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ABSTRACT

The theory of convex sets is a vibrant and classical field
of modern mathematics with rich applications. If every
points of a line segment that connects any two points
of the set are in the set, then it is convex. The more
geometric aspects of convex sets are developed introduc-
ing some notions, but primarily polyhedra. A polyhedra,
when it is convex, is an extremely important special solid
in Rn. Some examples of convex subsets of Euclidean
3-dimensional space are Platonic Solids, Archimedean
Solids and Archimedean Duals or Catalan Solids. In this
study, we give two new metrics to be their spheres an
archimedean solid icosidodecahedron and its archimedean
dual rhombic triacontahedron.
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O metrici induciranoj ikosadodekaedrom i
trijakontaedrom

SAŽETAK

Teorija konveksnih skupova je vitalno i klasično područje
moderne matematike s bogatom primjenom. Ako se sve
točke dužine, koja spaja bilo koje dvije točke skupa, nalaze
u tom skupu, tada je taj skup konveksan. Sve se vǐse
geometrijskih aspekata o konveksnim skupovima razvija
uvodeći neke pojmove, ponajprije poliedre. Konveksni
poliedar je iznimno važno posebno tijelo u Rn. Neki primje-
ri konveksnih podskupova euklidskog trodimenzionalnog
prostora su Platonova tijela, Arhimedova tijela, tijela du-
alna Arhimedovim tijelima i Catalanova tijela. U ovom
članku prikazujemo dvije metrike koje su sfere Arhime-
dovom tijelu ikosadodekaedru i njemu dualnom tijelu, tri-
jakontaedru.

Ključne riječi: Arhimedova tijela, Catalanova tijela,
metrika kineskog šaha, ikosadodekaedar, trijakontaedar

1 Introduction

Some mathematicians studied on metrics and improved
metric geometry (some of these are [2], [3], [6], [7], [8],
[9]). Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be two points
in R3. The maximum metric dM : R3×R3→ [0,∞) is de-
fined by

dM(P1,P2) = max{|x1− x2| , |y1− y2| , |z1− z2|}.

Taxicab metric dT : R3×R3→ [0,∞) is defined by

dT (P1,P2) = |x1− x2|+ |y1− y2|+ |z1− z2| .

Then E. Krause asked the question of how to develop
a metric which would be similar to movement made by
playing Chinese Checkers [11]. An answer was given

by G. Chen for plane [1]. In [5], Ö. Gelişgen, R.
Kaya and M. Özcan extended Chinese-Checkers metric to
3−dimensional space. The CC−metric
dCC : R3×R3→ [0,∞) is defined by

dCC(P1,P2) = dL(P1,P2)+(
√

2−1)dS(P1,P2)

where dL(P1,P2) = max{|x1− x2| , |y1− y2| , |z1− z2|} and
dS(P1,P2) = min{|x1− x2|+ |y1− y2| , |x1− x2|+ |z1− z2| ,
|y1− y2|+ |z1− z2|}.
Each of geometries induced by these metrics is a
Minkowski geometry. Minkowski geometry is a non-
euclidean geometry in a finite number of dimensions that
is different from elliptic and hyperbolic geometry (and
from the Minkowskian geometry of space-time). In a
Minkowski geometry, the linear structure is just like the
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Euclidean one but distance is not uniform in all directions.
That is, the points, lines and planes are the same, and the
angles are measured in the same way, but the distance func-
tion is different. Instead of the usual sphere in Euclidean
space, the unit ball is a certain symmetric closed convex
set [13].
A polyhedron is a solid in three dimensions with flat faces,
straight edges and vertices. A regular polyhedron is a poly-
hedron with congruent faces and identical vertices. There
are only five regular convex polyhedra which are called
platonic solids. Archimedes discovered the semiregular
convex solids. However, several centuries passed before
their rediscovery by the renaissance mathematicians. Fi-
nally, Kepler completed the work in 1620 by introducing
prisms and antiprisms as well as four regular nonconvex
polyhedra, now known as the Kepler–Poinsot polyhedra.
Construction of the dual solids of the Archimedean solids
was completed in 1865 by Catalan nearly two centuries
after Kepler (see [10]). A convex polyhedron is said to
be semiregular if its faces have a similar configuration of
nonintersecting regular plane convex polygons of two or
more different types about each vertex. These solids are
commonly called the Archimedean solids. The duals are
known as the Catalan solids. The Catalan solids are all
convex. They are face-transitive when all its faces are the
same but not vertex-transitive. Unlike Platonic solids and
Archimedean solids, the face of Catalan solids are not reg-
ular polygons.
According to studies of mentioned researches unit spheres
of Minkowski geometries which are furnished by these
metrics are associated with convex solids. For example,
unit spheres of maximum space and taxicab space are
cubes and octahedrons, respectively, which are Platonic
Solids [4], [6]. And unit sphere of CC-space is a del-
toidal icositetrahedron which is a Catalan solid [5]. There-

