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SOME QUESTIONS OF EQUIVARIANT MOVABILITY

P.S. GEVORGYAN

Moscow State University, Russia

ABSTRACT. In this article some questions of equivariant movability,
connected with the substitution of the acting group G on closed subgroup
H and with transitions to spaces of H-orbits and H-fixed points spaces,
are investigated. In a special case, the characterization of equivariantly
movable G-spaces is given.

1. INTRODUCTION

This paper is devoted to equivariant movability of G-spaces, i.e., topolog-
ical spaces endowed with an action of a given compact group G.

More precisely, in § 3 we define the notion of equivariant movability or
G-movability and we prove several theorems, including the following ones. If
X is p-paracompact and H C G is a closed subgroup, then G-movability of X
implies its H-movability (§ 3, Theorem 3.3). G-movability of X also implies
movability of the space X[H] of H-fixed points in X (§ 4, Theorem 4.1). In
particular, equivariant movability of a G-space X implies ordinary movability
of the topological space X (§ 3, Corollary 3.5). We construct a non-trivial
example which shows, that the converse, in general, is not true, even if we take
for G the cyclic group Zs of order 2 (§ 5, Example 5.1). If X is a metrizable
G-movable space and H is a closed normal subgroup of G, then the space X |y
of its H-orbits is also G-movable (§ 6, Theorem 6.1). In the case H = G we
obtain that G-movability of a metrizable G-space implies ordinary movability
of the orbit space X|g (§ 6, Corollary 6.2). The last assertion, in general, is
not invertible (§ 6, Example 6.3). However, if X is metrizable, G is a compact
Lie group and the action of G on X is free, then X is G-movable if and only
if the orbit space X|¢ is movable (§ 7, Theorem 7.2). Examples 6.3 (§ 6) and

2000 Mathematics Subject Classification. 55P55, 54C56.
Key words and phrases. Equivariant shape theory, equivariant movability.

185



186 P.S. GEVORGYAN

3 (§ 8) show that in the last theorem the assumption that the group G is a
Lie group and the assumption that the action is free cannot be omitted.

Some of the above listed results with an outline of proof were given in [9)].

Let us denote the category of all topological spaces and continuous maps
by Top, the category of all metrizable spaces and continuous maps by M and
the category of all p-paracompact spaces and continuous maps by P. Always
in this article it is assumed that all topological spaces are p-paracompact
spaces and the group G is compact.

The author is extremely grateful to the referee for his helpful remarks and
comments.

The reader is referred to the books by K. Borsuk [4] and by S. Mardesié
and J. Segal [15] for general information about shape theory and to the book
by G. Bredon [5] for introduction to compact transformation groups.

2. BASIC NOTIONS AND CONVENTIONS CONCERNING EQUIVARIANT
TOPOLOGY

Let G be a topological group. A topological space X is called a G-space
if there is a continuous map 6 : G x X — X of the direct product G x X into
X, 0(g,z) = gz, such that

1) g(hx) = (gh)z; 2) ex=uz,

for all g,h € G, x € X; here e is the unity of G. Such a (continuous) map
0 : Gx X — X is called an (continuous) action of the group G on the
topological space X. An evident example is the so called trivial action of G
on X: gxr =z, for all g € G, x € X. Another example is the action of the
group G on itself, defined by (g,2) — ga for all g € G, z € G.

If X and Y are G-spaces, then so is X x Y, where g(z,y) = (9z, gy),
geG, (z,y) e X xXY.

A subset A of a G space X is called invariant provided g € G, a € A
implies ga € A. It is evident, that an invariant subset of a G space is itself a
G space. If A is an invariant subset of a G space X, then every neighborhood
of A contains an open invariant neighborhood of A (see [17], Proposition
1.1.14).

