.

The rest of this case is handled as in case A1. Our conclusion now is that

τ(Y ) ≤ max{a′, c′} = sX = τ(X) where τ is any of the spans.

Case C1: sX = max{a′, b′}, a = w = b

In this case we define p : L∪R→ −→ws∪−→wt by p/R = pε as defined in case
2 for pε and p/L = qε as defined in case 2 for qε.

In a manner similar to the previous cases we can conclude that

τ(Y ) ≤ max{a′, b′} = sX = τ(X) where τ is any of the spans.

Case D1: sX = max{a′, c′}, a = w, c = v
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In this case we define p : L ∪ R → −→sw ∪ −→wt by p/R = pε as in case 2 for
pε and p/L = qε as in case 4 for qε.

As in the previous cases we can conclude that

τ(Y ) ≤ max{a′, c′} = sX = τ(X) where τ is any of the spans.

Case E1: sX = max{a′, b′}, a = w, b 6= w

In this case we define p : L∪R→ −→sw ∪−→wt by p/R = pε as defined in case
2 for pε and p/L = qε as defined in case 2 for qε.

In this case we can conclude that

τ(Y ) ≤ max{a′, b′} = sX = τ(X) where τ is any of the spans.

Case F1: sX = max{a′, c′}, a = w, c 6= v

In this case we define p : R ∪ L → −→sw ∪ −→wt by p/R = pε as in case 2 for
pε and p/L = qε as in case 3 for qε.

Our conclusion in this case is that

τ(Y ) ≤ max{a′, c′} = sx = τ(X) where τ is any of the spans.

Case G1:
We define p : R ∪ L→ −→wt ∪ −→ws when v = reiθ. In this case sX = d(v, w).

Pick ε where 0 < ε < 1
4 min{d(w, t), d(w, s)}. Pick m ∈ wt such that 0 <

d(w,m) < ε. Let n ∈ X such that mn is perpendicular to wt. Pick u ∈ ws
such that 0 < d(w, u) < ε. Let p = reiθρ ∈ X such that pu is perpendicular
to xs. Let B1 = nm ∪ mt ∪ Xtn where Xtn = {reiθ|θ ∈ [0, θn] ∪ [θt, 2π) if
0 ≤ θn < π

2 , θ ∈ [θt, θn] if
3π
2 ≤ θn < 2π}. Let P1 be the portion of the

plane bound by B1 together with its boundary B1. Let r : [0, 1] → Xnv

where Xnv = {reiθ|θn ≤ θ ≤ π
2 if 0 ≤ θn < π

2 , θ ∈ [θn, 2π) ∪ [0, π
2 ] if

3π
2 < θn < 2π} be a continuous, surjective function such that r(0) = v and

r(1) = n. Let mt = (1 − t)w + tm. Let Rt = mtr(t). Let l : [0, 1] → Xvp

where Xvp = {reiθ|π2 ≤ θ ≤ θp} be a continuous surjective function such that
l(0) = v, l(1) = p. Let ut = (1−t)w+tu. Let Lt = utl(t). Let B2 = su∪up∪Xps

where Xps = {reiθ|θp ≤ θ ≤ θs}. Let P2 be the portion of the plane bound by

B2 together with its boundary B2. We define p : R ∪L→ −→wt ∪−→ws as follows:
p/P1 is the perpendicular projection of P1 into

−→
mt

p/Rt is the constant function which sends each point in Rt to mt.
p/Lt is the constant function which sends each point in Lt to ut.
p/P2 is the perpendicular projection of P2 into

−→vs.
Observation 4:
Note that the continuous function d∗ : [0, 1]→ R+ given by d(w, r(t)) is

decreasing. So, for each t ∈ [0, 1], d(mt, r(t)) ≤ d(v, w)+ε. Similarly, it follows
that d(ut, d(t)) ≤ d(v, w)+ε for t ∈ [0, 1]. Using this observation together with
observation 1, we see that for y′ ∈ p(R∪L), diam p−1{y′} ≤ d(v, w)+ε. Since
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this is true for all ε > 0, we can conclude that

τ(Y ) ≤ d(v, w) = sX = τ(X) where τ is any of the spans.
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