fore, there are some metrics in which unit spheres of space
furnished by them are convex polyhedra. That is, convex
polyhedra are associated with some metrics. When a met-
ric is given we can find its unit sphere. On the contrary
a question can be asked; “Is it possible to find the metric
when a convex polyhedron is given?”. In this study we
find the metrics of which unit spheres are an icosidodeca-
hedron, one of the Archimedean Solids and a rhombic tri-
acontahedron which is Archimedean dual (a catalan solid)
of icosidodecahedron.

2 Icosidodecahedron Metric

One type of convex polyhedrons is the Archimedean
solids. The fifth book of the “Synagoge” or “Collection” of
the Greek mathematician Pappus of Alexandria, who lived
in the beginning of the fourth century AD, gives the first
known mention of the thirteen “Archimedean solids”. Al-
though, Archimedes makes no mention of these solids in
any of his extant works, Pappus lists this solids and at-
tributes to Archimedes in his book [16].
An Archimedean solid is a symmetric, semiregular con-
vex polyhedron composed of two or more types of regular
polygons meeting in identical vertices. A polyhedron is
called semiregular if its faces are all regular polygons and
its corners are alike. And, identical vertices are usually
means that for two taken vertices there must be an isom-
etry of the entire solid that transforms one vertex to the
other.
One of the Archimedean solids is the icosidodecahedron.
An icosidodecahedron is a polyhedron which has 32 faces,
60 edges and 30 vertices. Twelve of its faces are regu-
lar pentagons and twenty of them are equilateral triangles
[14].

(a)
(b)

Figure 1: (a) Icosidodecahedron, (b) Net of icosidodecahedron
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To find the metrics of which unit spheres are convex poly-
hedrons, firstly, the related polyhedra are placed in the 3-
dimensional space in such a way that they are symmetric
with respect to the origin. And then the coordinates of ver-
tices are found. Later one can obtain metric which always
supply plane equation related with solid’s surface. There-
fore we describe the metric which unit sphere is an icosi-
dodecahedron as following:

Definition 1 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be
two points in R3.
The distance function dID : R3×R3→ [0,∞) icosidodeca-
hedron distance between P1 and P2 is defined by

dID(P1,P2) =

max

 u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w} ,
v+(ϕ−1)max{w,(ϕ−1)u,u+(1−ϕ)v+w} ,
w+(ϕ−1)max{u,(ϕ−1)v,u+ v+(1−ϕ)w}


where u = |x1− x2|, v = |y1− y2|, w = |z1− z2| and ϕ =
1+
√

5
2 the golden ratio.

According to icosidodecahedron distance, there are three
different paths from P1 to P2. These paths are
i) union of two line segments which one is parallel to a
coordinate axis and other line segment makes arctan(

√
5

2 )
angle with another coordinate axis.
ii) union of two line segments which one is parallel to a co-
ordinate axis and other line segment makes arctan( 1

2 ) angle
with another coordinate axis.
iii) union of three line segments each of which is parallel
to a coordinate axis.