Let X be any G-space and let H be a closed and normal subgroup of the
group G. The set Hx = {ha;h € H} is called the H-orbit of the point z € X.
Clearly the H-orbits of any two points in X are either equal or disjoint, in
other words X is partitioned by its H-orbits. We denote the set of all H-orbits
of the G-space X by X|g. The set X |y endowed with the quotient topology
is called the H-orbit space of X. There is a continuous action of the group
G on the space X|g defined by the formula gHz = Hgx,g € G,z € X. So,
X|g is a G-space. In case H = G the G-orbit of the point z € X is called
the orbit of the point x and the G-orbit space is called the orbit space of the
G-space X.
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We denote by X [H| the subspace of fixed points of H on X, or the H-fixed
point subspace of the G-space X. Let us recall that X[H] = {z € X;hx =z,
for any h € H}.

The set G, = {g € G;g(z) = x} is a closed subgroup of the group G,
for every z € X. G, is called the stationary subgroup (or stabilizer) at the
point z. The action of the group G on X (or the G-space X) is called free
if the stationary subgroup G, is trivial, for every x € X. It is clear that
Gye = gG,g7 !, i.e., the stationary subgroups at any two points of the same
orbit are conjugate. The orbits Gx and Gy of points x and y, respectively,
are said to have the same type if the stationary subgroups G, and G, are
conjugate.

Let X, Y be G-spaces. A (continuous) map f : X — Y is called a
G-map, or an equivariant map, if f(gz) = gf(x) for every g € G, z € X.
Note that the identity map ¢ : X — X is equivariant and the composition
of equivariant maps is equivariant. Therefore, all G-spaces and equivariant
maps form a category. Let us denote the category of all topological G-spaces
and equivariant maps by Topg, the category of all metrizable G-spaces and
equivariant maps by Mg and the category of all p-paracompact G-spaces and
equivariant maps by Pg.

Let Z be a G-space and let Y C Z be an invariant subset. A G-retraction
of ZtoY isa G-map r : Z — Y such that r|ly = 1y.

Let K¢ be class of G-spaces. A G-space Y is called a G-absolute neigh-
borhood retract for the class K¢ or a G — ANR(K¢) (G-absolute retract for
the class Kg or a G— AR(K¢)), provided Y € K¢ and whenever Y is a closed
invariant subset of a G-space Z € K¢, then there exist an invariant neigh-
borhood U of Y and a G-retraction r : U — Y (there exists a G-retraction
r:Z—Y).

A G-space Y is called a G-absolute neighborhood extensor for the class
K¢ or a G — ANE(K¢) (G-absolute extensor for the class K¢ or a G —
AFE(Kg)), provided for any G-space X € K¢ and any closed invariant subset
A C X, every equivariant map f : A — Y admits an equivariant extension
f:U — Y, where U is an invariant neighborhood of A in X (f X —=Y).

3. MOVABILITY AND EQUIVARIANT MOVABILITY

The important shape invariant, called movability, was originally intro-
duced by K. Borsuk [2] for metric compacta. Mardesié¢ and Segal [14] general-
ized the notion of movability to compacta using the AN R-system approach.
Kozlowski and Segal in [11] gave a categorical description of this property
which applied to arbitrary topological spaces.

Following Mardesié¢ and Segal [14], let us define the notion of equivariant
movability or G-movability :
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DEFINITION 3.1. An inverse G-system X = { X, Paar, A} where each X,
a € A, is a G-space and every pao : Xow — Xao, a < o, is a G-homotopy
class, is called equivariantly movable or G-movable if for every a € A, there
exists an o € A, o' > « such that for all o/’ € A, " > « there exists a
G-homotopy class pala Xo — Xgor such that

Paa’” © Ta’a” = Pao’-

It is known (see [1], Theorem 2) that every G-space X admits a G— AN R-
expansion in the sense of Mardesié (see [15], I, § 2.1), which is the same
as saying that there is an inverse G — AN R-system (G-system consisting of
G—ANR’s) X = { X4, Paar, A} associated with X in the sense of Morita [16].

DEFINITION 3.2. A G-space X is called equivariantly movable or G-
movable if there is an equivariantly movable inverse G — AN R-system X =
{Xa,Pawas A} associated with X .