Thus icosidodecahedron distance between P1 and P2 is the
sum of Euclidean lengths of these two line segments or√

5−1
2 times the sum of Euclidean lengths of these three

line segments.
Figure 2 illustrates icosidodecahedron way from P1 to
P2 if maximum value is |x1− x2| + (

√
5−1
2 ) |y1− y2|,

|x1− x2| + (
√

5−1
2 )2 |z1− z2| or (

√
5−1
2 )(|x1− x2| +

|y1− y2|+ |z1− z2|).

Lemma 1 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be dis-
tinct two points in R3. u, v, w denote |x1− x2|, |y1− y2|,
|z1− z2|, respectively. Then

dID(P1,P2)≥ u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w},
dID(P1,P2)≥ v+(ϕ−1)max{w,(ϕ−1)u,u+(1−ϕ)v+w},
dID(P1,P2)≥ w+(ϕ−1)max{u,(ϕ−1)v,u+ v+(1−ϕ)w}.

Proof. Proof is trivial by the definition of maximum func-
tion. �

Theorem 1 The distance function dID is a metric. Also
according to dID, the unit sphere is an icosidodecahedron
in R3.

Proof. Let dID : R3 × R3 → [0,∞) be the icosidodec-
ahedron distance function and P1 = (x1,y1,z1), P2 =
(x2,y2,z2) and P3 = (x3,y3,z3) are distinct three points in
R3. u, v, w denote |x1− x2|, |y1− y2|, |z1− z2|, respec-
tively. To show that dID is a metric in R3, the following
axioms hold true for all P1, P2 and P3 ∈ R3.

Figure 2: ID way from P1 to P2
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M1) dID(P1,P2)≥ 0 and dID(P1,P2) = 0 iff P1 = P2
M2) dID(P1,P2) = dID(P2,P1)
M3) dID(P1,P3)≤ dID(P1,P2)+dID(P2,P3).
Since absolute values is always nonnegative value
dID(P1,P2) ≥ 0. If dID(P1,P2) = 0 then there are possi-
ble three cases. These cases are
Case I:
dID(P1,P2) = u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+v+w}
Case II:
dID(P1,P2) = v+(ϕ−1)max{w,(ϕ−1)u,u+(1−ϕ)v+w}
Case III:
dID(P1,P2) =w+(ϕ−1)max{u,(ϕ−1)v,u+v+(1−ϕ)w}.

Case I: If dID(P1,P2) = u+(ϕ− 1)max{v,(ϕ− 1)w,(1−
ϕ)u+ v+w}, then

u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w}=0
⇔ u = 0 and (ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w}= 0
⇔ x1 = x2, y1 = y2, z1 = z2
⇔ (x1,y1,z1) = (x2,y2,z2)
⇔ P1 = P2

The other cases can be shown by similar way in Case I.
Thus we get dID(P1,P2) = 0 iff P1 = P2.
Since |x1− x2| = |x2− x1|, |y1− y2| = |y2− y1| and
|z1− z2| = |z2− z1|, obviously dID(P1,P2) = dID(P2,P1).
That is, dID is symmetric.
Let P1 = (x1,y1,z1), P2 = (x2,y2,z2) and P3 = (x3,y3,z3)
are distinct three points in R3. u1, v1, w1, u2, v2, w2 denote
|x1− x3|, |y1− y3|, |z1− z3|, |x2− x3|, |y2− y3|, |z2− z3|,
respectively.
Then by using the property |a−b+b− c| ≤ |a−b| +
|b− c| we get

dID(P1,P3)

=max


u1 +(ϕ−1)max{v1, (ϕ−1)w1,(1−ϕ)u1 + v1 +w1} ,
v1 +(ϕ−1)max{w1, (ϕ−1)u1,u1 +(1−ϕ)v1 +w1} ,
w1 +(ϕ−1)max{u1, (ϕ−1)v1,u1 + v1 +(1−ϕ)w1}