Note that the last definition of equivariant movability coincides with the
notion of ordinary movability if G = {e} is the trivial group.

Let X be an equivariantly movable G-space. The evident question arises:
does movability of the space X follows from its equivariant movability? The
following, more general theorem gives a positive answer (Corollary 3.5) to the
above question.

THEOREM 3.3. Let H be a closed subgroup of a group G. Every G-movable
G-space is H-movable.

To prove this theorem the next result is important.

THEOREM 3.4. Let H be a closed subgroup of a group G. Every G —
AR(Pg) (G— ANR(Pg))-space is an H — AR(Pg)(H — AN R(Py))-space.

PROOF. According to a theorem of de Vries ([7], Theorm 4.4), it is suffi-
cient to show that if X is a p-paracompact H-space, then the twisted product
G x g X is also p-paracompact. Indeed, since X is p-paracompact and G is
compact, G X X is p-paracompact. Therefore, the twisted product G x g X
is p-paracompact. O

PRrROOF OF THEOREM 3.3. Let X be any equivariantly movable G-space.
With respect to the theorem of Smirnov ([18], Theorem 1.3), there is a closed
and equivariant embedding of the G-space X to some G — AR(Pg)-space
Y. Let us consider all open G-invariant neighborhoods of type F, of the
G-space X in Y. By a result of R. Palais ([17], Proposition 1.1.14), these
neighborhoods form a cofinal family in the set of all open neighborhoods of
X in Y, in particular, in the set of all open and H-invariant neighborhoods of
the H-space X in the H-space Y, which, by Theorem 3.3 is an H — AR(Py)-
space. Hence, from the G-movability of the above mentioned family follows
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its H-movability, i.e. from the G-movability of the G-space X follows the
H-movability of the H-space X. o

From Theorem 3.3 we obtain the following corollary if we consider the
trivial subgroup H = {e} of the group G.

COROLLARY 3.5. Every equivariantly movable G-space X is movable.

The converse, in general, is not true, even if one takes for G the cyclic
group Z, of order 2 (see Example 5.1).

4. MOVABILITY OF THE H-FIXED POINT SPACE

THEOREM 4.1. Let H be a closed subgroup of a group G. If a G-space X
is equivariantly movable, then the H-fized point space X[H] is movable.

The proof requires the use of the following theorem.

THEOREM 4.2. Let H be a closed subgroup of a group G. Let X be a
G — AR(P;)(G — ANR(Pg))- space. Then the H-fized point space X[H] is
an AR(P)(ANR(P))-space.

PROOF. Let X bea G—AR(Pg)(G— ANR(Pg))-space. By Theorem 3.4,
it is sufficient to prove the theorem in the case H = G. l.e., we must prove
that X[G] is AR(P)-space. By a theorem of Smirnov ([18], Theorem 1.3), we
can consider X as a closed G-subspace of a G— AR(Pg)-space C(G,V)x[] Dx
where V' is a normed vector space and thus an AFE(M)-space, C(G,V) is the
space of continuous maps from G to V with the compact-open topology and
with the action (¢'f)(g9) = f(99),9,9 € G,f € C(G,V) of the group G
and D) is a closed ball of a finite-dimensional Euclidean space F, with the
orthogonal action of the group G.

First, let us prove that the set (C(G,V) x [[ D,)[G] of all fixed points
of the G-space C(G,V) x [[ Dy is an AR(P)-space. The spaces C(G,V)
and E) are normed spaces. Since the actions of the group G on C(G,V)
and E) are linear, the sets C(G,V)[G] and E»[G] will be closed convex sets
of locally convex spaces C(G,V) and FE), respectively. Therefore, by a well-
known theorem of Kuratowski and Dugundji [3], C(G, V') and E are absolute
retracts for metrizable spaces. By a theorem of Lisica [12], they are also
absolute retracts for p-paracompact spaces. For a closed ball Dy C FE) the
last conclusion is true since the set D»[G] = D[ EA[G] is closed and convex
in E)\.

Since the group G acts on the product C(G, V) x [[ Da coordinate-wise,

(C(G,v) x [T DI6] = C(@ V)G < (T] ) (6.

Hence, (C(G,V) x [[ D»)[G] is an AR(P)-space, because it is a product
of two AR(P)-spaces.
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Now let us prove that X[G] is an AR(P)-space. Since X is a G— AR(Pg)-
space, it is a G-retract of the product C(G, V) x [ Dx. Therefore, X[G] is a
retract of the AR(P)-space (C(G, V) x[] Dx)[G], hence, it is an AR(P)-space.

The absolute neighborhood retract case is proved similarly. O

PRrROOF OF THEOREM 4.1. Let X be a G-movable space. By Theo-
rem 3.3, it is sufficient to prove the theorem in the case H = G. So, we
must prove movability of the space X[G] of all G-fixed points. We consider
the G-space X as a closed and G-invariant space of some G — AR(Pg)-space
Y ([18], Theorem 1.3). The family of all open, G-invariant F,-type neighbor-
hoods U, of the G-space X in Y, is cofinal in the set of all open neighborhoods
of X in Y ([17], Proposition 1.1.14). It consists of G — AN R(P¢)-spaces. The
intersections U, NY[G] = U,[G] are AN R(P)-spaces (Theorem 4.2). They
form a cofinal family of neighborhoods of the space X[G] in Y[G]. Indeed, for
any neighborhood U of the set X[G] in Y[G] there is a neighborhood V of the
set X[G] in Y such that VNY[G] = U. Then the set W = (Y \Y[G])UV is
a neighborhood of the set X in Y, moreover, W NY[G] = U. There is an «
such that U, C W and therefore U, [G] C U. So the family of neighborhoods
U4 [G] is cofinal.

Since X is G-movable, for every U, there is a neighborhood U, C U,
such that, for any other neighborhood U,» C U, there exists a G-equivariant
homotopy F': Uy x I — U, such that F(y,0) =y and F(y,1) € Uy, for any
y € Uy . It is not difficult to verify that the homotopy F[G] : Uy [G] x I —
U4 [G], induced by F', satisfies the condition of movability of X[G]. O

5. EXAMPLE OF A MOVABLE, BUT NOT EQUIVARIANTLY MOVABLE SPACE

EXAMPLE 5.1. We will use the idea of S. Mardesi¢ [13]. Let us consider
the unit circle S = {z € C;|z| = 1}. Let us denote B =[S x {1}JU[{1} x S].
B is the wedge of two copies of the unit circle S with base point {1}. Let us
define a continuous map f : B — B by the formulas:

(z%,1), 0<arg(z) <3
1y = {20, §<argl) <m
’ (z7%1), m<arg(z) <%
(1,27, 22 <arg(z) <2r
(t4,1), 0<arg(t) <3
FL1) = (1,t7%), Z<arg(t)<m
DIV, w<ang < &
(LtY), % <arg(t) < 2r



SOME QUESTIONS OF EQUIVARIANT MOVABILITY 191

for every z and t from S. Let us consider the AN R-sequences
L pl pdL ..
and
spElypZlypEl ...
where ¥ is the operation of suspension. Let us denote
P =1lm{B, f}.
Then
YP =lim{XB,Xf}.
Let us define an action of the group Zs = {e, g} on B by the formulas
elz, t] = [z, t]; glx, t] = [z, —t].
for every [z,t] € ¥B,—1 < ¢ < 1. It induces an action on XP.

PROPOSITION 5.2. The space X P has trivial shape, but it is not Zs-
movable.

PROOF. The triviality of shape of the space X P is proved by the method
of Mardesié [13]. Let us prove that the space ¥ P is not Zs-movable. Consider
the set ¥ P[Z5] of all fixed-points of Za-space L.P. It is obvious that X P[Z;] =
P. Hence, by Theorem 4.1, it is sufficient to prove the following proposition.

O

PRroPOSITION 5.3. The space P is not movable.