≤max



u1 +u2 +(ϕ−1)max


v1 + v2, (ϕ−1)(w1 +w2) ,
(1−ϕ)(u1 +u2)
+v1 + v2 +w1 +w2

 ,

v1 + v2 +(ϕ−1)max


w1 +w2, (ϕ−1)(u1 +u2) ,
u1 +u2 +(1−ϕ)(v1 + v2)
+w1 +w2

 ,

w1 +w2 +(ϕ−1)max


u1 +u2, (ϕ−1)(v1 + v2) ,
u1 +u2 + v1 + v2
+(1−ϕ)(w1 +w2)




= I.

Therefore one can easily find that I ≤ dID(P1,P2) +
dID(P2,P3) from Lemma 1. So, dID(P1,P3)≤ dID(P1,P2)+
dID(P2,P3). Consequently, icosidodecahedron distance is a
metric in 3-dimensional analytical space.
Finally, the set of all points X = (x,y,z) ∈ R3 that icosido-
decahedron distance is 1 from O = (0,0,0) is

SID =
(x,y,z):max



|x|+(ϕ-1)max
{
|y| ,(ϕ-1) |z| ,
(1-ϕ) |x|+ |y|+ |z|

}
,

|y|+(ϕ-1)max
{
|z| ,(ϕ-1) |x| ,
|x|+(1-ϕ) |y|+ |z|

}
,

|z|+(ϕ-1)max
{
|x| ,(ϕ-1) |y| ,
|x|+ |y|+(1-ϕ) |z|

}


=1


.

Thus the graph of SID is as in Figure 3. �

Figure 3: Icosidodecahedron

Corollary 1 The equation of the icosidodecahedron with
center (x0,y0,z0) and radius r is

max



|x− x0|+(ϕ−1)max


|y− y0| ,(ϕ−1) |z− z0| ,
(1−ϕ) |x− x0|
+ |y− y0|+ |z− z0|

 ,

|y− y0|+(ϕ−1)max


|z− z0| ,(ϕ−1) |x− x0| ,
(1−ϕ) |y− y0|
+ |x− x0|+ |z− z0|

 ,

|z− z0|+(ϕ−1)max


|x− x0| ,(ϕ−1) |y− y0| ,
(1−ϕ) |z− z0|
+ |x− x0|+ |y− y0|




= r

which is a polyhedron which has 32 faces with vertices;
such that all permutations of the three axis components
and all posible +/- sign changes of each axis component
of (0,0,r), and (ϕ−1

2 r, 1
2 r, ϕ

2 r), where ϕ = 1+
√

5
2 the golden

ratio.

Lemma 2 Let l be the line through the points P1 =
(x1,y1,z1) and P2 = (x2,y2,z2) in the analytical 3-
dimensional space and dE denote the Euclidean metric. If
l has direction vector(p,q,r), then

dID(P1,P2) = µ(P1P2)dE(P1,P2)

where µ(P1P2) =

max


|p|+(ϕ−1)max{|q| ,(ϕ−1) |r| ,(1−ϕ) |p|+ |q|+ |r|} ,
|q|+(ϕ−1)max{|r| ,(ϕ−1) |p| , |p|+(1−ϕ) |q|+ |r|} ,
|r|+(ϕ−1)max{|p| ,(ϕ−1) |q| , |p|+ |q|+(1−ϕ) |r|}

√
p2 +q2 + r2

.
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Proof. Equation of l gives us x1− x2 = λp, y1− y2 = λq,
z1− z2 = λr, r ∈ R. Thus, dID(P1,P2) is equal to

|λ|

max



|p|+(ϕ−1)max
{
|q| ,(ϕ−1) |r| ,
(1−ϕ) |p|+ |q|+ |r|

}
,

|q|+(ϕ−1)max
{
|r| ,(ϕ−1) |p| ,
|p|+(1−ϕ) |q|+ |r|

}
,

|r|+(ϕ−1)max
{
|p| ,(ϕ−1) |q| ,
|p|+ |q|+(1−ϕ) |r|

}




and dE(A,B) = |λ|

√
p2 +q2 + r2 which implies the re-

quired result. �

The lemma above says that dID−distance along any line
is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the fol-
lowing corollaries.

Corollary 2 If P1, P2 and X are any three collinear
points in R3, then dE(P1,X) = dE(P2,X) if and only if
dID(P1,X) = dID(P2,X).

Corollary 3 If P1, P2 and X are any three distinct
collinear points in the real 3-dimensional space, then

dID(X ,P1) / dID(X ,P2) = dE(X ,P1) / dE(X ,P2) .

That is, the ratios of the Euclidean and dID−distances
along a line are the same.

3 Rhombic Triacontahedron Metric

The duals of thirteen Archimedean solids are known as
Catalan solids. Unlike Platonic and Archimedean solids,
faces of Catalan solids are not regular polygons. Rhombic
triacontahedron is one of the Catalan solids with 30 faces,

32 vertices and 60 edges. Its faces are rhombuses. The ra-
tio of the long diagonal to the short diagonal of each face is
exactly equal to ϕ = 1+

√
5

2 , which is the golden ratio [15].

Definition 2 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be
two points in R3. The distance function dRT : R3×R3 →
[0,∞) Rhombic triacontahedron distance between P1 and
P2 is defined by dRT (P1,P2) =

ϕ

2
max



|x1− x2|+(2ϕ−3)max
{
(ϕ+1) |z1− z2|+ϕ |y1− y2|,
|x1− x2|

}
,

|y1− y2|+(2ϕ−3)max
{
(ϕ+1) |x1− x2|+ϕ |z1− z2|,
|y1− y2|

}
,

|z1− z2|+(2ϕ−3)max
{
(ϕ+1) |y1− y2|+ϕ |x1− x2|,
|z1− z2|

}


where ϕ = 1+

√
5

2 , the golden ratio.

According to the rhombic triacontahedron distance, there
are two types path from P1 to P2. These paths are:

i) union of three line segments which one is parallel to
a coordinate axis and other line segments are made
arctan( 1

2 ) and arctan(
√

5
2 ) angle with other coordi-

nate axes.

ii) a line segment which is parallel to a coordinate axis.

Thus rhombic triacontahedron distance between P1 and
P2 is the Euclidean length of line segment which is par-
allel to a coordinate axis or

√
5+1
4 times the sum of Eu-

clidean lengths of three line segments. Figure 5 shows
that the path between P1 and P2 in case of the maximum
is |y1− y2|+ 3−

√
5

2 |z1− z2|+
√

5−1
2 |x1− x2|.

(a) (b)

Figure 4: (a) Rhombic triacontahedron, (b) Net of rhombic triacontahedron
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Figure 5: RT way from P1 to P2 in the case |y1− y2| ≥
|x1− x2| ≥ |z1− z2|

Lemma 3 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be dis-
tinct two points in R3. Then

dRT (P1,P2)≥
ϕ

2 (|x1− x2|+(2ϕ−3)max{(ϕ+1) |z1− z2|+ϕ |y1− y2|, |x1− x2|})
dRT (P1,P2)≥

ϕ

2 (|y1− y2|+(2ϕ−3)max{(ϕ+1) |x1− x2|+ϕ |z1− z2|, |y1− y2|})
dRT (P1,P2)≥

ϕ

2 (|z1− z2|+(2ϕ−3)max{(ϕ+1) |y1− y2|+ϕ |x1− x2|, |z1− z2|}) .

where ϕ = 1+
√

5
2 .

Proof. Proof is trivial by the definition of maximum func-
tion. �

Theorem 2 The distance function dRT is a metric. Also
according to dRT , unit sphere is a rhombic triacontahedron
in R3.