PROOF. Since the movability of an inverse system remains unchanged
under the action of a functor, it is sufficient to prove non-movability of the
inverse sequence of groups

(1) m(B) L m(B) L m(B) L.

)

where 71 (B) is the fundamental group of the space B and f is the homomor-
phism induced by the mapping f: B — B.

It is known that for sequences of groups movability implies the following
condition of Mittag-Leffler, abbreviated as ML ([15], p. 166, Corollary 4):

The inverse system {Gu,Daar, A} of the pro — GROUP category is said
to be ML provided for every o € A, there exist o/ € A, o’ > «, such that
Paa’ (Gar) = paar (Gar), for any o € Ao > o .

Thus, it sufficient to prove that the sequence (1) does not satisfy condition
ML. Let us observe that m1(B) is a free group with two generators a and b,
and f, is the homomorphism defined by the formulas

fo(a) = aba™ 071, fo(b) =a" b ab.
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f« is a monomorphism, because f.(a) # f«(b), but not an epimorphism,
because, for example, f.(z) # a, for all x € m1(B). Hence, for any natural m
and n,Imf" & Imf}" only if m > n. It means that the inverse sequence (1)
does not satisfy condition M L. O

6. MOVABILITY OF THE ORBIT SPACE

THEOREM 6.1. Let X be a metrizable G-space. If X is G-movable then
for any closed and normal subgroup H of the group G, the H-orbit space X |y
is also G-movable.

Proor. Without losing generality one may suppose that X is a closed
G-invariant subset of some G — AR(Mg)-space Y ([18], Theorem 1.1). X|g
is a closed G-invariant subset of Y|z ([5], Theorem 3.1).

Let {Xq, @ € A} be the family of all G-invariant neighborhoods of X in Y.
Let us consider the family {X,|m, o € A}, where each X, |g € G—ANR(M¢)
and is a G-invariant neighborhood of X |z in Y|g. Let us prove that the family
{Xa|m,a € A} is cofinal in the family of all neighborhoods of X |y in Y|g.
Let U be an arbitrary neighborhood of X|g in Y|gy. By a theorem of Palais
([17], Proposition 1.1.14), there exists a G-invariant neighborhood V' O X|g
laying in U. Let us denote V = (pr)~'(V), where pr : ¥ — Y|y is the
H-orbit projection. It is evident that V is a G-invariant neighborhood of
the space X in Y and V = V|g. So in any neighborhood of the space X |z
in Y|g, there is a neighborhood of type X,|m, where X, is a G-invariant
neighborhood of X in Y.

Now let us prove the G-movability of the space X |p. Let X be G-movable.
It means that the inverse system {X,, ina’, A} is G-movable. We must prove
that the induced inverse system {X,|x, %00’ |m, A} is G-movable. Let a € A
be any index. By the G-movability of the inverse system {X,,¢qa/, A}, there
isa’ € A, o’ > «, such that for any other index o’ € A,a” > «, there exists
a G-mapping re'e” . Xo —  Xgr, which makes the following diagram
G-homotopy commutative

DIAGRAM 1.
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It turns out that, for given a € A, the obtained index o’ € A,a’ > «,
also satisfies the condition of G-movability of the inverse system

{Xa|H7iaa’|Ha A}

This is obvious, because the G-homotopy commutativity of Diagram 1 implies
the G-homotopy commutativity of the following diagram

. Xa’|H

Xolu A
‘m){a”lfl
DIAGRAM 2.

where r"‘/o‘”|H : Xoolg — Xov|m is induced by the mapping re’e” Qo the
G-movability of the space X |y is proved. O

COROLLARY 6.2. Let X be a metrizable G-space. If X is G-movable, then
the orbit space X|a is movable.

PROOF. In the case H = G from the last theorem we obtain that the orbit
space X|g with the trivial action of the group G is G-movable. Therefore, it
will be movable by Corollary 3.5. o

Corollary 6.2 in general is not invertible:

EXAMPLE 6.3. Let ¥ be a solenoid. It is known ([4], Theorem 13.5) that
¥ is a non-movable compact metrizable Abelian group. By Corollary 3.5, the
solenoid ¥ with the natural group action is not ¥-movable although the orbit
space X|s as a one-point set is movable.

The converse of Corollary 6.2 is true if the group G is a Lie group and
the action is free (see Theorem 7.2).

7. EQUIVARIANT MOVABILITY OF A FREE (G-SPACE

THEOREM 7.1. Let G be a compact Lie group and let Y be a metrizable
G — AR(Mg)-space. Suppose that a closed invariant subset X of Y has an
invariant neighborhood whose orbits have the same type. If the orbit space
X|g is movable, then X is equivariantly movable.

PROOF. The orbit space X|¢g is closed in Y|q, which is a G — AR(M)-
space. Let U be an arbitrary invariant neighborhood of X in Y. By the
assumption of the theorem, it follows that there exists a cofinal family of
neighborhoods of X in Y, whose orbits have the same type. Therefore, one
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may suppose that all orbits of the neighborhood U have the same type. The
orbit set U|g will be a neighborhood of X|g in Y|g. From the movability of
X|¢ it follows that, for the neighborhood U|g, there is a neighborhood V' of
the space X|g in Y|, which lies in the neighborhood Ul and contracts to
any preassigned neighborhood of the space X|q.

Let us denote V = (pr)~'(V), where pr : Y — Y|¢ is the orbit projection.
It is evident that V is an invariant neighborhood of the space X lying in U.
Let us prove that V' contracts in U to any preassigned invariant neighborhood
of X. Let W be any invariant neighborhood of X in Y. We must prove the
existence of an equivariant homotopy F : V x I — U, which satisfies the
condition

F(z,0) =z, F(z,1)eW,
for any z € V. Since W/ is a neighborhood of the space X|¢ in Y|, there
is a homotopy F' : V|g x I — U|g such that
2) F(#,0) =2, F(#1)€Wla,

for any Z € V|g. The homotopy F : V|g x I — Ulg preserves the G-
orbit structure, because V' C U and all orbits of U have the same types (see
Diagram 3).

1% J U
pr pr
,L'/
Ve Ula
DIAGRAM 3.

By the covering homotopy theorem of Palais ([17], Theorem 2.4.1), there is
an equivariant homotopy F': V x I — U, which covers the homotopy F and
satisfies F'(x,0) = i(x) = x. That is, the following diagram is commutative
(Diagram 4).

vxl L@
pr pbr

Vigx I £+ Ulg

DIAGRAM 4.
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F :V xI — U is the designed equivariant homotopy. It only remains
to verify that F(z,1) € W. But this immediately follows from (2) and the
commutativity of Diagram 4. O

THEOREM 7.2. Let G be a compact Lie group. A metrizable free G-space
X is equivariantly movable if and only if the orbit space X|g is movable.

PROOF. The necessity in a more general case was proved in Corollary 6.2.
Let us prove the sufficiency. Let the orbit space X|g be movable. One can
consider the G-space X as a closed and invariant subset of some G— AR(M¢)-
space Y. Let P C X be any orbit. From the existence of slices it follows that
around P there is such an invariant neighborhood U(P) in Y that typeQ >
typeP, for any orbit @ from U(P) ([5], Corollary 5.5). Since the action of the
group G on X is free, type@ = typeP = typeG, for any orbit @ lying in U(P).
Let us denote V = U{U(P); P € X|g}. It is evident that V is an invariant
neighborhood of the space X in Y and that all of its orbits have the same
type. Then, by Theorem 7.1, X is equivariantly movable. O

Example 6.3 shows that the assumption that G is a Lie group is essential
in the above theorem. The Example 8.1 which follows shows that the condition
of freeness of the action of the group G is also essential in the above theorem.