Proof. Let dRT : R3 ×R3 → [0,∞) be the rhombic tria-
contahedron distance function and P1 = (x1,y1,z1), P2 =
(x2,y2,z2) and P3 = (x3,y3,z3) are distinct three points in
R3. To show that dRT is a metric in R3, the following ax-
ioms hold true for all P1, P2 and P3 ∈ R3.
M1) dRT (P1,P2)≥ 0 and dRT (P1,P2) = 0 iff P1 = P2

M2) dRT (P1,P2) = dRT (P2,P1)

M3) dRT (P1,P3)≤ dRT (P1,P2)+dRT (P2,P3).
One can easily show that the rhombic triacontahedron dis-
tance function satisfies above axioms by similar way in
Theorem 1.
Consequently, the set of all points X = (x,y,z) ∈ R3 that
rhombic triacontahedron distance is 1 from O = (0,0,0) is
SRT =(x,y,z) : ϕ

2 max


|x|+(2ϕ−3)max{(ϕ+1) |z|+ϕ |y|, |x|} ,
|y|+(2ϕ−3)max{(ϕ+1) |x|+ϕ |z|, |y|} ,
|z|+(2ϕ−3)max{(ϕ+1) |y|+ϕ |x|, |z|}

=1

.

Thus the graph of SRT is as in Figure 6. �

Corollary 4 The equation of the rhombic triacontahedron
with center (x0,y0,z0) and radius r is

ϕ

2
max



|x− x0|+(2ϕ−3)max
{
(ϕ+1) |z− z0|+ϕ |y− y0|,
|x− x0|

}
,

|y− y0|+(2ϕ−3)max
{
(ϕ+1) |x− x0|+ϕ |z− z0|,
|y− y0|

}
,

|z− z0|+(2ϕ−3)max
{
(ϕ+1) |y− y0|+ϕ |x− x0|,
|z− z0|

}


=r.

which is a polyhedron which has 30 faces with vertices;
such that all permutations of the three axis components
and all posible +/- sign changes of each axis component
of (µr,0,r), (0,δr,r) and (µr,µr,µr), where µ =

√
5−1
2 and

δ = 3−
√

5
2 .

Figure 6: Rhombic Triacontahedron

Lemma 4 Let l be the line through the points P1 =
(x1,y1,z1) and P2 = (x2,y2,z2) in the analytical 3-
dimensional space and dE denote the Euclidean metric. If
l has direction vector (p,q,r), then

dRT (P1,P2) = µ(P1P2)dE(P1,P2)

where

µ(P1P2)=

ϕ

2 max


|p|+(2ϕ−3)max{(ϕ+1) |r|+ϕ |q| , |p|} ,
|q|+(2ϕ−3)max{(ϕ+1) |p|+ϕ |r| , |q|} ,
|r|+(2ϕ−3)max{(ϕ+1) |q|+ϕ |p| , |r|}

√
p2 +q2 + r2

.

Proof. Equation of l gives us x1− x2 = λp, y1− y2 = λq,
z1− z2 = λr, r ∈ R. Thus,
dRT (P1,P2) =

|λ|

ϕ

2
max


|p|+(2ϕ−3)max{(ϕ+1) |r|+ϕ |q| , |p|} ,
|q|+(2ϕ−3)max{(ϕ+1) |p|+ϕ |r| , |q|} ,
|r|+(2ϕ−3)max{(ϕ+1) |q|+ϕ |p| , |r|}




and dE(A,B) = |λ|
√

p2 +q2 + r2 which implies the re-
quired result. �
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The previous lemma says that dRT−distance along any line
is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the fol-
lowing corollaries:

Corollary 5 If P1, P2 and X are any three collinear
points in R3, then dE(P1,X) = dE(P2,X) if and only if
dRT (P1,X) = dRT (P2,X).

Corollary 6 If P1, P2 and X are any three distinct
collinear points in the real 3-dimensional space, then

dRT (X ,P1) / dRT (X ,P2) = dE(X ,P1) / dE(X ,P2) .

That is, the ratios of the Euclidean and dRT−distances
along a line are the same.
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26480 Eskişehir, Turkey

23