8. EXAMPLE OF A NON-FREE NOT Z5-MOVABLE SPACE WITH A MOVABLE
ORBIT SPACE

ExaMPLE 8.1. Let us consider the space P = lim{B, f} constructed in
Example 5.1. Let us define an action of the group Zs = {e, g} on the space
B by the formulas

e(z,1) = (z,1)

e(1,) = (1,4)
®) gz 1) = (1,27

g(l,t) = (t_l 1)a

for any z and t from S. B is a Zy — ANR(Mz,) space with the fixed-point
by = (1,1).

PROPOSITION 8.2. The mapping f : B — B, defined by formulas (8), is
equivariant.

PRrROOF. It is necessary to prove the following two equalities:

@ flg(z,1) = g(f(2,1))

flg(1,1)) = g(f(1,2)),
for any z and ¢ from S. Let us prove the first one. Consider the following
cases:
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Case 1. 0<argz < % & S <argz”
Then f(g9(2,1)) = f(1,271) = (1,2

Case 2. 5 <argz<m <& 7T< argz—' < 2,
Then f(g(z71)):f( 72_1):(2_4

Case 3. m<argz < 37” =
Then f(g(z,1)) = f(lvz_l) =

Case 4. 37” Largz <2r & 0<argz

The second equality of (4) is proved in a similar way. O

ProPOSITION 8.3. P is a connected, compact, metrizable and equivari-
antly non-movable Zs-space which is free at all points except at the only fixed
point (bg, bo, ...) and sh(P|z,)=0.

PROOF. P is a Zs-space because it is an inverse limit of Zo — AN R(Mz,)-
spaces B and f is an equivariant mapping. The uniqueness of the fixed point
is evident. The connectedness, compactness and metrizability follows from
the properties of inverse systems ([8], Theorem 6.1.20, Corollary 4.2.5). The
non Zs-movability follows from Proposition 5.3 and Corollary 3.5.

Let us prove that sh(P|z,) = 0 and thus the orbit space P|z, is movable.

Let X = lim{B|z,, f|z,}. X is equimorphic to the orbit space P|z,.
Indeed, let us define a mapping h : X — P|z, in the following way:

h(([ml]v [‘T?]v )) = [(mlvw?v )]

where ([x1],[®2],...) € X, and x1,z2,.. are selected from the classes
[1], [x2], ... in such way that (z1,22,...) € P or what is the same f(zp41) =
Ty, for any n = 1,2, .... Let us prove that the mapping h is defined correctly.
Let Z1,Za, ... be some other representatives of the classes [z1], [z2], ..., respec-
tively, satisfying the conditions f(Z,4+1) = &, for any n € N. Since each
class [z,,] has two representatives: x,, and gx,, where g € Zy = {e, g}, either
Tp = gxn O Ty = x,. But it is obvious that, if for some ng € N, Z,,, = gxn,,
then, for any n € N, z,, = gx,, because f is equivariant. Thus, in the case of
another choice of the representatives of the classes [z1], [z2], ..., we have

h(([l‘l], [1'2], )) = [(.i‘l,i'g, )] = [(gl‘l,gl'g, )] =
= [g(z1, z2,...)] = [(z1, x2, ...)].
However, h is a continuous bijection and thus, it is a homeomorphism ([8],

Theorem 3.1.13).
Consequently,

Plz, = liin{B|Z2a flz,}s
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where B|z, = S and the mapping f = f|z, : S — S is defined by the formulas:

zt, 0<arg(z) <5
3

(5) f(z) =927 F<arg(z) <3
24, 37” <arg(z) < 2w

for any z € S. Thus, we conclude that the orbit space P|z, is a limit of the
inverse sequence
sl gt gl ..
By formula (5), the mapping f induces a homomorphism f, : 71(S) — m1(S),
which acts as follows:
fela) =aa"ta a,

where a € 7(S) = Z is the generator of the group Z. From the above
formula, it follows that f. is the null-homomorphism and thus, degf = 0.

For any k = 1,2,---, f¥ is also a null-homomorphism and thus, degf* = 0.

Therefore, by the classical Hopf theorem ([10], Section 2.8, Theorem H") all

f¥: S — S are null-homotopic and sh(P|z,) = 0. O
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